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Abstract: Estimating class membership probabilities is an
important step in many automated speech recognition sys-
tems. Since binary classifiers are usually easier to train,
one common approach to this problem is to construct pair-
wise binary classifiers. Pairwise models yield an over-
determined system of equations for the class membership
probabilities. Motivated by probabilistic arguments we
propose a new way for estimating individual class mem-
bership probabilities, which reduces to solving a linear
system of equations. A solution of this system is obtained
by finding the unique non-zero eigenvector of total prob-
ability one, corresponding to eigenvalue one of a positive
Markov matrix. This is a property shared by another al-
gorithm previously proposed by Wu, Lin, and Weng. We
compare properties of these methods in two settings: a the-
oretical three-way classification problem, and via classifi-
cation of English monophthongs from TIMIT corpus. In-
dex Terms: binary classifiers; multiclass classification;
phoneme recognition; English vowels; TIMIT

1 Introduction

Probabilistic approach underlies most current automatic
speech recognition (ASR) systems, and very likely also
human speech perception. In many ASR systems a com-
mon task is to provide estimates of probabilities of a given
sample belonging to multiple classes given the observed
values of its features. These classes may represent various
phonemes, diphones or other kinds of linguistic categories.

In machine learning it is easier to find the boundary
between two classes rather than the boundary separating
a class from many other classes [1]. Moreover, many dis-
criminative models are naturally suited to pairwise clas-
sification, such as logistic regression, LDA or variants
of SVM. Thus given k classes Ci, one can readily con-
struct

(k
2

)
pairwise discriminative models. Let us denote

by Mi j the model discriminating classes Ci and C j. Sup-
pose that Mi j is able not only to discriminate, but also to
compute the pairwise class membership probability ri j of
an object X with features f:

ri j = ri j(X) = p(X ∈Ci| f,X ∈Ci or X ∈C j). (1)

Given the knowledge of ri j(X) the question is then to esti-
mate multi-class probabilities pi where

pi = pi(X) = p(X ∈Ci| f). (2)

Inspired by Bradley-Terry model, Hastie and Tibshirani
suggested [1] to require:

pi

pi + p j
= ri j (3)

∑
i

pi = 1 (4)

Note that there are 1+
(k

2

)
equations for k unknowns, so

the system of equations is over-determined for k ≥ 3 and
it may be not possible to solve them.

In the next section we review several approaches which
have been suggested to find approximate solution of (3). In
Section 3 we will propose a new method to combine pair-
wise estimates. In Section 4 we will examine its perfor-
mance with synthetic as well as real world acoustic data.
In Conclusion we discuss findings of our experiments.

2 Existing Approaches

One natural requirement for an algorithm which deter-
mines probabilities pi is that if the system (3) has a so-
lution then the algorithm will find them exactly.

Several approaches satisfying this requirement are out-
lined in the work of Wu, Ling and Wen [2]. They consider
the following functionals:

δHT : min
p

k

∑
i=1

[
k

∑
j: j 6=i

(ri j
1
k
− 1

2
pi)]

2, (5)

δ1 : min
p

k

∑
i=1

[
k

∑
j: j 6=i

(ri j p j− r ji pi)]
2, (6)

δ2 : min
p

k

∑
i=1

k

∑
j: j 6=i

(ri j p j− r ji pi)
2, (7)

δV : min
p

k

∑
i=1

k

∑
j: j 6=i

(I{ri j>r ji}p j− I{r ji>ri j}pi)
2, (8)

(9)

where I is the indicator function. Each of the four func-
tionals is nonnegative. When the system (3) does have
a solution, each functional is zero at, and only at the so-
lution. One less satisfying feature of these approaches is
that they lack probabilistic motivation, unlike the method
we propose in the next section.
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3 New Method

We will now describe our new algorithm. In general, one
has 0 ≤ ri j ≤ 1. To avoid complications arising from de-
generate cases we assume sharp inequalities 0 < ri j < 1,
which poses no difficulty in practical applications.

