
A Language for Modular Answer Set Programming:
Application to ACC Tournament Scheduling

Luis Tari, Chitta Baral, and Saadat Anwar

Arizona State University
Department of Computer Science and Engineering

Brickyard Suite 501, 699 South Mill Avenue, Tempe, AZ 85287
{luis.tari,chitta,saadat.anwar }@asu.edu

Abstract. In this paper we develop a declarative language for modular answer
set programming (ASP). Our language allows to declaratively state how one ASP
module can import processed answer sets from another ASP module. We define
the syntax and semantics of our language and illustrate its applicability by model-
ing the ACC tournament scheduling problem. Besides the elegance of developing
declarative programs in a modular manner, our illustration shows that a problem
that is not timely solvable when done in a monolithic way, but becomes solvable
when done in a modular way.

1 Introduction

One of the common answer set programming methodologies is to use logic program-
ming with answer set semantics (also referred to as AnsProlog or A-Prolog) to describe
a problem so that the answer sets of the program encode solutions to the problem. In
this approach the programs usually have two parts: one which enumerates possible so-
lutions and another part which tests and eliminates non-solutions. Both of these parts
are written using AnsProlog rules, and they are given together to an answer set solver
such as Smodels [14], DLV [5] or ASSAT [12]. Although none of these solvers explic-
itly enumerate each possible answer set and test them one by one, the size of the state
space of the problem does play a role in terms of the time taken to find solutions. When
one is unable to solve a problem using the above approach in a reasonable amount of
time one wonders if somehow the representation can be factored and solved in parts.

For example consider an AnsProlog program whose rules can be divided into four parts:
the enumeration partsE1, E2, and the test partsT1 andT2. Let us assume that the
programT1 ∪E1 ∪ T2 ∪E2 can be split into the bottomT1 ∪E1 and topT2 ∪E2 [11].
In this case one can find the answer set of the program by first computing the answer
sets ofT1 ∪ E1, and for each answer setAi of T1 ∪ E1, compute the answer sets of
T2 ∪ E2 ∪ Ai. Thus if E1 enumeratesn binary atoms andE2 enumeratesm binary
atoms, andT1 ∪ E1 has only a small numberk of solutions, then directly trying to find
answer sets ofT1 ∪E1 ∪ T2 ∪E2 could involve potentially dealing with a search space
of 2m+n, while the above mentioned factored approach would lead to searching in one
potential search space to2n, andk potential search spaces of2m.



278 Luis Tari, Chitta Baral, and Saadat Anwar

Although the existing answer set solvers are able to take advantage of the above to some
extent, the extent to which they do is not clear. An alternative approach would be that
the programmer specifies the above mentioned factoring and orders the problem solving
system to solve it in a factored manner. Unfortunately, until now no such system based
on answer set programming exists. One can write a Prolog program (or a program in
another language) which will make multiple calls to the answer set solver and solve
the problem in a factored manner. We believe several people have taken this route.In
this paper we propose an alternative. We propose a declarative language that builds on
AnsProlog and allows declarative specification of such factoring as well as two other
processing steps that one often encounters when solving large problems by breaking
down the problem and making multiple calls to answer set solvers.

We refer to our methodology as modular answer set programming (modular ASP). Be-
sides the efficiency with respect to many problems, as in other programming languages,
modules promote reusability of code. Large programs can be broken down into modules
to improve readability of code. We consider the ACC basketball tournament scheduling
problem [13] which has a large state space. We encoded two approaches of the ACC
scheduling problem and solved using Smodels, DLV, ASSAT and CMODELS [10].
Our code is available at http://www.public.asu.edu/∼tng01/modulesasp.html. How-
ever, none of them was able to return a solution in 30 minutes. On the other hand,
we were able to get solutions using our proposed modular ASP system by breaking the
problem into modules.

The rest of the paper is organized as follows. In Section 2 we present the syntax and
semantics of modular ASP programs, and the implementation. In Section 3 we illustrate
the uses of the various import rules with some practical examples. In Section 4 we
illustrate how we solve the ACC basketball tournament scheduling problem [13] using
modular ASP. In Section 5 we discuss related work and in Section 6 we conclude.

2 Modular ASP programs

In this section we define the syntax and semantics of modular ASP programs. We bor-
row the traditional terminology of atoms, and literals.

2.1 Syntax

Definition 1 An ASP rule is of the form:

a0 ← a1, . . . , am, not am+1, . . . , not an.

whereais are atoms. 2

Definition 2 An ASP import rule is one of the following three forms:

(a) q(X̄) :- M(b̄).p(X̄, ā).

(b) ∗q(X̄) :- M(b̄).p(X̄, ā).

(c) q(#, X̄) :- M(b̄).p(X̄, ā).



