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Abstract: Discovering anomalies within data is nowadays
very important, because it helps to uncover interesting
events. Consequently, a considerable amount of anomaly
detection algorithms was proposed in the last few years.
Only a few papers about anomaly detection at least men-
tioned why some samples were labelled as anomalous.
Therefore, we proposed a method allowing to extract rules
explaining the anomaly from an ensemble of specifically
trained decision trees, called sapling random forest.

Our method is able to interpret the output of an arbi-
trary anomaly detector. The explanation is given as con-
junctions of atomic conditions, which can be viewed as
antecedents of association rules. In this work we focus on
selection, post processing and evaluation of those rules.
The main goal is to present a small number of the most
important rules. To achieve this, we use quality measures
such as lift and confidence boost. The resulting sets of
rules are experimentally and empirically evaluated on two
artificial datasets and one real-world dataset.

Keywords: Anomaly detection, anomaly interpretation, as-
sociation rules, confidence boost, random forest

1 Introduction

According to an IBM research [13] there were 2,7 zetta-
bytes of data in the digital universe at April 2012 and this
amount is doubling approximately every 40 months.

Not only it is almost impossible to process such huge
amounts of data, we are actually not interested in the
raw data, but rather in the salient knowledge and inter-
esting patterns contained in them. This is the reason why
anomaly detection, especially unsupervised anomaly de-
tection, becomes more and more important [1, 23]. De-
spite it can be formalised as a binary classification, it en-
tails different issues and challenges than those in super-
vised classification. For example, anomalous events of-
ten adapt to appear normally and even normal behaviour
evolve over time. Furthermore, defining a normal regions
is very difficult, especially when the boundary between
normal and anomalous is not always precise.

For the purposes of this paper consider anomalies equal
to outliers as defined by Hawkins [11]: “ An outlier is an
observation which deviates so much from the other obser-
vations as to arouse suspicions that it was generated by
a different mechanism.”

The more formal definition would necessarily reduce
the amount of plausible anomaly detectors and/or applica-
tion domains. This is in conflict with our goal to provide
a solution as general as possible.

Even though anomaly detection techniques are aimed at
only a minority of samples, the importance and demand
for them grows rapidly. The real world applications range
from the network security [10], bioinformatics [24] or fi-
nancial fraud detection [22] to the astronomy and space
exploration [9].

The identification of anomalies is only a half of the
whole task. The second and equally important half is the
interpretation. In high dimensional domains, like the net-
work security or bioinformatics, where hundreds or even
thousands of features are common, the proper interpreta-
tion is crucial.Therefore, anomalies have to be interpreted
clearly, as a feature subset that explains its deviation from
ordinary data, or even better as a set of association rules.

In [21] we proposed method of anomaly explanation
based upon specifically trained ensembles of decision trees
called sapling random forest (SRF). The main idea be-
hind it is to view the explanation as a feature selection
and classification problem. Specifically, the goal is to find
features in which the margin betweenı anomalous sample
and the normal samples is maximised. Therefore, SRF
returns subset of features, respectively rules on these fea-
tures describing why this sample has been identified as an
anomaly.

The main drawback of the direct rule extraction from
our sapling random forests is the big number of rules with
some of them introduced by unfortunate training set selec-
tion. Partially, these issues can be solved by confidence
and / or support thresholds. But for our ultimate goal to
present the minimal number of rules containing the maxi-
mal amount of useful information, such a simple approach
is insufficient. Therefore, in this paper we focus on proper
selection, post processing and evaluation of rulesets ex-
tracted from sapling random forests during anomaly expla-
nation. We tested association rules quality measures such
as lift and confidence boost. This paper is work in progress
and we would like to extend the number of tested quality
measures by some subjective measures like novelty.

The rest of this paper is organised as follows. The next
section briefly reviews related work. Section 3 describes
the SRF principles and its training followed by the rule
extraction process in Section 4. The selected quality mea-
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sures of association rules are presented in Section 5. Ex-
perimental evaluation is described in Section 6 and Sec-
tion 7 concludes the paper.