Consider for a moment that an object X belongs to
the class Cm. Then for judging its similarity to other
classes one may restrict attention to the values rm j (and
r jm = 1− rm j), since only classifiers Mm j were trained on
values from the category Cm. But for those k− 1 values
equations (3) can be solved exactly, as we will now show.

We have

∑
j 6=m

1
rm j

= ∑
j 6=m

pm + p j

pm
= (k−1)+

1− pm

pm
. (10)

This relation allows us to compute an estimate p(m)
m of pm

explicitly as

p(m)
m =

(
∑
j 6=m

1
rm j
− (k−2)

)−1

, (11)

where the upper index indicates that the estimate of pm
is computed by taking into account only values rm j. The
remaining probabilities can be then computed by the fol-
lowing formula:

p(m)
j = p(m)

m ·
( 1

rm j
−1
)
. (12)

Now we repeat this argument for m = 1,2, . . . ,k. In gen-
eral the estimates of pi thus obtained will be conflicting
i.e. in general p(m)

j 6= p(n)j , because given values ri j may
not allow for solving (3) consistently. We will now take in-
spiration from the probability law p(A)=∑i p(A|Bi)p(Bi),
if Bi is a partition of the probability space. We will require
that the estimate p̂i of pi should satisfy the following linear
system of equations:

p̂ j = ∑
m

p(m)
j p̂m, for j = 1, . . . ,k. (13)

These requirements can be interpreted as imposing self-
consistency on the estimates p̂i. One readily checks that
the matrix of the linear system (13) is Markov and posi-
tive, thus (13) has a one-dimensional space of solutions.
Imposing an additional condition

∑
m

p̂m = 1 (14)

determines a unique estimate p̂m of pm.

4 Evaluation of the New Method

First note that our algorithm will yield the correct solution
if the system (3) has a solution. In order to see that, one

first checks using (10) and (11) that p(m)
m = pm and p(m)

j =
p j. It follows that the vector p j satisfies equations (13)
and (14). Since the solution of (13) and (14) is unique, the
method will yield the correct solution. However, this is an
ideal, very special situation that will generally not hold for
k ≥ 3.

We have opted to do comparison testing of the pro-
posed method with the method of Wu, Ling and Wen [2]
that minimizes functional δ1 (6). The reason is that that
method also involves the construction of a positive Markov
matrix whose solution is their estimate of pm. We conduct
two experiments: one is an artificial three-way classifica-
tion problem, and the other a vowel recognition task.

4.1 Three-Way Classification

The system of equations (3) becomes over-determined for
k = 3. If one of the classifiers is unreliable then the sys-
tem (3) will not have a solution. In this section we present
the results of a synthetic experiment for three-way classi-
fication.

In our experiment we assume that only classifier M23 is
unreliable. In other words we assume that classifiers M12
and M13 discriminating respectively categories C1 versus
C2 and C1 versus C3 yield precise estimates of r12 and r13.
For a fixed value p1, p2 we thus set r12 = p1/(p1 + p2)
and r13 = p1/(p1 + p3) = p1/(1− p2). Let p̂m and pWu

m
denote our and Wu’s estimates of pm. As r23 varies in
interval (0,1), define the absolute errors

∆ = sup
i,r23

|p̂i− pi|, (15)

∆Wu = sup
i,r23

|pWu
i − pi|, (16)

and the relative error

∆rel
Wu = sup

i,r23

|pWu
i − p̂i|. (17)

The results of our experiment are shown in Table 1.
From the table it is clear that sometimes our method gives
more precise estimates, but for other values of p1, p2, Wu’s
method will yield more precise results. However, in all
cases, the relative error between our results and Wu’s re-
sults is smaller than the absolute errors, often by an order
of one magnitude.

