
Implementation of a search engine for DeriNet

Jonáš Vidra

Institute of Formal and Applied Linguistics, Faculty of Mathematics and Physics, Charles University in Prague
vidra.jonas@seznam.cz,

WWW home page: http://jonys.cz/

Abstract: DeriNet, a new database of lexical derivates,
is being developed at the Institute of Formal and Ap-
plied Linguistics. Since it is a wordnet containing
large amounts of trees, it is hard to visualize, search
and extend without specialized tools. This paper de-
scribes a program which has been developed to dis-
play the trees and enable finding certain types of er-
rors, and its query language. The application is web-
based for ease of use and access. The language has
been inspired by CQL, the language used for search-
ing the Czech National Corpus, and uses similar key-
words and syntax extended to facilitate searching in
tree structures.

1 Introduction
1.1 DeriNet
DeriNet1 is a database of lexical derivates.[5] It con-
tains lexemes structured into oriented trees that ex-
press derivational relations – the nodes are lexemes
and edges are child→parent relations. Each lexeme
represents one lemma with its meaning (word sense)
partially disambiguated – several lexemes may repre-
sent the same lemma in different senses, if they differ
in their derivational history – that is, they’re derived
from different words2 or they have different descen-
dants3.

The database is stored in a tab-separated-values
file using a simple format; see table 1 for an excerpt.
Each line contains one lexeme. The meanings of the
columns are: ID is a nonnegative integer which serves
as a unique identifier; lemma is the base form of a
word; techlemma is the lemma plus additional anno-
tation in the style of the m-layer of the Prague Depen-
dency Treebank[2]. POS is part of speech – A for ad-
jectives, D for adverbs, N for nouns, V for verbs. Par-
ent is the ID of the direct derivational parent. Every
lexeme has at most one parent, which simplifies the
structure, although it doesn’t allow representing com-
pounding. Version 0.9, released in December 2014,
contains 305,781 lexemes sampled from the Czech Na-
tional Corpus and 117,327 oriented edges.

1http://ufal.mff.cuni.cz/derinet
2such as “sladit” (to sweeten / to harmonize) from “sladký”

(sweet) or “ladit” (to tune)
3as in the case of “hnát” (vulgar form of limb / to drive)

whose child is either “hnátek” (diminutive from hnát) or
“hnaný” (the chased one)

Table 1: Excerpt from the DeriNet database showing
four lexemes.

ID lemma techlemma POS parent
177751 nosní nosní A 177725
177752 nosník nosník N 177753
177753 nosný nosný A
177754 nosně nosně_ˆ(*1ý) D 177751

1.2 Requirements

Since DeriNet is a graph database contained in a TSV
file, it’s very hard to visualize the structure without a
specialized tool. Therefore, we’ve decided to create a
specialized application which would use a simple lan-
guage for searching. Ideally, this application should
be accessible and usable by both skilled linguists and
random visitors. The requirements were to support:

• Searching for lemmas, techlemmas and parts-of-
speech using regular expressions.

• Querying of ancestor-descendant and sibling-
sibling relations.

• Displaying the trees. The largest trees in DeriNet
0.9 contain 31 lexemes, the deepest are 7 levels
deep, but most of them are smaller. This means
that the visualization can be straightforward.

2 Related work

We’ve decided to survey the available query languages
and either choose a suitable one or create a custom
domain-specific language while drawing inspiration
from existing sources. Our criteria were

1. support for searching within tree structures:
specifying criteria for ancestors, descendants and
siblings,

2. familiarity within our target group of Czech lin-
guists – nonprogrammers; or at least a shallow
learning curve,

3. easy and effective writing of new queries, and

4. simple implementation.

J. Yaghob (Ed.): ITAT 2015 pp. 100–105
Charles University in Prague, Prague, 2015

The first two points ruled out relational database
query languages such as SQL, since they have no pro-
visions for searching in trees. We’ve examined XPath,
PML-TQ and CQL in more detail.

XPath[1] is a long-established language designed
specifically for tree querying and it has an existing im-
plementation in Javascript[6]. DeriNet has an XML
version which could be used as a backing database
with just a few changes. Unfortunately, testing has
shown that existing web browsers cannot handle XML
files the size of DeriNet. Loading the database easi-
ly took several minutes on weaker machines and any
XPath query took tens of seconds to process. The
latter could be overcome by using an external XPath
library such as Wicked Good XPath, but the problem
with representing the XML in a browser remains.