A Language for Modular Answer Set Programming 279

whereq andp are predicate names,M is a module name,̄X is a tuple of variables,̄a
andb̄ are tuple of constants, and∗ and# are special symbols. 2

Intuitively, rule (a) says thatq imports the set of tuples̄X from the moduleM(b̄) such
thatp(X̄, ā) are true in all answer sets ofM(b̄). Unlike rule (a), rule (b) imports a set
of set of tuplesS about the predicateq. Each imported set of tuplesS corresponds to an
answer setS′ of the moduleM(b̄). Each atomq(X̄) in S in S owes its presence to the
presence ofp(X̄, ā) in S′. Rule (c) is similar to rule (b), but unlike the latter, it numbers
the answer sets ofM(b̄) in a predefined way. The tuple(i, X̄) is then imported toq if
p(X̄, ā) is true in the i-th answer set ofM(b̄).
In the above ASP import rules,p(X̄, ā) is evaluated with respect to the moduleM .

Definition 3 An ASP module consists of:
(i) a name, (ii) a set of parameters, (iii) a collection of ASP rules, and (iv) a collection
of ASP import rules. 2

Definition 4 If P is the name of an ASP module and the parameters ofP are
{X1, . . . , Xn}, thenP (X1 = a1, . . . , Xn = an), or simplyP (a1, . . . , an), denotes the
ASP module obtained by replacingXi with ai in all the AnsProlog rules ofP , and is
referred to as aninstantiationof P . 2

Example 1 SupposeP is the name of an ASP module andP has the following rule:

date(N).

P (N = 9) is an instantiation ofP which indicates that the value ofN becomes 9 in
moduleP . 2

Definition 5 A modular ASP program is a collection of ASP modules where each mod-
ule has a different name. 2

Earlier we define the import rules individually. If there are multiple import rules in a
module, we need to ensure certain consistencies. This is precisely defined in the next
subsection.

2.2 Semantics

Given a modular ASP program{M1, . . . ,Ml} its dependency graph is constructed as
follows. The nodes of the graph are the modules and there is an edge fromMi to Mj if
Mj has an import rule withMi in its body. In this paper we are only concerned with the
semantics of modular ASP programs whose dependency graph does not have cycles. In
addition, for import rules that import from the same module, we require that they have
to be of the same form. We define the answer sets of ASP modules with respect to a
modular ASP program that contains it. For simplicity, we may just mention answer sets
of ASP modules, and the corresponding modular ASP program is understood from the
context.

Definition 6 Given an ASP import ruler of the form(b) andY as an answer set of
M(b̄), we sayX is obtained by filteringY usingr if X = {q(c̄) : p(c̄, ā) ∈ Y }. 2



280 Luis Tari, Chitta Baral, and Saadat Anwar

Definition 7 Given a set of ASP import rulesR = { r1, . . ., rn } that are of the same
form (a) or (b) or (c), and eachri contains module nameM(b̄), the extracted set ofR
is a set of sets of literals obtained as follows:

(i) If all import rules in R are of the form (a), then for eachri, computeSi = {
q(c̄) : p(c̄, ā) is in all answer sets ofM(b̄)}. The extracted set ofR is a singleton set
consisting of the setS = S1 ∪ . . . ∪ Sn.

(ii) If all import rules inR are of the form (b), letY1, . . ., Ym be the answer sets ofM(b̄).
Then for eachri, computeSij = {X : Yj is an answer set ofM(b̄), andX is obtained
by filtering Yj usingri}. The extracted set ofR is the setS = { S1, . . ., Sm }, where
Sj = S1j ∪ . . . ∪ Snj .

(iii) If all import rules in R are of the form (c), the extracted set ofR is obtained as
follows:

– Compute the extracted setS assuming the rules are of the form (b).
– The number of elements in the setS is at least 1. If the setS is a singleton set

consisting of the empty set then the extracted set ofR is S. Otherwise,

• Order each element ofS by an ordering criteria and label them asS1, . . . , Sm.
• The extracted set ofR is the set{ S′ }, whereS′ = {q(j, c̄) | q(c̄) ∈ Sj}.

2

Example 2 SupposeP1 is the following ASP module:

%%=== module P1 ===%%
p(c,d,a).
p(e,f,a) :- not r(g,h,a).
r(g,h,a) :- not p(e,f,a).

The moduleP1 has two answer sets:

{p(c, d, a), p(e, f, a)} and{p(c, d, a), r(g, h, a)}

SupposeP2 is an ASP module that contains import rulesR = { r1, r2 } of the form(a)
that refer toP1.

%%=== module P2 ===%%
%%import rule r1
q(X,Y) :- P1.p(X,Y,a).
%%import rule r2
s(X,Y) :- P1.r(X,Y,a).

The predicatep(c, d, a) exists in all answer sets ofP1. Therefore, the extracted set of
R is {{q(c, d)}}. 2

Example 3 SupposeP3 is an ASP module that contains import rulesR = { r1, r2 } of
the form(b) that refer toP1, which is defined in Example 2.