4.2 Vowel Recognition

Unlike consonants, vowels may be perceived non-
categorically by listeners [3], making it a good testing
ground for multi-class probabilistic estimates. We opted
for English language, because it has a large variety of vow-
els and because there are large corpora of annotated speech
available. We worked with TIMIT, a phonetically seg-
mented corpus of American English [4]. Our categories
consisted of 15 monophthongs as shown in Table 2. For
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p1 p2 ∆ ∆Wu ∆rel
Wu

0.05 0.05 0.66 0.7 0.09
0.1 0.1 0.57 0.61 0.09

0.85 0.1 0.07 0.05 0.05
0.85 0.05 0.07 0.05 0.05
0.05 0.85 0.66 0.70 0.1
0.1 0.85 0.58 0.61 0.06

0.33 0.33 0.21 0.22 0.05

Table 1: Errors of estimation for various values of p1
and p2

vowel sample sample
word word’s

transcription
iy beet bcl b IY tcl t
ih bit bcl b IH tcl t
eh bet bcl b EH tcl t
ae bat bcl b AE tcl t
aa bott bcl b AA tcl t
ah but bcl b AH tcl t
ao bought bcl b AO tcl t
uh book bcl b UH kcl k
uw boot bcl b UW tcl t
ux toot tcl t UX tcl t
er bird bcl b ER dcl d
ax about AX bcl b aw tcl t
ix debit dcl d eh bcl b IX tcl t
axr butter bcl b ah dx AXR

ax-h suspect s AX-H s pcl p eh kcl k tcl t

Table 2: Sample words containing 15 different
monophong sounds of American English as segmented in
TIMIT corpus

each of the categories we randomly chose their realiza-
tions from the set of male speakers in the corpus. Each
realization was analyzed with a window 512 samples wide
(at 16kHz sampling rate its length was 32ms). If the cen-
ter of the window was less than 256 samples away from
the next phoneme, it was proportionally less likely to be
selected into our dataset. We have trained pairwise classi-
fiers using linear discriminant analysis (LDA). The feature
set was log-periodogram, where the analysis window was
weighted with Hanning window before computing FFT.

We have performed comparison testing of our and Wu’s
method by selecting 500 random samples from the test
subset. Per phone results are shown in Table 3. The
key statistics is that overall there was 96% agreement be-
tween most-likely classifications by our method and Wu’s
method.
The overall success rate was slightly below 40% for both
our and Wu’s method. Due to the limitations of the fea-
tures (no F0, no vowel duration, no dynamic information,
no multiframe data), suboptimal performance may be ex-
pected. For instance without intensity baseline, it is nearly
impossible to correctly distinguish some accented vowels.

vowel success Wu’s success agreement
rate rate

iy 48 % 48 % 96.6%
ih 21 % 21 % 94.8 %
eh 22 % 23 % 95.4 %
ae 60 % 60 % 94.4 %
aa 48 % 48 % 96.2 %
ah 20 % 21 % 94.6 %
ao 60 % 61 % 97.2 %
uh 18 % 18 % 95 %
uw 40 % 39 % 96.4 %
ux 40 % 40 % 97.4 %
er 34 % 35 % 95.6 %
ax 31 % 31 % 96.4 %
ix 16 % 18 % 94.4 %
axr 48% 46 % 96.2 %

ax-h 81 % 81 % 98.8 %

Table 3: Evaluation of our and Wu’s [2] methods on indi-
vidual monophthongs from the test data from TIMIT cor-
pus. The first column indicates agreement between classi-
fication by our method and TIMIT annotation, the second
column the statistics for method of Wu et al, and the third
column indicates how often our method and Wu’s method
agreed on the most-likely classified class.

We decided to do a more detailed case study. From the test
subset we have chosen sentence SA1 spoken by speaker
MREB0 and examined each monophthong at two points
in time. The first was 5 milliseconds after the onset, and
the other one approximately near the vowel’s center. The
results are shown in Table 4.