PML-TQ (Prague Markup Language – Tree
Query[4]) is a language used for querying the Prague
Dependency Treebank. It has many options, but it
is also very complex and hard to implement. There-
fore, it could only be reasonably used with the exist-
ing implementation as a server-side backend. Writ-
ing queries by hand is not very convenient, they are
mostly edited using an offline application which we
wouldn’t be able to replicate in a web application.
There is a web interface4, but it doesn’t offer the in-
teractive editor. Also, many of its features would be
unused in our simple system.

CQL (Corpus Query Language[3]) is a language
used for searching the Czech National Corpus5. It
only supports searching in sentences, i.e. linearly or-
dered sequences of nodes, but the syntax is simple
and easy to modify and expand. It could be easily
extended to handle basic tree queries as well. Also,
its syntax supports using bare keywords as a query,
while XPath and PML-TQ require a richer construc-
tion even for the simplest cases.

3 Query language

We’ve decided to go for maximum simplicity and fa-
miliarity and base our language on CQL. We wrote
our own implementation using Jacob6, an alternative
of Flex and Bison for JavaScript, which creates an
LALR parser from an EBNF grammar.

The simplest query is the attribute expression,
which describes attributes of a single node in the
database. Its results are all nodes that match the
attributes. It has the following general form:
[attribute="value" …]

Multiple attributes can be specified at once – the
query then matches iff all of them match. We current-
ly support the following comparison operators: “=”

4https://lindat.mff.cuni.cz/services/pmltq/
5https://kontext.korpus.cz/first_form?

queryselector=cqlrow
6https://github.com/Canna71/Jacob

for RegExp comparison, “==” for string comparison
and “!=” and “!==” as their negations. The follow-
ing attributes may be used: “lemma”, “techlemma”,
“pos”, “id” and “parent”. There is a special syntax
for matching nodes without a parent: parent=="-1"
matches all nodes without a parent. This special case
is guaranteed not to clash with any actual IDs, since
normal IDs are nonnegative integers.
Examples:
[lemma="stroj"]

Matches all nodes whose lemma contains “stroj”.
[lemma="ˆstroj$"]

Matches all nodes whose lemma is exactly “stroj”.
[lemma=="stroj"]

The same as the previous one.
[]

Matches any node.
[id=="12345"]

Matches nodes whose ID is exactly “12345”.
[pos=="A" lemma="ký$"]

Matches adjectives ending in “ký”.
[parent=="-1"]

Matches all nodes without a parent.
Attribute expressions also have shorthand

forms: By selecting the appropriate “default at-
tribute”, you can write just "stroj" instead of
[defaultattribute="stroj"] and stroj instead of
[defaultattribute=="stroj"].
Attribute expressions can be combined to form a

tree expression. The standard CQL was designed
for querying sentences, which contain totally ordered
nodes and so the only higher-order expression it sup-
ports is a linear sequence. However, nodes in our
database are only partially ordered, so we had to de-
fine an extension which would allow querying of non-
linearly ordered sets of nodes. To do this, we’ve in-
troduced parentheses. The sequence of attribute ex-
pressions encodes parent→child relation, with mul-
tiple children enclosed in a parenthesis and separat-
ed by commas: car carský (carsky, carismus,
carství)

4 Implementation

The application is a web-based program written in
JavaScript and runs entirely client-side; the server
is only used for storing the databases and the pro-
gram itself. After the page loads, a background task
downloads and parses the selected database. You can
change the database used for searching by selecting a
new one from a drop-down menu.
After you enter a search query into the text field,

your query is processed and the results are displayed
as SVG trees. Possible larger amounts of results are
split into several pages. You can view the techlem-
ma and part-of-speech of a single node by hovering

Implementation of a Search Engine for DeriNet 101

over it with the pointer, or, alternatively, you can en-
able the detailed display for all nodes by selecting the
„Show additional information“ checkbox. The results
can be exported to the same tab-separated-values for-
mat that DeriNet uses for storage and stored to a file.

A screenshot of the application is included in fig-
ure 1 and a running version of the search engine is
available at http://jonys.cz/derinet/search/.

Figure 1: Screenshot of the application.

5 Detecting errors

The main reason for creating this application was
enabling a quick way of searching for certain com-
mon errors that were present in the then-current ver-
sion of DeriNet. DeriNet is built from the source
lexicon using a series of scripts based on handwrit-
ten rules. Many of the rules have the form of pat-
tern+exceptions, for example the pattern “A-ačný
N-ačnost” which connects (among others) the noun
“lačnost” to the adjective “lačný”, or “jednoznačnost”
to “jednoznačný”, has an exception of “senzačnost”,
which is derived from “senzační” instead. These rules
often have overlooked exceptions.
In addition, there are several systematic errors in

0.9 that have been discovered by this search tool. For
example:

• [techlemma="_\ˆ.*\(.**[0-9].*\)"
parent="-1"]
Many techlemmas contain derivational informa-
tion, which is not parsed correctly in version
0.9.