A Language for Modular Answer Set Programming 281

%%=== module P3 ===%%
%%import rule r1
*q(X,Y) :- P1.p(X,Y,a).
%%import rule r2
*s(X,Y) :- P1.r(X,Y,a).

By filtering the answer sets ofP1 usingR, the extracted set ofR is {{q(c, d), q(e, f)},
{q(c, d), s(g, h)}}. 2

Example 4 SupposeP4 is an ASP module that contains import rulesR = { r1, r2 } of
the form(c) that refers toP1, which is defined in Example 2.

%%=== module P4 ===%%
%%import rule r1
q(#,X,Y) :- P1.p(X,Y,a).
%%import rule r1
s(#,X,Y) :- P1.r(X,Y,a).

The extracted set ofR is
{{q(1, c, d), q(1, e, f), q(2, c, d), s(2, g, h)}}. 2

We now define the answer set of instantiated ASP modules in two steps: first for the
ones without import rules, and next for the ones with import rules.

Definition 8 Let P (X1 = a1, . . . , Xn = an) be an instantiated ASP module with no
import rules. The answer sets ofP (X1 = a1, . . . , Xn = an) are the answer sets of the
logic program consisting of the rules ofP (X1 = a1, . . . , Xn = an). 2

Definition 9 Let P (X1 = a1, . . . , Xn = an) be an instantiated ASP module with the
set of import rulesR = {r1, . . . , rl} such that no two elements ofR that import from
the same module are of different forms. Let{M1(b̄1), . . ., Mk(b̄k) } be a set of unique
occurrences of module names appearing in all import rules ofP (X1 = a1, . . . , Xn =
an) andRMi(b̄i) ⊆ R be the import rules containing the module nameMi(b̄i). X is
an answer set ofP (X1 = a1, . . . , Xn = an) computed by replacingRMi(b̄i) from
P (X1 = a1, . . . , Xn = an) by the atoms in an extracted set ofRMi(b̄i). 2

Example 5 In example 4, the extracted set of atoms for import rulesr1 and r2 are
added to moduleP4. Therefore, moduleP4 has the answer set{ q(1, c, d), q(1, e, f),
q(2, c, d), s(2, g, h) }. 2

2.3 Implementation

We implemented a prototype of the above defined modular ASP system. The prototype
is composed of two parts: a front-end that interprets the modular AnsProlog language
and the Smodels [14] inference engine as the backbone.

The input to the system is a set of ASP modules and the output is the answer sets com-
puted by Smodels. The front-end interpreter scans for any import rules and proceeds



282 Luis Tari, Chitta Baral, and Saadat Anwar

as follows. Assume that the input is a set of ASP modulesm1 andm2, andm1 has an
import rule that refers tom2. The interpreter first scans for any import rule inm1. In
this case, the interpreter finds an import rule that refers to modulem2 and looks into
m2 for any other import rules. The backbone of the system then computes the answer
sets of a module once no further import rule is found. The answer sets ofm2 are then
stored as a temporary file and the import rules inm1 are then replaced by the necessary
predicates inm2 to form a new temporary AnsProlog programm1

′. The answer sets of
m1

′ are displayed as the output of the system.

The frontend interpreter was written in Perl and tested under the Cygwin environment.
Smodels version 2.27 was used as the backbone of our system. We tested our prototype
with the implementation of the ACC basketball tournament scheduling problem.

3 Practical Examples to Illustrate Import Rules

In this section, we illustrate the uses of the various import rules based on a mini basket-
ball tournament scheduling problem.

SupposeSCH GEN is an ASP module that generates valid schedules for a mini
basketball tournament that involves four teams: clem, duke, fsu and geog. Each team
plays each other twice during the course of the tournament. The moduleSCH GEN
has a parameter that defines the number of days for the tournament.

Example 6 SCH GEN(num days = 3) is an instantiation ofSCH GEN , which
indicates that the value ofnum days becomes 3. 2

Assume that the above instantiation ofSCH GEN generates two schedules:

{sch(duke, clem, 1), sch(fsu, geog, 1), sch(duke, fsu, 2), sch(clem, geog, 2),
sch(geog, duke, 3), sch(fsu, clem, 3)}

and

{sch(duke, clem, 1), sch(geog, fsu, 1), sch(geog, duke, 2), sch(fsu, clem, 2),
sch(duke, fsu, 3), sch(clem, geog, 3)}

The predicatesch(X, Y, Z) means that teamX plays with teamY at home on dateZ.

Example 7 SupposeP1 is the following ASP module that finds which team duke must
play with on a particular day. This can be done by importing the valid schedules related
to duke from moduleSCH GEN through import ruler of form (a). The predicate
duke must play(Y, D) indicates that duke must play with teamY on dayD. The idea
is that if all valid schedules agree that teamY plays with duke on dayD, then it must
be the case that teamY plays with duke on dayD.