Likelihoods of most likely estimates of our and Wu’s
method are again quite close. There are two differences
between onset and center predictions. The first one is mis-
prediction of /er/ at the beginning of the word ‘greasy’,
which is quite understandable, since the vowel is preceded
by /r/. To gain an insight into the other mispredictions as
well as deeper insight into dynamical behavior of the re-
sulting multiclass classifier we present time plots in Fig. 1.
In Fig. 1a the mis-classification of /iy/ instead of TIMIT’s
/ix/ in the word ’in’ is shown. We speculate that the prob-
lem might be attributed to greater weight put on F2, that
is relatively high and within the region for /iy/, compared
to F1 that is quite high and definitely within the region for
/ix/. In other words, the vowel might be a bit fronter than
canonical /ix/. In Fig. 1b, the first vowel of ’greasy’ is
mis-classified as /ux/ instead of TIMIT’s /iy/.
This problem might be attributed to coarticulation from
the flanking consonants. The first vowel does have lower
F2, which is plausibly responsible for /ux/ prediction, but
it is preceded by /r/, which is commonly associated with
lip protrusion, which lowers F2. In Fig. 1c in the vowel of
word ’wash’, we see that it is only in the beginning in the
word ’wash’ that the classifier gives more weight to /ao/,
and then it increasingly agrees that the vowel is /aa/.
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offset TIMIT Wu’s method our method
label

3831 iy iy 80.1 % iy 79.9 %
6053 ae ae 79.7 % ae 79.6 %
9187 axr axr 62.2 % axr 61.6 %

11780 aa aa 32.9 % aa 32.6 %
19677 ux ux 60.3 % ux 58.2 %
25544 ix iy 66.4 % iy 64.9 %
28905 iy er 41.8 % er 40.3 %
31328 iy iy 53.4 % iy 53.3 %
34210 aa ao 76.3 % ao 75.8 %
39080 ao aa 77.1 % aa 76.9 %
40680 er axr 56.8 % axr 56.3 %
42512 ao ao 87.2 % ao 87.1 %
46827 ih iy 58.3 % iy 57.9 %
48248 axr axr 52.1 % axr 52.4 %

(a) 5ms after vowel’s start

offset TIMIT Wu’s method our method
label

4200 iy iy 83.2 % iy 82.9 %
6800 ae ae 83.7 % ae 83.6 %
9600 axr axr 50.6 % axr 50.7 %

12500 aa aa 80.7 % aa 79.5 %
21000 ux ux 67.2 % ux 66.4 %
25800 ix iy 55.5 % iy 53.3 %
29000 iy ux 23.5 % ux 22.8 %
31800 iy iy 72.8 % iy 72.7 %
35000 aa aa 57.6 % aa 57.7 %
39600 ao aa 78.8 % aa 78.5 %
41500 er axr 66.4 % axr 66.4 %
43500 ao ao 86.3 % ao 86.3 %
47500 ih ux 37.9 % ux 37 %
49000 axr axr 71.1 % axr 71.1 %

(b) near the center of the vowel

Table 4: Results of monophthong classification using spectral information in 32ms window centered at the offset indicated
in the first column. Vowels were extracted from sentence SA1 spoken by speaker MREB0 from region 1 (New England).
Most likely classes are shown computed by Wu’s method and our method together with multi-class likelihoods.

In this particular case, we conclude that our classifica-
tion is closer to the phonetic realization than TIMIT’s. The
beginning of the vowel is influenced by the preceding /w/
with lip rounding similar to /ao/. The rest of the vowel
sounds like an /aa/ to phonetically trained listeners, and
the formant values correspond to this perception. Finally,
Fig. 1d shows the preference for /aa/ as the first vowel of
’water’ in our model over /ao/ in TIMIT’s. Similarly to
Fig. 1c, this vowel sounds more, and its formant values
correspond to our model more, than to TIMIT’s. It should
be noted, however, that /ao/ and /aa/ have merged in sev-
eral American dialects and more tokens would be needed
for a more thorough analysis.

