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Abstract: Limitations of one-hidden-layer perceptron net-
works to represent efficiently finite mappings is investi-
gated. It is shown that almost any uniformly randomly
chosen mapping on a sufficiently large finite domain can-
not be tractably represented by a one-hidden-layer per-
ceptron network. This existential probabilistic result is
complemented by a concrete example of a class of func-
tions constructed using quasi-random sequences. Analo-
gies with central paradox of coding theory and no free
lunch theorem are discussed.

1 Introduction

A widely-used type of a neural-network architecture is
a network with one-hidden-layer of computational units
(such as perceptrons, radial or kernel units) and one lin-
ear output unit. Recently, new hybrid learning algorithms
for feedforward networks with two or more hidden layers,
called deep networks [9, 3], were successfully applied to
various pattern recognition tasks. Thus a theoretical anal-
ysis identifying tasks for which shallow networks require
considerably larger model complexities than deep ones is
needed. In [4, 5], Bengio et al. suggested that a cause
of large model complexities of shallow networks with one
hidden layer might be in the “amount of variations” of
functions to be computed and they illustrated their sug-
gestion by an example of representation of d-dimensional
parities by Gaussian SVM.

In practical applications, feedforward networks com-
pute functions on finite domains in Rd representing, e.g.,
scattered empirical data or pixels of images. It is well-
known that shallow networks with many types of com-
putational units have the “universal representation prop-
erty”, i.e., they can exactly represent any real-valued
function on a finite domain. This property holds, e.g.,
for networks with perceptrons with any sigmoidal acti-
vation function [10] and for networks with Gaussian ra-
dial units [15]. However, proofs of universal representa-
tion capabilities assume that networks have numbers of
hidden units equal to sizes of domains of functions to be
computed. For large domains, this can be a factor limit-
ing practical implementations. Upper bounds on rates of
approximation of multivariable functions by shallow net-
works with increasing numbers of units were studied in
terms of variational norms tailored to types of network
units (see, e.g., [11] and references therein).

In this paper, we employ these norms to derive lower

bounds on model complexities of shallow networks rep-
resenting finite mappings. Using geometrical properties
of high-dimensional spaces we show that a representa-
tion of almost any uniformly randomly chosen function on
a “large” finite domain by a shallow perceptron networks
requires “large” number of units or “large” sizes of output
weights. We illustrate this existential probabilistic result
by a concrete construction of a class of functions based on
Hadamard and quasi-noise matrices. We discuss analogies
with central paradox of coding theory and no free lunch
theorem.

The paper is organized as follows. Section 2 contains
basic concepts and notations on shallow networks and dic-
tionaries of computational units. Section 3 reviews vari-
ational norms as tools for investigation of network com-
plexity. In Section 3, estimates of probabilistic distribu-
tions of sizes of variational norms are proven. In section 4,
concrete examples of functions which cannot be tractably
represented by perceptron networks are constructed using
Hadamard and pseudo-noise matrices. Section 5 is a brief
discussion.

2 Preliminaries

One-hidden-layer networks with single linear outputs
(shallow networks) compute input-output functions from
sets of the form

spann G :=

{
n

∑
i=1

wigi |wi ∈ R, gi ∈ G

}
,

where G, called a dictionary, is a set of functions com-
putable by a given type of units, the coefficients wi are
called output weights, and n is the number of hidden units.
This number is sometimes used as a measure of model
complexity.

In this paper, we focus on representations of functions
on finite domains X ⊂ Rd . We denote by

F (X) := { f | f : X → R}

the set of all real-valued functions on X . On F (X) we
have the Euclidean inner product defined as

〈 f ,g〉 := ∑
u∈X

f (u)g(u)

and the Euclidean norm

‖ f‖ :=
√
〈 f , f 〉.
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To distinguish the inner product 〈., .〉 on F (X) from the
inner product on X ⊂ Rd , we denote it ·, i.e., for u,v ∈ X ,

u · v :=
d

∑
i=1

uivi.

We investigate networks with units from the dictionary
of signum perceptrons

Pd(X) := {sgn(v · .+b) : X →{−1,1}|v ∈ Rd ,b ∈ R}

where sgn(t) := −1 for t < 0 and sign(t) := 1 for t ≥ 0.
Note that from the point of view of model complexity,
there is only a minor difference between networks with
signum perceptrons and those with Heaviside perceptrons
as

sgn(t) = 2ϑ(t)−1

and

ϑ(t) :=
sgn(t)+1

2
,

where ϑ(t) := 0 for t < 0 and ϑ(t) = 1 for t ≥ 0.

