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Abstract: The presented paper describes a methodology,
how to perform benchmarking, when classifier perfor-
mance measurements are sparse. The described methodol-
ogy is based on missing value imputation and was demon-
strated to work, even when 80% of measurements are
missing, for example because of unavailable algorithm im-
plementations or unavailable datasets. The methodology
was then applied on 29 relational classifiers & proposi-
tional tools and 15 datasets, making it the biggest meta-
analysis in relational classification up to date.

1 Introduction

You can’t improve what you can’t measure. However, in
some fields the comparison of different approaches is de-
manding. For example, in the field of relational classi-
fiers, essentially each classifier uses different syntax and
requires data in different format, making the comparison
of relational classifiers difficult. Despite these obstacles,
each author of a new relational classifier attempts to prove
that his algorithm is better than some previous algorithm
and takes the burden of comparing his algorithm to a small
set of algorithms on a limited set of datasets. But how can
we compare the algorithms, if they are not evaluated on
the same set of datasets?

1.1 Literature Review

The biggest meta-analysis of relational classifiers (to
our best knowledge) is “Is mutagenesis still challeng-
ing?” [27], where 19 algorithms are examined. While this
analysis is highly interesting, it limits itself on comparison
of the classifiers on a single dataset.

The biggest analysis in the regard of used datasets is
from Dhafer [21], where a single algorithm is tested on
10 datasets and 20 tasks (some datasets have multiple tar-
gets).

If we are interested into comparison of multiple algo-
rithms on multiple datasets, the counts are comparably
smaller. For example, in the article from Bina [2] 6 al-
gorithms on 5 datasets are examined.

This meta-analysis presents comparison of 29 algo-
rithms on 15 datasets.

1.2 Baseline

Traditionally, a set of algorithms is evaluated on a set of
datasets. And then the algorithms are ordered with one (or

Algo. 1 Algo. 2 Algo. 3

Dataset A 0.55 0.5 0.45
Dataset B 0.65 0.6 0.55
Dataset C 0.95 1 0.9
Average accuracy 0.72 0.7 0.63
Average ranking 1.33 1.67 3
# Wins 2 1 0

Table 1: Hypothetical evaluation of classifiers based on
accuracy (bigger is better) with three ordering methods.
In this scenario, all the methods are in agreement (Algo-
rithm 1 is always the best).

Algo. 1 Algo. 2 Algo. 3

Dataset A 0.55 0.5 -
Dataset B 0.65 0.6 -
Dataset C - 1 0.9
Average accuracy 0.6 0.7 0.9
Average ranking 1 1.67 2
# Wins 2 1 0

Table 2: With sparse measurements, average measure pre-
dicts that Algorithm 3 is the best while the rest of the meth-
ods predict that Algorithm 1 is the best.

multiple) of the following methods:

• Average measure
• Average ranking
• Count of wins

The different ordering methods [6] are illustrated on an
example in Table 1. In this hypothetical scenario 3 algo-
rithms are evaluated on 3 datasets with accuracy. Based
on each ordering method, the first algorithm is the best
and the third algorithm is the worst.

But what if not all the measures are available? With the
same data, but some missing, we can get different results
(Table 2). Based on average accuracy the third algorithm
is the best. But we are getting this result only because the
third algorithm was evaluated on the datasets with high
average accuracy (i.e. easy datasets), while the rest of the
algorithms were evaluated on datasets with lower average
accuracy (i.e. hard datasets).

Average ranking and count of wins are more robust
to missing values. However, neither of them is infalli-
ble. Imagine that someone publishes an algorithm and its
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weaker version and measures the accuracy not only on the
common datasets but also on thousands of randomly gen-
erated datasets that are never ever going to be classified by
any other algorithm. Then the stronger version of the clas-
sifier is going to score at least a thousand wins and place
on the first position on the leaderboard regardless of the
score on the few common datasets.

If all the algorithms were evaluated on at least one com-
mon dataset, we could also order the algorithms just based
on the common datasets. But if there isn’t any dataset on
which all the algorithms are evaluated, we have to come
out with another solution.

The solution is to perform missing value imputation and
convert the problem to the problem we can already solve.

