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Abstract: The efficient selection of relevant extents is an
important issue for investigation in formal concept analy-
sis. The notion of stability has been adopted for this rea-
soning. We present three different methods for evaluation
of stability and we summarize the comparative remarks.

1 Introduction

The efficient selection of relevant formal concepts is an
interesting and important issue for investigation and sev-
eral studies have focused on this scalability question in for-
mal concept analysis. The stability index [27] represents
the proportion of subsets of attributes of a given concept
whose closure is equal to the extent of this concept (in an
extensional formulation). A high stability index signal-
izes that extent does not disappear if the extent of some
of its attributes is modified. It helps to isolate concepts
that appear because of noisy objects in [22] and the com-
plete restoring of the original concept lattice is possible
with combination of two other indices. The phenomenon
of the basic level of concepts is advocated to select impor-
tant formal concepts in [11]. Five quantitative approaches
on the basic level of concepts and their metrics are com-
paratively analyzed in [12]. The approaches on selecting
of the formal concepts and simplifying the concept lattices
are examined in [15], as well.

In this paper, we present three methods which concern
the selection of the relevant formal concepts from the set
of all one-sided fuzzy formal concepts. We recall the mod-
ified Rice-Siff algorithm, extend the results on the quality
subset measure and propose a new index for the stabil-
ity of one-sided fuzzy formal concepts taking into account
the probabilistic aspects in the fuzzy formal contexts. We
would like to emphasize that the best results one can ob-
tain by the combination of various methods.

2 Classical approach

A central role in this section will be played by the notions
of a formal context (Fig. 1), a polar (Fig. 2), a formal
concept and a concept lattice (Fig. 3). We recall the defi-
nitions and we refer to [18] for more details.
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Definition 1. Let B and A be the nonempty sets and let
R⊆ B×A be a relation between B and A. A triple ⟨B,A,R⟩
is called a formal context, the elements of set B are called
objects, the elements of set A are called attributes and the
relation R is called incidence relation.
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Figure 1: A formal context ⟨{a,b,c},{i,ii,iii},R⟩

Definition 2. Let ⟨B,A,R⟩ be a formal context and X ∈
P(B), Y ∈P(A). Then the maps ↗: P(B) →P(A)
and↙: P(A)→P(B) defined by

↗ (X) = X↗ = {y ∈ A : (∀x ∈ X)⟨x,y⟩ ∈ R}

and

↙ (Y ) = Y↙ = {x ∈ B : (∀y ∈ Y )⟨x,y⟩ ∈ R}

are called concept-forming operators (also called deriva-
tion operators or polars) of a given formal context.
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Figure 2: Polar↗ of (P(B),⊆)

Definition 3. Let ⟨B,A,R⟩ be a formal context,↗ and↙
are concept-forming operators and X ∈P(B), Y ∈P(A).
A pair ⟨X ,Y ⟩ such that X↗ = Y and Y↙ = X is called a
formal concept of a given formal context. The set X is
called extent of a formal concept and the set Y is called
intent of a formal concept. The set of all formal concepts
of a formal context ⟨B,A,R⟩ is a set

C (B,A,R)= {⟨X ,Y ⟩ ∈P(B)×P(A) : X↗=Y , Y↙= X}.
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Definition 4. Let ⟨X1,Y1⟩,⟨X2,Y2⟩ ∈C(B,A,R) be two for-
mal concepts of a formal context ⟨B,A,R⟩. Let ≼ be a
partial order in which ⟨X1,Y1⟩ ≼ ⟨X2,Y2⟩ if and only if
X1 ⊆ X2. A partially ordered set (C (B,A,R),≼) is called
a concept lattice of a given context and is denoted by
CL(B,A,R).