3 Model Complexity and Variational Norms

A useful tool for derivation of estimates of numbers of
units and sizes of output weights in shallow networks is
the concept of a variational norm tailored to network units
introduced in [12] as an extension of a concept of varia-
tion with respect to half-spaces from [2]. For a subset G of
a normed linear space (X ,‖.‖X ), G-variation (variation
with respect to the set G), denoted by ‖.‖G, is defined as

‖ f‖G := inf{c ∈ R+ | f/c ∈ clX conv(G∪−G)} ,

where clX denotes the closure with respect to the norm
‖ · ‖X on X , −G := {−g | g ∈ G}, and

convG :=

{
k

∑
i=1

aigi | ai ∈ [0,1],
k

∑
i=1

ai = 1,gi ∈ G,k ∈ N

}

is the convex hull of G. The following straightforward
consequence of the definition of G-variation shows that in
all representations of a function with “large” G-variation
by shallow networks with units from the dictionary G, the
number of units must be “large” or absolute values of some
output weights must be “large”.

Proposition 1. Let G be a finite subset of a normed linear
space (X ,‖.‖X ), then for every f ∈X ,

‖ f‖G = min

{
k

∑
i=1
|wi|

∣∣∣ f =
k

∑
i=1

wi gi , wi ∈ R, gi ∈ G

}
.

Note that classes of functions defined by constraints on
their variational norms represent a similar type of a con-
cept as classes of functions defined by constraints on both

numbers of gates and sizes of output weights studied in
theory of circuit complexity [16].

To derive lower bounds on variational norms, we use the
following theorem from [13] showing that functions which
are “not correlated” to any element of the dictionary G
have large variations.

Theorem 2. Let (X ,‖.‖X ) be a Hilbert space with inner
product 〈., .〉X and G its bounded subset. Then for every
f ∈X −G⊥,

‖ f‖G ≥
‖ f‖2

supg∈G |〈 f ,g〉X |
.

The following theorem shows that when a dictio-
nary G(X) is not “too large”, then for a “large” do-
main X , almost any randomly chosen function has large
G(X)-variation. We denote by

Sr(X) := { f ∈F (X) |‖ f‖= r}
the sphere of radius r in F (X) and for f ∈F (X), f o :=

f
‖ f‖ . The proof of the theorem is based on geometry of
spheres in high-dimensional Euclidean spaces. In large
dimensions, most of areas of spheres lie very close to their
“equators” [1].

Theorem 3. Let d be a positive integer, X ⊂ Rd with
cardX = m, G(X) a subset of F (X) with card G(X) = n
such that for all g ∈ G(X), ‖ f‖ ≤ r, µ be a uniform prob-
ability measure on Sr(X), and b > 0. Then

µ({ f ∈ Sr(X) |‖ f‖G(X) ≥ b})≥ 1−2ne−
m

2b2 .

Proof. Denote for g ∈ Sr(X) and ε ∈ (0,1),

C(g,ε) := {h ∈ Sm−1
r | |〈ho,go〉| ≥ ε}.

As C(g,ε) is equivalent to a polar cap in RcardX , whose
measure is exponentially decreasing with the dimension m,
we have

µ(C(g,ε))≤ e−
mε2

2

(see, e.g., [1]). By Theorem 2,

{ f ∈ Sr(X) |‖ f‖G(X) ≥ b}= Sr(X)−
⋃

g∈G

C(g,1/b).

Hence the statement follows. 2

Theorem 3 can be applied to dictionaries G(X) on do-
mains X ⊂ Rd with cardX = m, which are “relatively
small”. In particular, dictionaries of signum and Heavi-
side perceptrons are relatively “small”. Estimates of their
sizes can be obtained from bounds on numbers of linearly
separable dichotomies to which finite subsets of Rd can be
partitioned. Various estimates of numbers of dichotomies
have been derived by several authors starting from results
by Schläfli [17]. The next bound is obtained by combining
a theorem from [7, p.330] with an upper bound on partial
sum of binomials.
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Theorem 4. For every d and every X ⊂ Rd such that
cardX = m,

cardPd(X)≤ 2
d

∑
i=0

(
m−1

i

)
≤ 2

md

d!
.

Combining Theorems 3 and 4, we obtain a lower bound
on measures of sets of functions having variations with
respect to signum perceptrons bounded from below by
a given bound b.

Corollary 1. Let d be a positive integer, X ⊂ Rd with
cardX = m, µ a uniform probability measure on S√m(X),
and b > 0. Then

µ({ f ∈ S√m(X) |‖ f‖Pd(X) ≥ b})≥ 1−4
md

d!
e−

m
2b2 .