2 Imputation

The proposed missing value imputation iteratively approx-
imates:

acc≈−→alg∗−→dat (1)

with following pseudocode:

acc = p i v o t ( input , @mean)
a l g = rowmean ( acc )
d a t = ones ( 1 , n c o l ( acc ) )
f o r i = 1 : n i t

d a t = d a t + colmean ( acc − a l g ∗ d a t )
a l g = a l g + rowmean ( acc − a l g ∗ d a t )

end

Where:

input: Matrix with three columns: {algorithm name,
dataset name, measured accuracy}.

acc: Matrix with accuracies, where algorithms are in rows
and datasets in columns.

alg: Column vector with average accuracy of the algo-
rithms over all the datasets. Initialized to average al-
gorithm accuracy.

dat: Row vector with relative difficulty of the datasets.
Initialized to a vector of ones.

nit: Parameter describing the count of iterations. 10 iter-
ations are commonly sufficient.

2.1 Evaluation on a Dense Dataset

To assess the ability of the proposed imputation to prop-
erly order relational classifiers, a test on a related task was
performed. Arguably the closest task to relational classifi-
cation, which is well benchmarkable, is propositional clas-
sification - the most common type of classification, where
a single table is classified.

Conveniently, accuracies of 179 propositional classi-
fiers on 121 datasets were published in a recent study by
Fernandez-Delgado [8]. Since not all the examined algo-
rithms always finished successfully, e.g. due to colinearity
of data, a dense submatrix of 179 algorithms on 14 datasets
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Figure 1: Correlation of the predicted algorithm order with
the ground truth based on the proportion of missing data.
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Figure 2: RMSE of the sampled and imputed submatrix
with the dense submatrix.

was extracted. The dense submatrix was then randomly
sampled with a variable count of measurements. The
missing values were then imputed. The resulting learning
curve, depicted in figure 1, suggests, that once 20% of all
combinations algorithm × dataset are used, a fairly good
estimate of the actual ordering can be estimated.

A comparison of the proposed imputation method to
other imputation methods in regard to Root Mean Square
Error (RMSE) is in figure 2. The reference methods are
from RapidMiner and their parameters were optimized
with grid search.

2.2 Theoretical Evaluation

According to the No-Free-Lunch theorem [41], the best
classifier will not be the same for all the data sets. Hence
we shouldn’t even attempt to measure and average classi-
fier’s performance over a wide set of datasets. But merely
describe strengths and weaknesses of different classifiers.
In this respect, the selected imputation method fails be-
cause it is not able to model interactions between datasets
and algorithms. Nevertheless, in the practice, some classi-
fiers appear to be systematically better then other [8]. If all
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we want is to order classifiers based on their expected ac-
curacy on a set of datasets, the absence of ability to model
interactions is irrelevant.

Another property of the used methodology is that it
doesn’t permit mixture of measures. That is unfortunate
since some articles [18] report only accuracy, while other
articles [10] report only precision, recall and F-measure.

A special attention is necessary when we are comparing
results from several authors, because not only the evalua-
tion methodology can differ (e.g. 10-fold cross-validation
vs. single hold-out sample), but also datasets can differ de-
spite the common name. For example, the canonical ver-
sion of East-West dataset (further abbreviated as Trains)
contains 10 instances [30]. However, some authors prefer
an extended version of the dataset with 20 instances [35].
Nevertheless, data quality is the pitfall common to all anal-
yses. To alleviate the problem with different datasets in the
future, a new (and the first) relational repository was based
at relational.fit.cvut.cz. Further discussion about
the collected data is provided in the next section.

The final limitation of the method is that it doesn’t pro-
vide trustworthy confidence intervals. The first reason is
that measures for the same algorithm and dataset are aver-
aged and treated as a single measure. The second reason
is that the algorithm performs missing value imputation,
violating the assumption of sample independence.

A list summarizing the advantages and constrains of the
proposed method follows:

Advantages:

• Permits benchmarking with sparse measures.
• Respects that some datasets are tougher than others.
• Allows conflicting measurements (for example, by

different authors).

Disadvantages:

• Neglects interactions between datasets and algo-
rithms.
• Requires one common measure (e.g. we cannot mix

accuracy and F-measure).
• Requires comparably prepared datasets (e.g. using

the same instance count).
• Doesn’t provide confidence intervals.

3 Classification of Relational Data

The proposed methodology how to benchmark with sparse
measurements is applied on relational classifiers, includ-
ing propositional tools. In the following paragraphs de-
scription of the collected measures, benchmarked algo-
rithms and datasets follow. The collected data can be
downloaded from motl.us\benchmarking.