• "á$" "ý$"
Matches female and male variants of names that
have the derivation order reversed. The female
variant ending in “á” should be derived from the
male one.

• [lemma="(ovat|it)$" pos=="A"]
These words are not adjectives, but errors in the
source lexicon. These endings are both typical
for verbs.

• [lemma!="(í|ý|ost)$"] "ost$"
Bad derivations. Words ending in “ost” that
aren’t derived by prefixation should be nearly al-
ways derived from adjectives ending in “í” or “ý”.

6 Problems

6.1 Performance

An important issue is performance. A loaded webpage
with DeriNet Search can easily consume over 100 MiB
of RAM and complex queries (especially queries with
many siblings with few constraints on a single lev-
el, such as [] ([],[],[],[],[])) may take over a
minute to complete. However, although the search-
ing isn’t instantaneous, for simpler queries it is rea-
sonably fast. Even a dated laptop (CPU: Intel Atom
Z520, 1.33 GHz) is able to complete simple searches
in under a second.
The design of the application is well suited to paral-

lelization, but JavaScript has only limited provisions
for parallel execution. Its threading model is based
on message-passing with no shared data structures,

102 J. Vidra

so speedup can only be achieved at the expense of us-
ing more memory, because each thread either needs
its own copy of the whole database, or we have to
split the DB into clusters (connected components)
and allocate these clusters to search threads. The
latter design would highly complicate displaying the
results. This means that if we want to avoid com-
plexity and needless copying of data, we are limited
to single threaded execution only.

However, if there are multiple search windows open,
each one runs in its own thread. It would be possible
to create a global execution thread or a pool with user-
determined amount of threads, delegate all work to it
and keep only a single database copy in memory, but
not all browsers support these techniques and we’ve
decided not to complicate the design for small gains.

6.2 Compatibility

Apart from large memory requirements, which may
be a problem on mobile devices, the application re-
quires support for ECMAScript 5.1, HTML5, CSS3
and SVG. All modern desktop browsers (less than
three years old) should pass these requirements, with
the exception of Internet Explorer before version 11,
but support on browsers for mobile devices is poor.
Tested browsers include Firefox 31, Konqueror 4.14
and Chrome 36. The application is only partially us-
able in Opera 12.16, which doesn’t support the history
manipulation method needed to switch between pages
of results and so only the first page is ever shown.

6.3 Scalability

Another set of problems was uncovered when test-
ing the application with the newest version of Deri-
Net, 0.10, which is as of 2015-06-14 not yet publicly
available. Version 0.10 is four times larger than 0.9
(45 MiB uncompressed and 9.6 MiB when compressed
with gzip, as opposed to 12 MiB uncompressed and
3 MiB compressed) and downloading a database of
this size is problematic for users without a broadband
network connection.

Search times have also increased, because Deri-
Net 0.10 contains 968,929 lexemes – over three times
more than 0.9. To test the scalability of our appli-
cation with increasing database size, we’ve prepared
six progressively smaller datasets by cutting 500,000,
250,000, 100,000, 50,000 and 10,000 lexemes with the
lowest IDs out of DeriNet 0.10. We’ve then measured
the time needed to parse a query, search the database
and draw the resulting SVG. Each measurement was
repeated five times, the results averaged and the error
expressed using standard deviation.

Three queries were selected for testing: Absolón,
which produces a single result; [], which match-
es all nodes; and [pos!=="A"] ([pos="[ADNV]$"],

[] [], []) as a test of more complex queries. Fig-
ure 2 shows that the time needed for parsing and dis-
play is approximately constant and that the search-
ing time quickly dominates. Figure 3 indicates that
the query [pos!=="A"] ([pos="[ADNV]$"], [] [],
[]) scales supralinearly, but figure 4 shows that for
the other queries the algorithm is, in fact, linear. The
explanation for why the complex query behaves dif-
ferently lies in the structure of the database, as ev-
idenced by the number of results. The database is
scanned from the beginning to the end without us-
ing any acceleration technique such as an index, and
the beginning (low IDs) contains lemmas that start
with capital letters. These are typically names which
contain fewer derivational links than the rest of the
database. This causes the complex query to abort
quickly, just after discovering that the node doesn’t
have enough children to satisfy the requirements.