⟨{a,b,c}, ∅⟩

⟨{a,b}, {i}⟩ ⟨{b,c}, {ii}⟩

⟨{b}, {i,ii}⟩

⟨∅, {i,ii,iii}⟩

Figure 3: A concept lattice of ⟨{a,b,c},{i,ii,iii},R⟩

3 One-sided fuzzy approach

The statements that people use to communicate facts about
the world are usually not bivalent. The truth of such state-
ments is a matter of degree, rather than being only true
or false. Fuzzy logic and fuzzy set theory are frameworks
which extend formal concept analysis in various indepen-
dent ways [5, 6, 9, 23]. Here, we recall the basic defini-
tions of fuzzy formal context. The structures of partially
ordered set, complete lattice or residuated lattice are ap-
plied here to represent data. The last one allows to speed
up the computing.

Definition 5. Consider two nonempty sets B a A, a set of
truth degrees T and a mapping R such that R : B×A−→ T .
Then the triple ⟨B,A,R⟩ is called a (T )-fuzzy formal con-
text, the elements of the sets B and A are called objects
and attributes, respectively. The mapping R is a fuzzy in-
cidence relation.

In the definition of (T )-fuzzy formal context, we of-
ten take the interval T = [0,1], because it is a scale of
truth degrees commonly used in many applications. For
such replacement, the terminology of [0,1]-fuzzy formal
context has been adopted. Analogously, one can de-
fine the (more general) notion of L-fuzzy formal con-
text, or P-fuzzy formal context, having replaced the in-
terval [0,1] by the algebraic structures of complete resid-
uated lattice L, partially ordered set P or other plausi-
ble scale of truth degrees. Several extensions were advo-
cated by the authors to provide the knowledge extraction
from (T )-fuzzy formal contexts, whereby the set of truth
degrees T ∈ {L; P; [0,1]; {0,0.5,1}; {a1, . . . ,an}; . . .} is
frequently selected.

The one-sided approach [23] one can represent by the
concept-forming operators in a non-symmetric way. For
[0,1]-fuzzy formal context and for every crisp subset of
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Figure 4: Example of [0,1]-fuzzy formal context

objects X , the first function assigns the specific truth de-
gree of the attribute (each object from X has this attribute
at least in this specific truth degree):

Definition 6. Let X ⊆ B and ↑: P(B) −→ [0,1]A. Then
↑ is a mapping that assigns to every crisp set X of objects
a fuzzy membership function X↑ of attributes, such that a
value in a point a ∈ A is:

X↑(a) = inf{R(b,a) : b ∈ X}. (1)

Conversely, for each fuzzy membership function of at-
tributes, the second concept-forming operator assigns the
specific crisp set of objects (each included object has all at-
tributes at least in a truth degree given by this fuzzy mem-
bership function):

Definition 7. Let f : A→ [0,1] and ↓: [0,1]A −→P(B).
Then ↓ is a mapping that assigns to every fuzzy member-
ship function f of attributes a crisp set ↓ ( f ) of objects,
such that:

f ↓ = {b ∈ B : (∀a ∈ A)R(b,a)≥ f (a)}. (2)

Lemma 1. The pair ⟨↑,↓⟩ forms a Galois connection.

Proof. Take X ,X1,X2 ⊆ B and f , f1, f2 ∈ [0,1]A. The in-
equality f1 ≤ f2 expresses that f1(a)≤ f2(a) for all a ∈ A.
From Eq. (1) and (2), it holds that

• X1 ⊆ X2 implies that X↑1 ≥ X↑2 ,

• f1 ≤ f2 implies that f ↓1 ⊇ f ↓2 ,

• X ⊆ X↑↓,

• f ≤ f ↓↑,

which are the assumptions on the pair of mappings to be
a Galois connection.

In addition, the composition of Eq. (1) and (2) allows
us to define the notion of one-sided fuzzy concept.

Definition 8. Let X ⊆ B and f ∈ [0,1]A. The pair ⟨X , f ⟩
is called a one-sided fuzzy concept, if X↑ = f and f ↓ = X.
The crisp set of objects X is called the extent and the fuzzy
membership function X↑ is called the intent of one-sided
fuzzy concept.