2 Related Work

For more information about the anomaly detection we re-
fer to the recent book of Aggarwall [1]. This book pro-
vides an exhaustive listing of anomaly detection algo-
rithms and their applications in different domains. An-
other source may be [5], which is briefer but very well
written. To our best knowledge, there have been only few
works addressing not only identification of anomalies, but
also their explanation.

Knorr et al. [15] focused on what kind of knowledge
should be extracted and provided to the user. Strong and
weak outliers were defined and searched within data by
distance-based algorithms described in detail in [14].

Dang et al. [7] presented an algorithm identifying and
explaining anomalies. The algorithm starts by selecting
a set of neighbouring samples based on quadratic entropy
that are presented to a Fisher linear discriminant classi-
fier to seek for an optimal half-space, in which a detected
anomaly is well separated. The process of interpretation
is entangled with the presented method of identification
of anomalies. The difference to our work is that SRF can
be used after an arbitrary anomaly detection algorithm to
interpret its results.

The most similar to our approach and most recent
is [20]. Their approach, as well as ours, can interpret out-
put of an arbitrary anomaly detector as a subset of fea-
tures. They use classification accuracy for outlier ranking.
The main drawback of this approach is that it needs bal-
anced training sets which are created by sampling artificial
samples around the anomalous point. With respect to this
work, our approach can handle unbalanced training sets
easily and returns not only feature subsets but feature sub-
sets with rules on them, providing even more information
about the anomaly. Furthermore, we simplify the analysis
by clustering, which enables to interpret similar anomalies
at once [16].

On the other hand, there are many papers about associ-
ation rules. This paper was inspired mainly by [3], which
is about measuring redundancy and information quality
of sets of association rules. The author presents a mea-
sure called confidence boost and an algorithm to produce
a small set of association rules using this measure. A re-
ally extensive list of interestingness measures can be found
in [12]. There is a lot of inspiration for our future work.

An alternative approach, well described in [6], may be
so called subjective measures. A typical example is the
novelty, sometimes called unexpectedness, of a rule with
respect to user provided domain knowledge or against the
another rule set. Because these terms are ambiguous there
are multiple approaches of measuring them. An approach
in [18] inspired us for our future work.

3 Sapling Random Forest

This section outlines principles of sapling random forests.
SRF is a method able to explain an output of an arbi-
trary anomaly detector, proposed by us in [21]. It is
a random forest of specifically trained decision trees. Be-
cause produced trees are small they are called saplings
rather than trees. Produced explanations show features in
which inspected samples differ the most from the rest of
data. These features are used to produce association rules,
which are more informative than only a set of features. An
outline of the whole method is at Algorithm 1.

Algorithm 1 Algorithm summary

y← anomalyDetector(data)
for all data(y ==anomaly) do

T ← createTrainingSet(size,method)
t← trainTree(T )
SRF ← t

end for
extractRules(SRF)

3.1 Training Set Selection

Dataset X = {x1,x2, . . . ,xl}, where x ∈ Rd , can be split
into two disjoint sets X a, containing anomalous samples,
and X n,containing normal samples. Then, a training set T
contains the anomaly xa as one class and a subset of X n

as the other. The first strategy of creating training sets is
to select k nearest neighbours of xa from X n. This strat-
egy is sensible for algorithms detecting local anomalies,
as according to [8] they are more general than algorithms
detecting global anomalies. The drawback of this strategy
is a computational complexity.

The second strategy is to select k samples randomly
from X n with uniform probability. The advantage of this
approach is a possibility to generate more than one train-
ing set per anomaly by repeating the sampling process.
More training sets lead to more saplings per anomaly and
to more robust explanation, but at the expense of the more
complicated aggregation of rules extracted from them (see
Section 4). A comparison of both approaches can be found
in [21].

3.2 Training a Sapling

For simplicity consider sapling a binary decision tree with
typical height 1-3. In the SRF method, there are always
two leaves at the maximal depth, one of which contains
only an anomaly xa and the other containing only normal
samples. The saplings small height has two reasons. First,
training sets are relatively small. Second, according to the
anomaly isolation approach [19], if the analysed sample
is an anomaly, it should be separated easily from the rest
of data, resulting again into small trees. Therefore, if the
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height of a sapling is higher than expected it should be
taken into consideration that the explained sample may not
be an anomaly.