7 Future work
Due to the problems encountered with DeriNet 0.10,
we plan on switching to server-side searching. This
is feasible with few changes thanks to Node.js, which
allows running arbitrary JavaScript code on the serv-
er. Doing so would allow us to support even primi-
tive browsers on devices with little processing power
– the demands for modern JavaScript features could
be dropped; support for SVG would be sufficient.
Another needed change is optimization of the search

routines. Queries such as [] ([], [], [], [], [])
(find all trees with at least five siblings on a single
level) take a very large amount of time, sometimes
even minutes. The current algorithm goes through
all the possible combinations, which is not needed,
since many of the results will be duplicates of each
other. Stopping at the first match is not a solution,
though, because advanced features of CQL such as
“within” and “containing” clauses rely on this behav-
ior to work.
The third possible area of improvement is introduc-

ing new language features.
• A way of marking “no more nodes here”. We have

the [parent=="-1"] syntax for finding nodes
that don’t have a parent, but there should be
a better way of specifying this, that would also
allow searching for trees that are smaller than a
certain limit, as opposed to larger than a limit.
The latter can be done using [] ([pos="A"],
[], []) (find all adjectives with more than two
siblings).

• Support for iteration: “*”, “+”, “?”, “{x,y}”.
The last type partially satisfies (and depends on)
the previous point.

• Support for “within” and “containing”.

Implementation of a Search Engine for DeriNet 103

Figure 2: A graph showing the increase of time needed to process query [pos!=="A"] ([pos="[ADNV]$"], []
[], []) with increasing database size. The error bars represent one standard deviation over five trials.

Figure 3: Graph showing that when processing [pos!=="A"] ([pos="[ADNV]$"], [] [], []), the time needed
increases supralinearly. The number of results has been included for comparison. The error bars represent one
standard deviation over five trials.

Figure 4: Graph showing that processing Absolón and [] scales linearly with increasing database size. The
error bars represent one standard deviation over five trials.

104 J. Vidra

The application itself could be improved, too. The
following would be useful:

• User-friendlier handling of erroneous input.
When you enter [lemma!="ický$" [lemma=
"ičnost$"], instead of “Unexpected token lsbra
”[” at (0:16)” the parser should probably report
“Missing close-bracket before position 16” and
show the query with the offending part highlight-
ed in red. Unfortunately, Jacob, the tool we use
for building the parser, doesn’t have any sup-
port for returning structured error information
and printing useful messages.

• A method of exporting the SVG to a file that
produces a useful image. Currently, the SVG im-
ages are styled using CSS, which gives us a flexi-
ble way of coloring the nodes and showing/hiding
technical information. This method doesn’t work
outside of browsers, though, which means that
the exported SVG is black-and-white only and,
unless the user had the “Show additional infor-
mation” checkbox checked, contains overlapping
text.

• A more compact style of drawing trees. Even in
the current database there are some trees that
are too wide to fit on screen without horizontal
scrolling. Trees in DeriNet 0.10 are even larger,
which makes this a big problem.

8 Conclusion

The stated goals were to build an application that
would enable users to easily search DeriNet and help
its creators discover both systematic and random er-
rors. The utility fulfilled our expectations with the
second part – error searching – since several mistakes
and faults have been detected with its help. The query
language is only very basic so far, but extensions are
possible.

Acknowledgements

This work has been using language resources devel-
oped and/or stored and/or distributed by the LIN-
DAT/CLARIN project of the Ministry of Education
of the Czech Republic (project LM2010013).

References

[1] James Clark, Steve DeRose, et al. XML path lan-
guage (XPath) version 1.0. 1999.

[2] Jan Hajič. Disambiguation of rich inflection:
computational morphology of Czech. Karolinum,
2004.

[3] Miloš Jakubíček et al. “Fast Syntactic Searching
in Very Large Corpora for Many Languages.” In:
PACLIC. Vol. 24. 2010, pp. 741–747.

[4] Petr Pajas and Jan Štěpánek. “System for query-
ing syntactically annotated corpora”. In: Proceed-
ings of the ACL-IJCNLP 2009 Software Demon-
strations. Association for Computational Lin-
guistics. 2009, pp. 33–36.

[5] Magda Ševčíková and Zdeněk Žabokrtský.
“Word-Formation Network for Czech”. In: Pro-
ceedings of the Ninth International Confer-
ence on Language Resources and Evaluation
(LREC’14). Ed. by Nicoletta Calzolari (Con-
ference Chair) et al. Reykjavik, Iceland: Euro-
pean Language Resources Association (ELRA),
May 26–31, 2014. isbn: 978-2-9517408-8-4.

[6] Ray Whitmer et al. “Document Object Model
(DOM) Level 3 XPath Specification”. In: W3C,
http://www.w3.org/TR/DOM-Level-3-XPath
(2004).

Implementation of a Search Engine for DeriNet 105