Algorithm Algorithm type Reference

Aleph ILP [35]
CILP++∗ Neural Network [9]
CrossMine ILP [42]
E-NB∗ Probabilistic [37]
FOIL ILP [23]
FORF-NA Decision Tree [40]
Graph-NB Probabilistic [26]
HNBC∗ Probabilistic [37]
kFOIL Kernel [23]
Lynx-RSM∗ Propositionalization [29]
MLN Probabilistic [36]
MRDTL-2 Decision Tree [25]
MRNBC∗ Probabilistic [37]
MVC∗ Multi-View [11]
MVC-IM∗ Multi-View [12]
MulSVM∗ Propositionalization [43]
nFOIL∗ Probabilistic [22]
PIC∗ Probabilistic [37]
RELAGGS Propositionalization [17]
RPT∗ Probabilistic [28]
RSD Propositionalization [18]
RollUp Propositionalization [16]
SINUS Propositionalization [18]
SimFlat∗ Propositionalization [12]
SDF∗ Decision Tree [2]
TILDE Decision Tree [37]
TreeLiker-Poly ILP [20]
TreeLiker-RelF ILP [20]
Wordification∗ Propositionalization [35]

Table 3: List of 29 relational classifiers and propositional
algorithms used in the meta-analysis. A star by the algo-
rithm name marks algorithms, for which measurements by
someone else than by the algorithm authors was not found.

3.1 Measure Selection

Since almost all relational classifiers in the literature are
evaluated on classification accuracy (with exceptions like
CLAMF [10], ACORA [34] or SAYU [4], which are eval-
uated in the literature only with measures based on preci-
sion & recall) but only a few were evaluated with a dif-
ferent measure (like precision & recall, F-measure, AUC
or AUC-PR), the meta-analysis limits itself to classifica-
tion accuracy. The methods how to measure accuracy may
differ, but only testing accuracies (not training) were col-
lected.

Other interesting measures, like runtime or memory
consumption, were not evaluated, as they are rarely pub-
lished. And even if they were published, they would be
hardly comparable as the measurements are platform de-
pendent.
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Dataset Target #Instances Reference

Alzheimer acetyl 1326 [15]
Alzheimer amine 686 [15]
Alzheimer memory 642 [15]
Alzheimer toxicity 886 [15]
Carcinogenesis carcinogenic 329 [38]
ECML insurance 7329 [19]
Financial loan status 682 [1]
Hepatitis biopsy 690 [35]
IMDb ratings 281449 [2]
KRK depth-of-win 1000 [18]
Mondial religion 185 [39]
MovieLens age 941 [2]
Musk-small musk 92 [7]
Musk-large musk 102 [7]
Mutagenesis mutagenic 188 [5]
Thrombosis degree 770 [3]
Trains direction 10 [30]
UW-CSE advisedBy 339 [36]

Table 4: List of 15 datasets with their targets (Alzheimer
dataset has multiple targets) used in the meta-analysis.

3.2 Algorithm Selection

The selection of relational classifiers and propositionaliza-
tion tools was restricted to algorithms, which:

• Were published in conference or journal paper.
• Were benchmarked on at least four datasets.
• Were evaluated on classification accuracy.

The list of compared algorithms is in table 3.

3.3 Dataset Selection

Datasets were selected based on the following criteria:

• The dataset has a defined classification target.
• The dataset consists of at least two tables.
• The dataset is used by at least four algorithms.

The used relational datasets are listed in table 4.

4 Results

Box plot in Figure 3 depicts estimated average classifica-
tion accuracies of 29 algorithms on 15 datasets (18 tasks).
The input data consists of 26% of all combinations algo-
rithm × dataset, making the estimates solid (recall fig-
ure 1). The accuracies were estimated with 1000 bootstrap
samples. Whiskers depict 1.5 IQR.
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Figure 3: Box plot with expected accuracies.

4.1 Validation

The ordering of algorithms from the meta-analysis should
roughly correspond to the ordering of the algorithms in
the individual articles. Differences in the orderings are
evaluated with Spearman correlation in table 5.

As we can see, the orderings in the literature can con-
tradict – once RELLAGS is better than CrossMine, once
CrossMine is better than RELLAGS.

5 Discussion

Summary of figure 3 based on algorithm type is in figure 4.
Interestingly, kernel and multi-view approaches are aver-
agely the most accurate algorithms. But some proposition-
alization algorithms, namely Wordification, Lynx-RSM
and RPT (Relational Probabilistic Tree) beat them. Never-
theless, note that propositionalization algorithms are over-
represented in the meta-analysis, making it more likely
that some of them place at extreme positions.