The set of all one-sided fuzzy concepts ordered by in-
clusion of extents forms a complete lattice, called one-
-sided fuzzy concept lattice, as introduced in [23]. This
construction is a generalization of classical approach
from [18]. The one-sided fuzzy concept lattices for a fuzzy
formal context from Fig. 4 is illustrated in Fig. 5.
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∅, ⟨1, 1, 1⟩

{b1}, ⟨1, 0.9, 0.8⟩ {b4}, ⟨0.8, 0.6, 0.9⟩

{b1,b2}, ⟨0.8, 0.7, 0.7⟩ {b1,b4}, ⟨0.8, 0.6, 0.8⟩

{b1,b2,b4}, ⟨0.8, 0.6, 0.7⟩

{b1,b2,b3,b4}, ⟨0.3, 0.3, 0.3⟩

Figure 5: One-sided fuzzy concept lattice for [0,1]-fuzzy
formal context from Fig. 4

3.1 Modified Rice-Siff algorithm

In effort to reduce the number of one-sided fuzzy formal
concepts, the Rice-Siff algorithm was modified and ap-
plied in [23, 25]. The method focuses on the distance
function and its metric properties. The distance function
ρ : P(B)×P(B)→ R is defined for X1,X2 ⊆ B by:

ρ(X1,X2) = 1− ∑a∈A min{↑ (X1)(a),↑ (X2)(a)}
∑a∈A max{↑ (X1)(a),↑ (X2)(a)} .

This function is a metric on the set of all extents. The
function is a cornerstone of Alg. 1.

Algorithm 1. (Modified Rice-Siff algorithm)
input: ⟨B,A,R⟩

C ←D ←{{b}↑↓ : b ∈ B};
while (|D > 1|) do {

m←min{ρ(X1,X2) : X1,X2 ∈D ,X1 ̸= X2}
Ψ←{⟨X1,X2⟩ ∈D×D : ρ(X1,X2) = m}
V ←{X ∈D : (∃Y ∈D)⟨X ,Y ⟩ ∈Ψ}
N ←{(X1∪X2)

↑↓ : ⟨X1,X2⟩ ∈Ψ}
D ← (D \V )∪N
C ← C ∪N
}

output: C

Notice that set D is changed in each loop by excluding el-
ements of V and joining a member of N in each loop. It
assures that set D is still decreasing. More particular, two
clusters with minimal distance are joined in each step of
algorithm and the closure of their union is returned as the
output. Such closures are gathered in a tree-based struc-
ture on the subset hierarchy with the cluster of all objects
in the root. The zero iterations gather the closures of sin-
gletons, therefore the value of minimal distance function
is not computed in the zero step. The more detailed prop-
erties of this clustering method with the special defined
metric are described in [23, 24, 25].

3.2 Subset quality measure

Snášel et al. in [38] reflect the transformation of the origi-
nal [0,1]-fuzzy formal context to the sequence of classical

formal contexts (from Definition 1) using the binary rela-
tions called α-cuts for α ∈ [0,1]. The core of our novel
modification in this approach (i. e. lower cuts and interval
cuts) follows and it can be fruitfully applied for real data.

Definition 9. Let ⟨B,A,R⟩ be [0,1]-fuzzy formal context
and let α ∈ [0,1]. Then the binary relation Rα ⊆ B×A is
called

• the upper α-cut if ⟨b,a⟩ ∈ Rα is equivalent to
R(b,a)≥ α ,

• the lower α-cut if ⟨b,a⟩ ∈ Rα is equivalent to
R(b,a)≤ α .

The binary relation Rαβ ⊆ B×A is called

• the interval αβ -cut if ⟨b,a⟩ ∈ Rαβ is equivalent to
R(b,a) ∈ [α ,β ].

It can be seen that the triple ⟨B,A,Rα⟩ for every α ∈
[0,1] forms the formal context given by Definition 1. For
each formal context, one can build the corresponding con-
cept lattice CL(⟨B,A,Rα⟩) by Definition 4. With respect
to the division of the interval [0,1] into n parts, we can
define the subset quality measure as follows.