The standard procedure, to find the splitting function h
for a new internal node, is maximising an information gain
over the space of all possible splitting functions H as

argmax
h∈H
− ∑

b∈{L,R}

|Sb(h)|
|S| H(Sb), (1)

where S is the subset of the training set T reaching the
leaf being split, SL(h) = {x ∈S|h(x) =+1} and SR(h) =
{x ∈ S|h(x) =−1} and H(S) is an entropy of S.

The second commonly used approach involves minimis-
ing the Gini impurity.

arg min
h∈H ∑

b∈{L,R}
1−
( |xa|
(Sb(h))

)2

−
( |xn|
(Sb(h))

)2

(2)

For experiments presented in this paper we used infor-
mation gain.

4 Extraction and Evaluation of Rules

Once a sapling is grown, it is used to explain the
anomaly xa. Let h j1,θ1 , . . . ,h jd ,θd be the set of splitting
functions, with features j1, . . . , jd and threshold θ1, . . . ,θd ,
used in the inner nodes on the path from the root to the leaf
with the anomaly xa. Then xa is explained as a conjunction
of atomic conditions :

c = (x j1 > θ1)∧ (x j2 > θ2)∧ . . .∧ (x jd > θd), (3)

which is the output of the algorithm. This conjunction can
be read as “the sample is anomalous because it is greater
than threshold θ1 in feature j1 and greater than θ2 in fea-
ture j2 and . . . than majority (or nearest neighbour) sam-
ples.” Because resulting trees are very small, the explana-
tion is compact.

The situation is more difficult, when more saplings per
anomaly have been grown, as each sapling provides one
conjunction of type (3). Using more than one sapling per
anomaly improves robustness for training sets created by
uniform sampling. The problem is that returning set of
all conjunctions C is undesirable, as the primary objective
— explanation of the anomaly to a human — would not be
met. Hence, the algorithm needs to aggregate conjunctions
in C.

For simplicity of the following notation consider 2d
items, in such a way that 2 items are assigned to each fea-
ture, one for "<" rules, the other for ">" rules. Denote this
2d set of items F . Then we can group rules into the rule
sets R f according to the item set f ⊆F they share.

Based on |R f | the algorithm discards groups of low im-
portance by sorting them in descend order, and then us-
ing only the first k groups such, that their cumulative fre-
quency is greater than a threshold τ, which we recommend

to be 0.90 or 0.95. Using the adopted notation, k is deter-
mined as

k = argmin
k

1
∑ f∈F |R f |

k

∑
i=1
|R fi |> τ, (4)

where it is assumed, that R f are sorted according to their
size to simplify the notation. We have also investigated
the complementary approach, where groups are selected,
if they were used with a frequency higher than a specified
threshold. But the presented strategy based on the cumu-
lative frequency showed more consistent results in our ex-
periments.

Once the set of groups with decision rules is selected,
we create one rule r̄ f for every rule set R f .Thresholds for
each item f j are calculated as an average of all thresholds
within the rule set R f .

θ̄ j =
1
|R f |

|R fi |

∑
i=1

θi, j (5)

By this approach we obtain one representative rule for
each feature set f as:

c̄ f = x j1 > θ̄1∧ x j2 > θ̄2∧ . . .∧ x jt > θ̄t . (6)

5 Measuring Quality of Rules

This section reviews selected quality measures of asso-
ciation rules. Typical association rules are in the form
A→Y , where A,Y are item sets. In rules extracted from
SRF, items are atomic conditions and Y always means: “is
anomalous”. Therefore, our rules are in the form:

r f = c f → y, (7)

where c is a conjunction of atomic conditions like (3), y =
x ∈X a and f ⊆F . The r f in its full form then look as:

r f (x) = x f1 > θ f1 ∧ x f2 > θ f2 ∧ . . .∧ x fn > θ fn → x ∈X a,
(8)

where n is a maximal index in the itemset f .
For this kind of rules support [2] is calculated as:

supp(c f ) =
|{c f (x)|x ∈X}|

|X | , (9)

supp(y) =
|X a|
|X | . (10)

and gives the proportion of data points which satisfy the
antecedent c, respectively the consequent y. It is used to
measure the importance of a rule or as a frequency con-
strain. The disadvantage of support is that infrequent rules
are often discarded. This is much bigger problem than it
could seem because we are generating rules for anomalies,
which are rare by definition.
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Another frequently used measure is confidence [2]:

conf(c f → y) =
supp(c f → y)

supp(c f )
. (11)

It estimates the conditional probability of the consequent
being true on condition that the antecendent is true. The
trouble with confidence is caused by its sensitivity to the
frequency of y. Because all rules extracted from SRF
have the same consequent the rule ranking produced by
lift a confidence would be the same.