A common way to improve the performance in auto-
matic speech recognition is to tune the parameters of the
system for a particular speaker. To that end we carried one
more experiment. We extracted formants for TIMIT vow-
els spoken by speaker MREB0 using package phonTools
in R [5]. Next we performed pairwise LDA training as
previously but this time used values F1 and F2 for features
rather than the log-periodogram. These first two formants
are key perceptual features of vowels [6, 7, 8, 9]. Finally,
we performed multiclass classification on the first vowel
in the word ‘water’. The formants contours for this vowel
are shown in Fig. 2.

The somewhat suprising results are shown in Fig. 3.
One would expect that it would have little problem with
classification of the vowel. As seen in Fig. 3, except for a
brief start, the classifier overwhelmingly believes that the
phoneme is much closer to /aa/ than TIMIT annotated /ao/.
However, compared to Fig. 1d the likelihood of /aa/ is
markedly smaller near the vowel’s boundaries.

5 Conclusions

We have described a new method for combining probabil-
ity estimates from pairwise classifiers. It is quite general
and for its application needs only pairwise classifiers that
provide posterior likelihoods. We believe that since the
rationale for our method is probabilistically motivated, it
has the potential to edge out other methods in practice.
In particular by its construction it avoids the problem of
‘pairwise coupling’ approaches pointed out by G. Hin-
ton [1, pg. 467]. Another important feature is that the re-
sulting probabilities are computed as the dominant eigen-
vector of a Markov matrix, allowing for efficient compu-
tation via iterations when the matrix of binary likelihoods
varies slowly in time. Finally, since the method is not hi-
erarchical, it avoids compounding of errors common in hi-
erarchical approaches.

In presented synthetic and phonetic experiments its per-
formance was very close to a method previously suggested
by Wu [2]. The classification of English vowels was sub-
optimal, but that may not be indicative of performance in
real world scenarios for several reasons.

• We have used all TIMIT vowel categories, some
of which are in previously published performance
benchmark tests fused because they are extremely
hard to discriminate.

• Other pairwise classifiers, for instance logistic regres-
sion or SVM may yield better results.

• Based on the last experiment presented, we question
whether TIMIT annotation is consistent throughout
the corpus even for individual speakers.
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(a) TIMIT annotation is /ix/ in the word ‘in’. We considered an
alternative classification that the vowel is /iy/.
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(b) TIMIT annotation is /iy/ for the first vowel in the word
‘greasy’. We considered an alternative classification that the
vowel is /ux/.
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(c) TIMIT annotation is /aa/ in the word ‘wash’. We considered
an alternative classification that the vowel is /ao/.
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(d) TIMIT annotation is /ao/ for the first vowel in the word ‘wa-
ter’. We considered an alternative classification that the vowel is
/aa/.

Figure 1: Time series plots of multiclass and pairwise classification likelihoods for four vowels in sentence SA1 spoken
by MREB0. The top plot in each subfigure shows multiclass likelihoods, and the bottom plot shows binary classifica-
tion likelihoods ri j. In multiclass plots, dashed dark curve indicates the likelihood of the alternative hypothesis and dark
dash-dotted curve that of TIMIT annotation computed by our method (i.e. p̂i). Solid curves in multiclass plots indicate
corresponding but visually nearly indistinguishable estimates obtained via Wu’s method. In binary plots we plot likeli-
hoods of the alternative hypothesis against all other classes. The dotted curve in each binary plot indicates likelihood of
the alternative hypothesis compared to the TIMIT annotation.
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Figure 2: Formant contours F1-F3 for the first vowel of
word ‘water’ in sentence SA1 spoken by MREB0.
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Figure 3: Time series plots of multiclass likelihoods for
the first vowel in the word ‘water’ spoken in sentence SA1
by speaker MREB0. Dark dashed curve indicates likeli-
hood of /aa/, whereas dot-dashed curve indicates likeli-
hood of /ao/. Solid curves, as in Fig. 1, indicate estimate
by Wu’s method.

Further experiments with a complete ASR system may
shed more light on the applicability of the proposed al-
gorithm.
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