Definition 10. Let X ⊆ B and Rα be the upper α-cuts for
α ∈ [0,1]. Then the upper quality measure of the subset X
is the value

qupp(X ,n) =∣∣∣
{

p ∈ {0,1, . . . ,n} :
(
∃Y ⊆ A

)
⟨X ,Y ⟩ ∈ CL

(
B,A,R p

n

)}∣∣∣
n+1

,

whereby n + 1 is the count of different values of α which
divides interval [0,1] into n partitions.

The formula of the lower quality measure qlow(X ,n) of
the subset X one can build analogously. However, the
slight modification is naturally needed if we consider the
interval αβ -cuts.

Definition 11. Let X ⊆ B and Rαβ be the interval αβ -cuts
for α,β ∈ [0,1]. Then the interval quality measure of the
subset X is the value

qint(X ,n) =∣∣∣
{
⟨p,r⟩ ∈ J :

(
∃Y ⊆ A

)
⟨X ,Y ⟩ ∈ CL

(
B,A,R p

n
r
n

)}∣∣∣
|J| ,

whereby J =
{
⟨p,r⟩ ∈ {0,1, . . . ,n}×{0,1, . . . ,n} ∧ p <

r
}

and n+1 is the count of different values of α and simul-
taneously β which divides interval [0,1] into n partitions.

In this paper, we omit the definitions of α-concepts,
since more details about the properties of these structures
can be found in [26, 2]. Moreover, the reduction of con-
cepts from generalized one-sided concept lattices based on
the method of upper α-cuts is introduced in the recently
published book chapter of Butka et al. [14]. A method for
α,β -cut of bipolar fuzzy formal contexts with illustrative
examples is proposed in [36, 37].
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3.3 Gaussian probabilistic index

In our recent work [3], the notions of [0,1]-fuzzy formal
contexts and random variables are connected in effort to
define the randomized formal contexts and to explore the
stability of extents of one-sided fuzzy formal concepts.

We will consider the sample space Ω as a set of all
possible finite or infinite outcomes of a random study.
An event T is an arbitrary subset of Ω. The probability
function p on a finite ({ω1, . . . ,ωn}) or infinite (e. g. in-
terval of real numbers) sample space Ω assigns to each
event T ⊆ Ω a number p(T ) ∈ [0,1] such that p(Ω) = 1
and p(T1 ∪ T2 ∪ . . .) = p(T1) + p(T2) + . . . for T1,T2, . . .
which are disjoint. From T ∪ T c = Ω, we deduce that
p(T c) = 1− p(T ). Events T1,T2, . . .Tm are called inde-
pendent if p(T1∩T2∩ . . .∩Tm) = ∏m

i=1 p(Ti).

Definition 12. Let ⟨B,A,R⟩ be [0,1]-fuzzy formal context.
For i ∈ {1, . . . ,n}, consider the system of [0,1]-fuzzy for-
mal contexts ⟨B,A,Ri⟩ such that

Ri(b,a) = min
{

1,max
{

0,R(b,a)+ εb,a,i
}}

,

whereby εb,a,i is a normally distributed value of a random
variable Eb,a with the mean 0 and variance σ2, i. e. Eb,a ∼
N(0,σ2), for all b ∈ B,a ∈ A.

Let X ⊆ B. The Gaussian probability index gpi :
P(B)×R+→ [0,1] is the function given by

gpi(X ,σ) = p(X is an extent of ⟨B,A,Ri⟩)

for an arbitrary subset of objects X, an arbitrary standard
deviation σ and mean 0. The [0,1]-fuzzy formal context
⟨B,A,Ri⟩ will be called the randomized (fuzzy) formal con-
text for each i ∈ {1, . . . ,n}.
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Figure 6: Example of randomized formal contexts

The values of Gaussian probability index express the
probability of X being the extent of the arbitrary random-
ized formal context by supposing the standard deviation σ
in the values of the incidence relation Ri in comparison
with the original incidence relation R. Alternatively, the
values of the Gaussian probability index one can com-
pute by the following construction. Consider the random-
ized formal contexts ⟨B,A,R1⟩,⟨B,A,R2⟩ . . . ,⟨B,A,Rn⟩ for
a large positive integer n (see Fig. 6). Then by the classical
definition of probabilistic function p one can write

gpi(X ,σ) =

|i, i ∈ {1,2, . . . ,n} : X is an extent of ⟨B,A,Ri⟩|
n

. (3)

The computation of Eq. (3) is described by Alg. 2.