The third measure we used is lift [4]:

lift(c f → y) =
conf(c f → y)

supp(y)
, (12)

which measures how many times more often the an-
tecedent c and consequent y occur together than expected
if they were statistically independent. Lift does not suffer
from the rare items problem. Because in our experiments
the consequent will always the same frequency there is no
need to measure both

Finally, confidence boost introduced by Balcázar [3] is
calculated as:

β (r f )=
conf(r f )

max{conf(r′ f ′)|supp(r′ f ′)> σ ,r f 6≡ r′ f ′ , f ′ ⊆ f} ,
(13)

where σ is support threshold and r f 6≡ r′ f ′ denotes the
inequivalence of rules r f and r′f ′ , which for our simple case
where all consequents are the same, means that f 6= f ′.
From (13) is evident that f ′ ⊂ f .

If the set of confidences in denominator is empty, the
confidence boost is by convention set to infinity.

6 Experiments

For the experimental evaluation we used the synthetical
three layer donut, the well known Fisher’s iris and the Let-
ter recognition data set from the UCI repository [17].

6.1 Three Layer Donut

The three layer donut dataset contains 1000 normal sam-
ples forming the two dimensional toroid (donut). There
are 200 anomalies, one half inside the toroid and the sec-
ond half out of it. For this dataset we created 10 rules
per anomaly, using SRF, resulting in 2000 rules. After the
simple aggregation, described in Section 4, only 8 rules
left. All of them printed in Table 1, sorted by their respec-
tive support. All rules before aggregation were used to
calculate confidence boost. Otherwise, many rules would
have confidence boost equal to infinity because there are
no rules defined on any subset of their item sets f .

The fact is that rules r5− r8 have quite small support
but, according to the other measures and our intuition, they
are very important. The small supports is due to the small

rule supp lift β
r1 = x1 >−0.33∧ x2 >−0.39 0.38 1.64 0.27
r2 = x1 >−0.33∧ x2 < 0.3 0.37 1.60 0.27
r3 = x1 < 0.4∧ x2 < 0.34 0.37 1.49 0.25
r4 = x1 < 0.37∧ x2 >−0.37 0.37 1.57 0.26
r5 = x2 > 2.2 0.02 6.00 1.00
r6 = x1 > 2.3 0.02 6.00 1.00
r7 = x2 <−2.4 0.01 6.00 1.00
r8 = x1 <−2.4 0.01 6.00 1.00

Table 1: Aggregated rules with their quality measures for
the three layer donut dataset, sorted by their respective
supports.
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Figure 1: Three layer donut dataset with plotted rules
r1− r8. Rules r1−r4 are plotted as filled squares and rules
r5− r8 as half-planes delimited by solid lines.

number of data points explained, lets recall that anomalies
are only one sixth of all data points in this dataset. Both,
lift and confidence boost, mostly reflects our subjective ex-
pectations.

All rules are depicted at Figure 1. Its evident that pre-
sented rules cannot separate anomalies from normal sam-
ples perfectly. Especially difficult are anomalies inside
the donut. To separate those inner anomalies perfectly it
would be necessary to combine more rules together, for
example r1 and r3 or r2 and r4.

6.2 Iris

The virginica species were selected as anomalous class for
the iris data set. Five rules per anomaly were produced us-
ing SRF, resulting in 250 rules. After aggregation we have
got 6 rules. They are written in Table 2 with their respec-
tive quality measures. Confidence boost was calculated
using all 250 rules.