Also note, that performance of algorithms is influenced
by their setting. While algorithms in figure 3 are ordered
based on the average accuracy per combination of algo-
rithm × dataset, algorithms in figure 5 are ordered based
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Ordering Spearman Correlation Reference

TILDE < FORF-NA < Graph-NB < RelF < Poly < SDF 0.89 [2]
MRNBC < TILDE < E-NB < HNBC < PIC 0.9 [37]
TILDE < RELLAGS < CrossMine < MVC-IM 1.0 [12]
FOIL < TILDE < CrossMine < RELLAGS < MVC 0.9 [31]

Table 5: Comparison of algorithm ordering in the literature with ordering from the imputation.
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Figure 4: Estimated accuracies by algorithm type.

on the maximal known accuracy per combination of al-
gorithm × dataset. Notably, with the right setting, RSD
improves its ranking by 5 positions.

Finally, it is trusted that each individual author mea-
sured accuracy correctly. For example, in the article
from 2014 [24] authors of Wordification applied cross-
validation only on the propositional classifiers, leaving
discretization and propositionalization out of the cross-
validation. This design can lead to overly optimistic
estimates of the accuracy. In the follow up article
from 2015 [35] the authors of Wordification are al-
ready applying cross-validating on the whole process flow.
Wordification accuracies used in this article are exclu-
sively from [35].

5.1 Fairness of Comparison

The comparison solely based on the classification accu-
racy can be unfair. For example, CLAMF∗ [10] and Co-
MoVi∗ [32] are designed to work with temporal datasets.
Hence in Financial dataset they estimate probability of
a loan default only from the data before the time of
a loan application, while classifiers designed for the stati-
cal datasets also use data at and after the time of the loan
application. All classifiers used in the meta-analysis treat
all the datasets as if they were statical.

Validation of temporal datasets can be furthermore com-
plicated by repeated target events. For example, a cus-
tomer may apply for a loan many times. And now there are
two perfectly plausible goals - we may want to calculate
probability of default of a current customer with history of

∗The algorithm is not included in the meta-analysis because it’s ac-
curacy wasn’t measured on enough datasets.

loans or probability of default of a new customer. Gen-
erally, the second task is tougher because one of the best
predictors of customer’s behavior is the customer’s past
behavior. Nevertheless, all datasets in the meta-analysis
have exactly one target value per classified object (includ-
ing Financial dataset). Note that difference between with-
in/across classification in IMDb and MovieLens datasets
is another issue [33].

Also the goals of modeling can differ. For example
Markov Logic Network∗ in [14] is evaluated as genera-
tive model, so accuracies reported are over all predicates,
not just the target one. And accuracies can vary substan-
tially with respect to the chosen target predicate. All the
algorithms in the meta-analysis are evaluated in a discrim-
inative setting.

Additionally, not all classifiers are designed to perform
well on a wide spectrum of datasets. Indeed, there are
algorithms like MOLFEA [13] that are designed to work
only on a narrow subset of datasets. A possible specializa-
tion of the algorithms in the meta-analysis is not taken in
the consideration.

At last different authors may have different ethos. Algo-
rithms that were evaluated only by the algorithm authors
(to our best knowledge) were marked with a star in table 3.
And many algorithms that place at the top of the ranking
are stared algorithms. However, this trend can also be ex-
plained with following hypotheses:

• Recent algorithms tend to be better than the old al-
gorithms. And recent algorithms (like Wordifica-
tion [35]) did not have enough time to accumulate
references.

• New algorithms tend to look better in comparison to
mediocre algorithms than in comparison to the best
algorithm in the field. Hence authors prefer to com-
pare their algorithms against mediocre algorithms.

• Third-party evaluators do not have the knowledge and
resources to find the best algorithm setting. Hence
popular algorithms have, on average, low accuracy.
This problem is partially mitigated by considering
only the best reported accuracies in figure 5.

Overall, comparison of measurements from several
sources is not a simple task at all.
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Figure 5: Box plot with optimistic accuracies.

6 Conclusion

Based on the performed analysis, Wordification,
Lynx−RSM and Relational Probabilistic Tree on av-
erage outperform other 26 algorithms for relational
classifications. Other promising categories of relational
classifiers are multi-view and kernel based approaches.
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