For example, for the domain X = {0,1}d and b = 2
d
4 , we

obtain from Corollary 1 a lower bound

1− 2d2+2e−(2
d
2 −1)

d!

on the probability that a function on {0,1}d with the
norm 2d/2 has variation with respect to signum percep-
trons greater or equal to 2

d
4 . Thus for large d almost any

uniformly randomly chosen function on the d-dimensional
Boolean cube {0,1}d of the same norm 2d/2 as signum
perceptrons, has variation with respect to signum percep-
trons depending on d exponentially.

4 Construction of Functions with Large
Variations

The results derived in the previous section are existen-
tial. In this section, we construct a class of functions,
which cannot be represented by shallow perceptron net-
works of low model complexities. We construct such func-
tions using Hadamard matrices. We show that the class of
Hadamard matrices contains circulant matrices with rows
being segments of pseudo-noise sequences which mimic
some properties of random sequences.

Recall that a Hadamard matrix of order m is an m×m
square matrix M with entries in {−1,1} such that any two
distinct rows (or equivalently columns) of M are orthog-
onal. Note that this property is invariant under permutat-
ing rows or columns and under sign flipping all entries in
a column or a row. Two distinct rows of a Hadamard ma-
trix differ in exactly m/2 positions.

The next theorem gives a lower bound on variation with
respect to signum perceptrons of a {−1,1}-valued func-
tion constructed using a Hadamard matrix.

Theorem 5. Let M be an m × m Hadamard matrix,
{xi | i = 1, . . . ,m} ⊂ Rd , {y j | j = 1, . . . ,m} ⊂ Rd , X =
{xi | i= 1, . . . ,m}×{y j | j = 1, . . . ,m}⊂R2d , and fM : X→
{−1,1} be defined as fM(xi,y j) =: Mi, j. Then

‖ fM‖Pd(X) ≥
√

m
log2m

.

Proof. By Theorem 2,

‖ fM‖Pd(X) ≥
‖ fM‖2

supg∈Pd(X)〈 fM,g〉 =
m2

supg∈Pd(X)〈 fM,g〉 .

For each g ∈ Pd(X), let M(g) be an m×m matrix defined
as M(g)i, j = g(xi,y j). It is easy to see that

〈 fM,g〉= ∑
i, j

Mi, jM(g)i, j.

Using suitable permutations, we reorder rows and
columns of both matrices M(g) and M in such a way that
each row and each column of the reordered matrix M̄(g)
starts with a (possibly empty) initial segment of −1’s fol-
lowed by a (possibly empty) segment of 1’s. Denoting M̄
the reordered matrix M we have

〈 fM,g〉= ∑
i, j

Mi, jM(g)i, j = ∑
i, j

M̄i, jM̄(g)i, j.

As the property of being a Hadamard matrix is invariant
under permutations of rows and columns, we can apply
Lindsay lemma [8, p.88] to submatrices of the Hadamard
matrix M̄ on which all entries of the matrix M̄(g) are ei-
ther −1 or 1. Thus we obtain an upper bound m

√
m on

the differences of +1s and −1s in suitable submatrices of
M̄. Iterating the procedure at most log2 m-times, we obtain
an upper bound m

√
m log2 m on ∑i, j M̄i, jM̄(g)i, j = 〈 fM,g〉.

Thus

‖ fM‖Pd(X) ≥
m2

m
√

m log2 m
=

√
m

log2 m
.

2

Theorem 5 shows that functions whose representations
by shallow perceptron networks require numbers of units
or sizes of output weights bounded from below by

√
m

log2 m
can be constructed using Hadamard matrices. In par-
ticular, when the domain is d-dimensional Boolean cube
{0,1}d , where d is even, the lower bound is 2d/4

d/2 . So the
lower bounds grows with d exponentially.

Recall that if a Hadamard matrix of order m exists, then
m = 1 or m = 2 or m is divisible by 4 [14, p.44]. It is con-
jectured that there exists a Hadamard matrix of every order
divisible by 4. Listings of Hadamard matrices of various
orders can be found at Neil Sloane’s library of Hadamard
matrices.

We show that suitable Hadamard matrices can be ob-
tained from pseudo-noise sequences. An infinite sequence
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a0,a1, . . . ,ai, . . . of elements of {0,1} is called k-th order
linear recurring sequence if for some h0, . . . ,hk ∈ {0,1}

ai =
k

∑
j=1

ai− jhk− j mod 2

for all i ≥ k. It is called k-th order pseudo-noise (PN) se-
quence (or pseudo-random sequence) if it is k-th order lin-
ear recurring sequence with minimal period 2k−1.