The main problem with all those rules is that almost ev-
ery one of them can sufficiently separate anomalies from
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rule supp lift β
r1 = x1 > 6∧ x4 > 1.7 0.25 3.00 1.00
r2 = x4 > 2 0.19 3.00 1.00
r3 = x3 > 5.5 0.17 3.00 1.00
r4 = x2 < 2.8∧ x4 > 1.6 0.06 3.00 1.00
r5 = x1 > 7.3 0.05 3.00 1.00
r6 = x2 < 2.2 0.03 0.75 0.25

Table 2: Aggregated rules with their quality measures for
the iris dataset , sorted by their respective supports.

Figure 2: The iris dataset with r1 plotted as a filled rect-
angle, and rules r2 and r5 as half-planes delimited by solid
lines.

normal samples. No one of presented measures could help
in selecting the most informative, yet small as possible, set
of rules. Because presented rules are seen informationally
equivalent by all quality measures. This doesn’t say much
about difference between the quality measures but it justi-
fies the rule extraction process, because all generated rules
have high score.

Figure 2 shows the iris dataset with rules r1,r2 and r5.

6.3 Letter Recognition

This dataset was created as a classification problem with
26 classes, one class for each letter in the English alphabet.
The charactersÒ were obtained from 20 different fonts and
randomly distorted to produce 20,000 unique samples pre-
sented as 16 dimensional numerical vectors. Letter X was
selected as the anomaly class. SRF produced more than
15,000 rules, which were reduced by aggregation to 1955.
Aggregated rules with support higher than 0.10 are pre-
sented in Table 3. The ranking of those rules is plotted
at Figure 3. Its evident that the ranking given by lift and
confidence boost differs substantially.

It is nearly impossible to evaluate all rules. Therefore,
we have selected only those with confidence boost higher
than one (202 rules) and those with lift higher than one

rules
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Figure 3: Ranking (higher number means better ranking)
of rules from Table 3 by its lift and confidence boost.

rule supp lift β
x2 > 14 0.29 1.44 0.29
x11 < 0.62 0.24 0.27 1.82
x9 > 8.8∧ x10 < 5.2 0.21 1.67 0.96
x3 > 10 0.18 0.89 0.35
x1 < 0.38 0.17 0.19 0.14
x13 > 6.2∧ x15 > 8.6 0.16 0.21 0.17
x6 > 9.8∧ x8 < 1.2 0.15 2.39 1.91
x1 > 9.5∧ x2 > 14 0.15 1.10 0.22
x2 > 13∧ x10 > 12 0.15 0.44 0.04
x4 > 7.8∧ x8 < 1.2∧ x9 > 7.2 0.15 5.75 0.71
x8 < 1.2∧ x16 < 5.2 0.14 1.62 0.39
x2 > 11∧ x4 > 7.8∧ x9 > 6.4 0.13 5.32 0.88
x8 < 1.2∧ x9 > 8.8 0.13 8.06 1.80
x9 > 8∧ x10 < 5.2∧ x15 > 6.8 0.13 2.20 1.31
x1 > 9.5∧ x3 > 9 0.12 1.04 0.06
x9 > 8.8∧ x12 < 5.5 0.12 0.78 0.22
x3 > 6.1∧ x14 < 6.2∧ x15 > 7.2 0.12 2.91 1.09
x1 > 4.2∧ x8 < 1.2∧ x12 < 6.8 0.12 0.55 0.05
x1 > 8.5∧ x10 > 12 0.12 0.84 0.10
x1 > 5.5∧ x7 > 7.8∧ x8 < 1.2 0.11 3.39 0.22
x2 < 1.5∧ x9 > 7.5∧ x15 > 5.5 0.11 3.43 0.84
x1 > 7.8∧ x6 > 8.8∧ x7 > 6 0.11 0.29 0.02
x6 > 8.2∧ x15 > 7.9∧ x16 < 6.2 0.11 0.29 0.24
x2 > 11∧ x3 > 7.6∧ x10 < 5.2 0.11 1.21 0.05
x3 > 10∧ x5 > 6.2 0.11 0.61 0.24

Table 3: Rules extracted from Letter recognition by SRF
with support higher than 0.10 with their quality measures
sorted by their respective supports.