%%=== module P1 ===%%
%% import rule r
duke_must_play(Y,D) :- SCH_GEN(num_days=3).sch(duke,Y,D).



A Language for Modular Answer Set Programming 283

The predicatesch(duke, clem, 1) exists in all answer sets ofSCH GEN . There-
fore, the extracted set ofr is {duke must play(clem, 1)}. 2

Example 8 SupposeP2 is the following ASP module that finds all valid schedules
for day 1. The idea is to import the valid schedules related to day 1 from module
SCH GEN through import ruler of form (b). The predicateplay on day1(X, Y )
indicates that teamX plays with teamY at home on day 1.

%%=== module P2 ===%%
%% import rule r
*play_on_day1(X,Y) :- SCH_GEN(num_days=3).sch(X,Y,1).

The extracted set ofr is { {play on day1(duke, clem), play on day1(fsu, geog)},
{play on day1(duke, clem), play on day1(geog, fsu)} }. 2

Example 9 SupposeP3 is the following ASP module that finds a schedule in which
duke plays at home on 2 consecutive days. This can be done by importing the valid
schedules related to duke from moduleSCH GEN through import ruler of form (c).
The predicateduke plays(N,Y, D) indicates that duke plays with teamY on dayD
according to theN -th schedule, while the predicategood sch(N) indicates that the
N -th schedule includes duke playing at home on 2 consecutive days.

%%=== module P3 ===%%
%% import rule r
duke_plays(#,Y,D) :- SCH_GEN(num_days=3).sch(duke,Y,D).
good_sch(N) :- team(Y), team(YY), day(D),

duke_plays(N,Y,D), duke_plays(N,YY,DD), Y!=YY, DD=D+1.

The extracted set ofr is { { duke plays(1, clem, 1), duke plays(1, fsu, 2) },
{ duke plays(2, clem, 1), duke plays(2, fsu, 3) } }. Sogood sch(1) is true. 2

4 An Illustration of the Use of Modules

We use the scheduling problem of the Atlantic Coast Conference (ACC) college bas-
ketball tournament to motivate the use of modules. We adopted the problem descrip-
tion given in [7]. The ACC basketball tournament scheduling problem is a round-robin
scheduling problem. Nine teams from nine universities compete with each other over a
period of nine weeks.

In the ACC schedule, there were two games per week. One on a weekday and the other
on a weekend, giving a total of eighteen game days. On each day, eight of the teams
play either a home game or an away game, while the ninth team has a bye, i.e. the
ninth team does not play. The schedule is a double round-robin in which every team
plays against every other team twice - once at home and once away. To reflect the fact
that the schedule is a double round-robin, a mirroring scheme is used to group dates
into pairs (r1, r2) such that each team plays against the same team in datesr1 andr2.
We adopted the mirroring schemem [13], by assigningm={(1,8), (2,9), (3,12), (4,12),
(5,14), (6,15), (7,16), (10,17), (11,18)}. The following rules are used to describe the
domain of the ACC tournament scheduling problem:



284 Luis Tari, Chitta Baral, and Saadat Anwar

% Game type): home (h), away (a), bye (b)
gtype(h;a;b).

% A period of nine weeks and two games per week:
% one on a week day and the other on a weekend.
date(1..18). wend(2;4;6;8;10;12;14;16;18).

% The nine teams in the ACC tournament
team(clem;duke;fsu;gtech;umd;unc;ncst;uva;wake).

% Rival teams
rival(clem,gtech). rival(duke,unc).
rival(umd,uva). rival(ncst,wake).

% Mirroring scheme:
% first group (mgp_dates1) has mirroring after 9 dates;
% second (mgp_dates2) has mirroring after 7 dates.
mgp_dates1(3..7). mgp_dates2(1;2;10;11).

Various constraints are imposed on the schedule in order to maintain fairness and max-
imize profits. We divide the constraints into three main categories, as in [7]:

1. Generic team scheduling constraints, e.g. no team may have more than two away
matches in a row.

2. Individual team scheduling constraints, e.g. Duke has a bye on date 16.
3. Rival team scheduling constraints, e.g. UNC plays its rival Duke on the last date

and on date 11.

In the following subsections, we describe three different approaches in solving the
scheduling problem: monolithic, mirroring and modular approaches. The monolithic
approach is based on the intuitive idea of generating all possible schedules among the
teams and then prune schedules that are not compatible to the constraints of the prob-
lem. To scale down the search space, we utilized the mirroring scheme of dates in the
mirroring approach [7]. We implemented both monolithic and mirroring approaches on
popular answer set solvers such as Smodels [14], DLV [5], ASSAT [12] and CMOD-
ELS [10]. The solvers do not return the answer sets within 30 minutes on a Pentium IV
2.8 GHz computer with 512 MB of RAM, as the search space becomes too large for
both approaches.