A 2k× 2k matrix L is called pseudo-noise if for all i =
1, . . . ,2k, L1,i = 0 and Li,1 = 0 and for all i = 2, . . . ,2k and
j = 2, . . . ,2k

Li, j = L̄i−1, j−1

where the (2k−1)×(2k−1) matrix L̄ is a circulant matrix
with rows formed by shifted segments of length 2k− 1 of
a k-th order pseudo-noise sequence.

PN sequences have many useful applications because
some of their properties mimic those of random sequences.
A run is a string of consecutive 1’s or a string of consec-
utive 0’s. In any segment of length 2k − 1 of k-th order
PN-sequence, one-half of the runs have length 1, one quar-
ter have length 2, one-eighth have length 3, and so on. In
particular, there is one run of length k of 1’s, one run of
length k− 1 of 0’s. Thus every segment of length 2k− 1
contains 2k/2 ones and 2k/2−1 zeros [14, p.410].

Let τ : {0,1}→ {−1,1} be defined as τ(x) =−1x (i.e.,
τ(0) = 1 and τ(1) = −1). The following theorem states
that a matrix obtained by applying τ to entries of a pseudo-
noise matrix is a Hadamard matrix.

Theorem 6. Let L be a 2k× 2k pseudo-noise matrix and
Lτ be the 2k × 2k matrix with entries in {−1,1} ob-
tained from L by applying τ to all its entries. Then Lτ
is a Hadamard matrix.

Proof. We show that inner product of any two rows of Lτ
is equal to zero. The autocorrelation of a sequence
a0,a1, . . . ,ai, . . . of elements of {0,1} with period 2k− 1
is defined as

ρ(t) =
1

2k−1

2k−1

∑
j=0
−1a j+a j+t .

For every pseudo-noise sequence,

ρ(t) =− 1
2k−1

for every t = 1, . . . ,2k − 2 [14, p. 411]. Thus the inner
product of every two rows of the matrix L̄τ is equal to −1.
As all elements of the first column of Lτ are equal to 1,
inner product of every pair of its rows is equal to zero. 2

Theorem 5 implies that for every pseudo-noise matrix L
of order 2k and X ⊂ Rd such that cardX = 2k× 2k, there
exists a function fLτ : X → {−1,1} induced by the ma-
trix Lτ obtained from L by replacing 0’s with 1’s and 1’s
with −1’s such that

‖ fLτ‖Pd(X) ≥
2k/2

k
.

So the variation of fLτ with respect to signum percep-
trons depends on k exponentially. In particular, setting
X = {0,1}d , where d = 2k is even, we obtain a function of
d variables with variation with respect to signum percep-
trons growing with d exponentially as

‖ fLτ‖Pd(X) ≥
2d/4

d/2
.

Representation of this function by a shallow perceptron
network requires number of units or sizes of some output
weights depending on d exponentially.

It is easy to show that for each even integer d, the func-
tion induced by Sylvester-Hadamard matrix

Mu,v =−1u·v,

where u,v ∈ {0,1}d/2, can be represented by a two-
hidden-layer network with d/2 units in each hidden layer.

5 Discussion

We proved that almost any uniformly randomly chosen
function on a sufficiently large finite set in Rd has large
variation with respect to signum perceptrons and thus it
cannot be tractably represented by a shallow perceptron
network.

It seems to be a paradox that although representations
of almost all functions by shallow perceptron networks
are “untractable”, it is difficult to construct such functions.
The situation can be rephrased in analogy with the title
of an article from coding theory “Any code of which we
cannot think is good” [6] as “representation of almost any
function of which we cannot think by shallow perceptron
networks is untractable”. A central paradox of coding the-
ory concerns the existence and construction of the best
codes. Virtually every linear code is good (in the sense
that it meets the Gilbert-Varshamov bound on distance ver-
sus redundancy), however despite the sophisticated con-
structions for codes derived over the years, no one has
succeeded in demonstrating a constructive procedure that
yields such good codes.

The only class of functions having “large” variations
which we succeeded to construct is the class described
in section 4 based on Hadamard matrices. Among these
matrices belong quasi-noise (quasi-random) matrices with
rows obtained as shifts of segments of quasi-noise se-
quences. These sequences have been used in construc-
tion of codes, interplanetary satellite picture transmission,
precision measurements, acoustics, radar camouflage, and
light diffusers. Pseudo-noise sequences permit design of
surfaces that scatter incoming signals very broadly mak-
ing reflected energy “invisible” or “inaudible”.

It should be emphasized that similarly as “no free lunch
theorem” [18], our results assume uniform distributions of
functions to be represented. However, probability distribu-
tions of functions modeling some practical tasks of interest
(such as colors of pixels in a photograph) might be highly
non uniform.
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