(446 rules). The confidence boost selected the smaller rule
set where almost all rules looked plausible. On the other
hand, they missed some really interesting ones most highly
rated by lift. The confidence boost tend to choose shorter
more similar rules, whereas lift prefer richer and more het-
erogenous rules. Therefore, from our point of view the
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top 10 lift rules top 10 β rules
x8 < 1.8∧ x15 > 7.8 x4 < 1.2∧ x9 > 8
x2 < 1.8∧ x3 > 4.5∧ x9 > 8.8 x2 < 1.5∧ x9 > 8.8
x5 > 6.8∧ x8 < 1.8∧ x15 > 7 x8 < 1.2∧ x9 > 8.8
x5 > 5∧ x9 > 8.2∧ x10 < 5.2 x9 > 8∧ x14 < 5.2
x4 < 2.2∧ x6 > 8.2∧ x9 > 7.8 x11 > 12∧ x16 < 4.5
x2 < 5.6∧ x3 > 7.2∧ x8 < 1.2 x6 > 9.8∧ x8 < 1.2
x1 > 4.5∧ x8 < 1.8∧ x15 > 7.8 x4 > 8.8∧ x14 < 5.2
x7 < 5.8∧ x8 < 2.5∧ x15 > 7.8 x5 > 8.5∧ x14 < 5.2
x2 < 4.8∧ x9 > 8∧ x11 > 9.8 x8 < 1.2∧ x16 > 9.9
x11 > 9∧ x14 > 13 x12 > 10∧ x16 < 5.2

Table 4: Comparison of top 10 rules extracted from the
Letter recognition dataset by SRF selected by lift and con-
fidence boost.

best selection strategy is choosing top k rules according to
the lift ranking. The top 10 rules chosen from the whole
set by lift and confidence boost, regardless their support,
are in Table 4.

Still there are too much rules to make some conclusions,
in our future work we are going to investigate more mea-
sures of interestingness and novelty, which will hopefully
help us to reduce the amount of extracted rules even more.

7 Conclusion

In this paper, we presented a novel approach for the ex-
planation of an output of an arbitrary anomaly detector us-
ing sapling random forests. The explanation is given as
conjunctions of atomic conditions, which can be viewed
as antecedents of association rules. Due to an extraction
method, the individual rules are short and comprehensi-
ble. The main drawback was that the rule sets for the big-
ger dataset were large and redundant. Therefore, we ap-
plied multiple quality measures to evaluate them and se-
lect those rules with desired properties. Performed exper-
iments showed that no one of presented measures reflect
our expectation. From the considered measures the lift
looks the most promising. But this paper is just a work
in progress and we don’t view this observation as a final
conclusion.

For our future work we would like to have a measure
that will rate the novelty of a rule with respect to the set of
previously selected rules. The first idea is to chose those
rules that describe anomalies not covered by the already
selected rules. The second idea is to select rules which
may describe already covered anomalies but using com-
pletely different set of features. The last thing we would
like to work on is finding a way of concatenating mined
rules to make smaller yet precise rule sets.
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[17] Lichman, M.: UCI machine learning repository. [http:
//archive.ics.uci.edu/ml/]. University of Califor-
nia, Irvine, School of Information and Computer Sciences,
2013

[18] Liu, B., Hsu, W., Chen, S.: Using general impressions to
analyze discovered classification rules. In: KDD, 31–36,
1997

[19] Liu, F. T., Ting, K. M., Zhou, Z. -H.: Isolation forest.
In: Eighth IEEE International Conference on Data Mining
(ICDM 2008), 2008

[20] Micenková, B., Ng, R. T., Dang, X. -H., Assent, I.:
Explaining outliers by subspace separability. In:
IEEE 13th International Conference on Data Mining
(ICDM 2013), 2013.

[21] Pevný, T., Kopp, M.: Explaining anomalies with sapling
random forests. In: Information Technologies – Ap-
plications and Theory Workshops, Posters, and Tutorials
(ITAT 2014), 2014

[22] Pradnya, K., Khanuja, H. K.: Article: A survey on outlier
detection in financial transactions. International Journal of
Computer Applications 108(17) (December 2014), 23–25

[23] Rousseeuw, P. J., Leroy, A. M.: Robust regression and out-
lier detection. John Wiley & Sons, 2005

[24] Tibshirani, R., Hastie, T.: Outlier sums for differential gene
expression analysis. Biostatistics, 2007

Evaluation of Association Rules Extracted during Anomaly Explanation 149