To reduce the complexity, we adopted the breakdown strategy given in [7], which we
refer to as the modular approach, and implemented it using the modular ASP language.

4.1 Monolithic Approach

We first demonstrate the monolithic approach by showing the Smodels code for the gen-
eration of possible schedules. Due to the limit of space, the code for the team-specific
constraints is not shown. The predicatesch(X, Y,D) implies that teamX plays against



A Language for Modular Answer Set Programming 285

teamY at home on dateD, while the predicateplay(X, Y,D) means that teamsX and
Y play against each other on dateD.

%% can only play at most one other team at home
0 { sch(X,Y,D) : team(Y) } 1 :- date(D), team(X).

%% cannot play more than 1 team on a particular date
:- team(X;Y;Z), date(D), Y!=Z, play(X,Y,D), play(X,Z,D).

%% cannot play both home and away on same date
:- team(X;Y), date(D), sch(X,Y,D), sch(Y,X,D).

%% cannot play itself
:- team(X;Y), date(D), sch(X,Y,D), X==Y.

%% The schedule should be such that a team plays at home
%% with another team exactly once
1 { sch(X,Y,D) : date(D) } 1 :- team(X), team(Y), X!=Y.

%% Each team must have 8 home games, 8 away games and 2
%% byes over the course of the season.
cond_home :- 8 {plays_at_home(X,D) : date(D)} 8, team(X).
:- not cond_home.
cond_away :- 8 {plays_away(X,D) : date(D)} 8, team(X).
:- not cond_away.
cond_bye :- 2 {has_bye(X,D) : date(D)} 2, team(X).
:- not cond_bye.

The encodings for DLV, ASSAT and CMODELS were done without the use of car-
dinality constraints. To replace the cardinality constraints, predicates for counting de-
scribed in [1] were used. Counting was used for finding the number of home, away
games and byes for a team. Specifically,count home(X, N) implies that for a team
x, count home(x, n) is true if there aren different facts ofsch(x, y, d) with dis-
tinct ys. The predicatecount away(X, N) implies for a teamx, count away(x, n)
is true if there aren different facts ofsch(y, x, d) with distinct ys. The predicate
count bye(x, n) is true if there aren different facts ofhas bye(x, d) for teamx with
distinctds. Due to space limitation, only code for generation of possible schedules is
shown below.

%% Generate all possible schedules
sch(X,Y,D) :- team(X), team(Y), date(D), not n_sch(X,Y,D).
n_sch(X,Y,D) :- team(X), team(Y), date(D), not sch(X,Y,D).

%% Each team must have 8 home games, 8 away games and
%% 2 byes over the course of the season.
:- team(X), number(N), count_home(X,N), N>9.
:- team(X), number(N), count_home(X,N), N<8.



286 Luis Tari, Chitta Baral, and Saadat Anwar

:- team(X), number(N), count_away(X,N), N>9.
:- team(X), number(N), count_away(X,N), N<8.
:- team(X), number(N), count_bye(X,N), N>3.
:- team(X), number(N), count_bye(X,N), N<2.

The generation of all possible schedules among the teams becomes infeasible, due to
the number of variables and the range of the values of the variables. In particular, the
number of atoms for the predicatesch(X, Y, Z) is 9× 9× 18, as there are 9 teams and
18 game dates. So the number of interpretations for thesch(X, Y, Z) atoms is29·9·18 of
sch(X, Y, Z). Smodels, DLV, ASSAT and CMODELS were used but no solution was
returned within 30 minutes. To reduce the space complexity, we attempted the mirroring
approach described in the next subsection.

4.2 Mirroring Approach

The mirroring approach imposes an ordering on half of the schedule dates. We first
demonstrate the mirroring approach by showing the Smodels code for the generation of
possible schedules using the mirroring scheme of dates. Due to the limit of space, the
code for the scheduling constraints is not shown.

% The schedule should be such that for a particular date,
% a team may only play at most one team at home.
0 { sch(X,Y,D) : team(Y) } 1 :- mgp_dates1(D), team(X).
0 { sch(X,Y,D) : team(Y) } 1 :- mgp_dates2(D), team(X).

% Teams assigned to play during the dates in mgp_dates1(D)
% and mgp_dates2(D) will play again after 9 and 7 dates.
sch(Y,X,D+9) :- sch(X,Y,D), team(X), team(Y), mgp_dates1(D).
sch(Y,X,D+7) :- sch(X,Y,D), team(X), team(Y), mgp_dates2(D).

plays(X,Y,D) :- team(X), team(Y), date(D), sch(X,Y,D).
plays(X,Y,D) :- team(X), team(Y), date(D), sch(Y,X,D).
plays(X,D) :- team(X), team(Y), date(D), plays(X,Y,D).
plays_at_home(X,D) :- team(X), team(Y), date(D), sch(X,Y,D).
plays_away(X,D) :- team(X), team(Y),date(D), sch(Y,X,D).
has_bye(X,D) :- team(X), date(D), not plays(X,D).

Similar to the monolithic approach, counting predicates were used in place of cardi-
nality constraints for the encodings of DLV, ASSAT and CMODELS. The code for the
generation of schedules is shown below:

%% Generation of schedules using mirroring dates
sch(X,Y,D) :- team(X;Y), mgp_days1(D), not nsch(X,Y,D).
nsch(X,Y,D) :- team(X;Y), mgp_days1(D), not sch(X,Y,D).
sch(X,Y,D) :- team(X;Y), mgp_days2(D), not nsch(X,Y,D).
nsch(X,Y,D) :- team(X;Y), mgp_days2(D), not sch(X,Y,D).



A Language for Modular Answer Set Programming 287

%% Use mirroring constraints to generate game patterns.
sch(X,Y,DD) :- sch(Y,X,D), mgp_days1(D), DD=D+9, team(X;Y).
sch(X,Y,DD) :- sch(Y,X,D), mgp_days2(D), DD=D+7, team(X;Y).

%% Each team has 8 home, 8 away and 2 byes per season.
:- team(X), number(N), count_home(X,N), N>9.
:- team(X), number(N), count_home(X,N), N<8.
:- team(X), number(N), count_away(X,N), N>9.
:- team(X), number(N), count_away(X,N), N<8.
:- team(X), number(N), count_bye(X,N), N>3.
:- team(X), number(N), count_bye(X,N), N<2.

The generation of all possible schedules among the teams becomes infeasible, due
to the number of variables and the range of the values of the variables. In particular, the
number of atoms for the predicatesch(X, Y, Z) is 9× 9× 9, as there are 9 teams and
9 mirroring game dates. So the number of interpretations for thesch(X, Y, Z) atoms
is 29·9·9 of sch(X, Y, Z). This can be the reason that the encoding of the mirroring
approach using Smodels, DLV, ASSAT and CMODELS did not return the solutions
within 30 minutes.

4.3 Modular Approach

In the modular approach, the scheduling problem is broken down into three phases,
namely pattern generation, pattern-team binding and timetable generation. We define a
pattern to be a combination of home, away, and byes assigned to a particular date. A
pattern-team binding is an assignment of a suitable pattern to each of the nine teams. A
timetable is built from a pattern-team binding by determining which team plays against
which opponent on a given date. A valid timetable must satisfy all constraints. Each of
the three phases is implemented as modules. The three corresponding modules are pat-
tern generationpat gen , pattern-team bindingpat team bind and timetable gen-
erationteam team sch . We describe each of the main parts of the modules in the
remaining of this subsection.

The pattern generation phase is to generate patterns in the form of the predicate
sch(GT,D), which refers to a pattern of game typeGT to be scheduled on dateD.
The possible patterns are then pruned by the constraints of the problem, such as “no
more than two home games can be played in a row”. The following code demonstrates
some of the constraints involved in the generation of patterns for the pattern generation
modulepat gen :

%%% === pat_gen: module pattern generation === %%%
% Schedule a type of game (home,away,bye) on a given date
% to generate patterns. Types of games assigned on dates
% in mgp_dates1(D) and mgp_dates2(D) will play again after
% 9 and 7 dates resp.
1{sch(G,D) : gtype(G)}1 :- mgp_dates1(D).
sch(a,D+9) :- sch(h,D), mgp_dates1(D).



288 Luis Tari, Chitta Baral, and Saadat Anwar

sch(h,D+9) :- sch(a,D), mgp_dates1(D).
sch(b,D+9) :- sch(b,D), mgp_dates1(D).

1{sch(G,D) : gtype(G)}1 :- mgp_dates2(D).
sch(a,D+7) :- sch(h,D), mgp_dates2(D).
sch(h,D+7) :- sch(a,D), mgp_dates2(D).
sch(b,D+7) :- sch(b,D), mgp_dates2(D).

% No team has more than two home games in a row.
:- date(D;D+1;D+2), sch(h,D), sch(h,D+1), sch(h,D+2).

% Exclude patterns that have more than
% 8 home games or 8 away games or 2 byes
% on a given date.
:- 9 { sch(h,D) : date(D) }.
:- 9 { sch(a,D) : date(D) }.
:- 3 { sch(b,D) : date(D) }.

Once the valid sets of patterns are generated, the goal of the next phase pattern-team
binding is to assign teams to patterns, subject to the team-specific constraints. An ex-
ample of a team-specific constraint is “Wake does not play home on date 17”. The sets
of patterns are denoted by the predicatepat(N,GT, D) from the assignment of num-
bersN to each of the set of patternssch(GT,D), imported from the modulepat gen .
The binding of a team and a pattern is represented by the predicatebind(T, P ), where
P is a pattern that satisfies the team-specific constraints of teamT . The following
code illustrates the main part of pattern-team binding modulepat team bind that
involves some of the team-specific constraints and the import instructions from module
pat gen :

%%% === pat_team_bind: module pattern-team binding === %%%
% Import patterns generated by module pat_gen
pat(#,D,G) :- pat_gen.sch(G,D).
npat(P) :- pat(P,G,D).

% Pattern P is bound to team T if bind(T,P).
bound(T,P) :- team(T), bind(T,P), npat(P).

% Home-away pairs
ha_pair(h,a). ha_pair(a,h).

% Pattern P1 has already been bound to the team T
% so each team can only be bound once.
o_bound(T,P) :- team(T), npat(P;P1), P!=P1, bound(T,P1).

% Likewise, team T2 has already been bound to the
% pattern P, so each pattern can only be bound once.



A Language for Modular Answer Set Programming 289

a_bound(T,P) :- team(T;T2), npat(P), T!=T2, bound(T2,P).

% bind "duke" to a pattern P, such that
% - duke has a bye on date 16
% - unc plays its rival duke on dates 11 and 18
% i.e. duke does not have a bye on these dates
% - duke does not have away games on date 18
% - neither duke nor P has been bound
bind(duke,P) :- pat(P,16,b), pat(P,18,GT1), GT1!=b,

pat(P,11,GT2), GT2!=b, pat(P,18,GT3), GT3!=a,
not o_bound(2,P), not a_bound(2,P).

% number of byes on each game date has to be 1
:- 2 {bound(T,P):team(T):pat(P,D,b)}, date(D).

% number of home games must be 4
:- 1 {bound(T,P):team(T):pat(P,D,h)} 3, date(D).
:- 5 {bound(T,P):team(T):pat(P,D,h)}, date(D).

The final phase is the timetable generation, in which team-team schedules are gener-
ated based on the patterns and bindings generated by the previous two phases. Pat-
ternspat(N,D,GT ) and pattern-team bindingbound(T,N) generated by the previous
two modulespat gen andpat team bind are imported to the timetable generation
moduleteam team sch . The goal of the timetable generation phase is to bind fea-
sible team pairings. Suppose teamsT1, T2, T3 follow the patterns{(H,1),(H,2),(A,3)},
{(A,1),(H,2),(H,3)}, {(A,1),(A,2),(H,3)} in the first three dates, thenT1 can play at
home against eitherT2 or T3 but not both. The possible team pairings are then checked
against the team-team constraints, such as “no team plays in two consecutive dates
against Duke and UNC,” so that only schedules that conform to the constraints can
be in the answer sets. The following code illustrates the main parts of the timetable
generation moduleteam team sch and some of the team-specific constraints:

%%%=== team_team_sch: module timetable generation ===%%%
% Import the valid sets of patterns from module pat_gen
pat(#,D,G) :- pat_gen.sch(G,D).
npat(P) :- pat(P,D,G).

% Import team-pattern binding from module pat_team_bind
*bound(T,P) :- pat_team_bind.bound(T,P).

% Generate bindings of who plays whom on date D:
% T1 plays home, T2 plays away. Neither T1 or T2 is
% playing another team on date D.
plays(T1,T2,D) :- date(D), team(T1;T2), bound(T1,P1),

bound(T2,P2), pat(P1,D,h), pat(P2,D,a),
not o_plays(T1,T2,D).



290 Luis Tari, Chitta Baral, and Saadat Anwar

o_plays(T1,T2,D) :- date(D), team(T1;T2;T3), T2!=T3,
bound(T1,P1), bound(T3,P3), pat(P1,D,h),
pat(P3,D,a), plays(T1,T3,D).

o_plays(T1,T2,D) :- date(D), team(T0;T1;T2), T0!=T1,
bound(T0,P0), bound(T2,P2), pat(P0,D,h),
pat(P2,D,a), plays(T0,T2,D).

The encoding of the modular approach using our modular ASP language returns a so-
lution within 20 minutes.

5 Related Work

The notion of modules in logic programming first appeared in [2]. However, it is known
that the approach has problems in handling negations [4]. The use of generalized quan-
tifiers was proposed in [4] to incorporate external functions into logic programs in the
stable model semantics. It is not clear how import rules of form (b) and (c) can be
expressed using generalized quantifiers.

In terms of implementation, popular Prolog inference systems such as Sicstus [9] and
XSB [16] have the notion of modules. There are currently a few systems available that
have a similar goal to extend AnsProlog to be modular. The language DLPT [8] seems
to be the closest to our language, which extends DLV to allow modules in the form of
templates. The notion of templates is analogous to functions in procedural program-
ming languages. However, it is not clear if it can handle import rules of form (c). XASP
[3] is a package of the Prolog inference engine XSB that provides an interface to Smod-
els, so that an AnsProlog program can be executed through a Prolog program. XASP
provides the mechanism for Prolog to handle multiple answer sets. ASP-Prolog [6] ex-
tends the idea of XASP by adding constructs that allow an easier approach to develop
AnsProlog programs. Not only that AnsProlog rules can be accessed in a Prolog mod-
ule, AnsProlog rules can be easily added or removed from a Smodels program through
a Prolog program. By integrating Prolog to be on top of Smodels, both XASP and ASP-
Prolog achieve the goal of extending AnsProlog to be modular. However, developing
an AnsProlog application in a modular approach now becomes the task of developing a
Prolog application. DLV provides a Java wrapper [15] that allow disjunctive logic pro-
grams to be used in Java. While Java is an object-oriented language, enabling Java to
execute AnsProlog programs has the effect of modularizing AnsProlog programs.

6 Conclusion

We described a logic programming language that extends AnsProlog to incorporate
modules in the form of AnsProlog and Prolog. The main emphasis of our system is that
we extend AnsProlog to be modular without inventing an entirely new programming
language. Unlike the other systems, the extension of AnsProlog to incorporate modules
is done without integrating AnsProlog to an existing language. With the modular ASP
language, developing an AnsProlog application in a modular approach is not very dif-
ferent from developing a monolithic AnsProlog program. Not only that our system is



A Language for Modular Answer Set Programming 291

able to import answer sets from another module, it can also import predicates speci-
fied in other modules. The introduction of the export declarations and import rules is
analogous to the idea of member variable access in object-oriented languages. Predi-
cates declared as export in the modular ASP language are similar to the idea of public
variables, while predicates that are not declared as export are similar to private vari-
ables. This provides control of the level of access of predicates, which is vital to the
development of large applications.

It is known that the current implementation of the inference engines for AnsProlog
is not efficient in handling numbers. As a future work, we would like to extend our
modular ASP language to incorporate modules written in Prolog. The incorporation of
Prolog modules can compensate the inability of effectively dealing with numbers and
numerical computations in the current AnsProlog inference engines.

References

1. Chitta Baral.Knowledge representation, reasoning and declarative problem solving. Cam-
bridge University Press, 2003.

2. Michele Bugliesi, Evelina Lamma, and Paola Mello. Modularity in logic programming.
Journal of Logic Programming, 19/20:443–502, 1994.

3. Luis Castro, Terrance Swift, and David S. Warren. Xasp: Answer set programming with xsb
and smodels.xsb.sourceforge.net/packages/xasp.pdf, 2002.

4. Thomas Eiter, Georg Gottlob, and Helmut Veith. Generalized quantifiers in logic programs.
In ESSLLI ’97: Revised Lectures from the 9th European Summer School on Logic, Language,
and Information, pages 72–98, London, UK, 2000. Springer-Verlag.

5. Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco Scarcello. The
kr system dlv: Progress report, comparisons and benchmarks. InProceedings Sixth Intl.
Conf. on Principles of Knowledge Representation and Reasoning (KR’98), pages 406–417.
Morgan Kaufmann Publishers, 1998.

6. Omar Elkhatib, Enrico Pontelli, and Tran Cao Son. Asp-prolog: a system for reasoning about
answer set programs in prolog. InNMR, pages 155–163, 2004.

7. Martin Henz. Scheduling a major college basketball conference—revisited.Operations
Research, 49(1):163–168, 2001.

8. Giovambattista Ianni, Giuseppe Ielpa, Francesco Calimeri, Adriana Pietramala, and
Maria Carmela Santoro. Enhancing answer set programming with templates.In Proceed-
ings of the 10th International Workshop on Non-Monotonic Reasoning NMR2004, pages
233–239, 2004.

9. S. Kista. Sicstus prolog.SICStus Prolog User’s Guide, 1990.
10. Y. Lierler and M. Maratea. Cmodels-2: Sat-based answer set solver enhanced to non-tight

programs. InLect. Notes in Comput. Sci., volume 2923, pages 346–350. Springer, Berlin,
2004.

11. Vladimir Lifschitz and H. Turner. Splitting a logic program.In Proceedings of the Eleventh
Int’l Conf. on Logic Programming, pages 23–38, 1994.

12. Fangzhen Lin and Yuting Zhao. Assat: computing answer sets of a logic program by sat
solvers.Artif. Intell., 157(1-2):115–137, 2004.

13. George L. Nemhauser and Michael A. Trick. Scheduling a major college basketball confer-
ence.Oper. Res., 46(1):1–8, 1998.

14. Ilkka Niemel̈a and Patrik Simons. Smodels - an implementation of the stable model and
well-founded semantics for normal lp. pages 421–430. Springer Verlag, 1997.



292 Luis Tari, Chitta Baral, and Saadat Anwar

15. Francesco Ricca. A java wrapper for dlv.Answer Set Programming, 2003.
16. Konstantinos Sagonas, Terrance Swift, David S. Warren, Juliana Freire, and Prasad Rao. Xsb

prolog. The XSB System Version 2.2 Volume 1: Programmer’s Manual.