Algorithm 2. (Algorithm of Gaussian probabilistic index)
input: ⟨B,A,R⟩, X, σ , n

k← 0;
for i := 1 to n do
{
for all b ∈ B do

for all a ∈ A do
{
εb,a,i← Random.nextGaussian()∗σ ;
Ri(b,a)←min{1,max{0,R(b,a)+ εb,a,i}};
}

if (X is an extent of ⟨B,A,Ri⟩) then
k← k +1;
}

gpi(X ,σ)← k
n

;

output: gpi(X ,σ)

In effort to express the values of Gaussian probabilistic
index directly from the input [0,1]-fuzzy formal context,
we explore the probabilistic aspects of randomized formal
contexts including the boundary test conditions in [3].

Theorem 1. Let X ⊆ B and let ⟨B,A,Ri⟩ be a randomized
formal context for some i ∈ {1, . . . ,n}, i. e.

Ri(b,a) = min
{

1,max
{

0,R(b,a)+ εb,a,i
}}

for the [0,1]-fuzzy formal context ⟨B,A,R⟩ and normally
distributed value εb,a,i of random variable Eb,a ∼N(0,σ2)
for all b ∈ B,a ∈ A. Then the value of Gaussian proba-
bilistic index for the subset X ⊆ B and standard deviation
σ is given by

gpi(X ,σ) = p
( ∩

o∈B\X

( ∩

a∈A

(( ∩

x∈X

Tx

)c)c))
,

where Tx represents the event

Eo,a−Ex,a < R(x,a)−R(o,a) ∧
Eo,a < 1−R(o,a) ∧
Ex,a >−R(o,a).

For more details, see the results from [3]. Here, we em-
phasize that the set of pairs {⟨X ,gpi(X ,σ)⟩ : X ⊆ B} for
some σ can be ordered by the second coordinate, which
gives the opportunity to use the Gaussian probabilistic in-
dex to select the relevant one-sided formal concepts in the
applications.

3.4 Comparative remarks

The relationship between the Gaussian probabilistic in-
dex and the methods from Subsection 3.1 and 3.2 is now
briefly outlined:

• every cluster N obtained by modified Rice-Siff al-
gorithm is the extent of one-sided fuzzy formal con-
cept of the input formal context (because we have that
N = {(X1∪X2)

↑↓ : ⟨X1,X2⟩ ∈Ψ}),

6 L’. Antoni, S. Krajči, O. Krídlo



• modified Rice-Siff algorithm represents the crisp in-
dex for selection of one-sided concepts, the Gaussian
probabilistic index is a fuzzy index,

• the subset quality measure and the Gaussian prob-
abilistic index can be applied also for the subsets
which are not the extents of the one-sided formal con-
cepts of the input [0,1]-fuzzy formal context,

• the clusters obtained by modified Rice-Siff algorithm
have mostly the higher gpi(X ,σ) as the other extents
of one-sided formal concepts, some exceptions exist,

• the Gaussian probabilistic index gpi works with data
tables (relations) which need not to be ordinally
equivalent. The relationship between the ordinally
equivalent relations were explored by Bělohlávek [7],

• we conclude that it is important to understand the ad-
vantages of the available methods and to apply them
separately or in their mutual combination.

The comparative example on the modified Rice-Siff al-
gorithm and the Gaussian probabilistic index can be found
in [3] including the interpretation and explanations.

4 Applications and future work

An extensive overview of papers which apply formal con-
cept analysis in various domains including software min-
ing, web analytics, medicine, biology and chemistry data
is provided in [32]. Particularly, we mention the concep-
tual difficulties in the education of mathematics [34], the
techniques for analyzing and improving integrated care
pathways [33] or evaluation of questionnaires [10, 8].
In [20], formal concept analysis is applied as a tool for
image processing and detection of inaccuracies. Recently,
the morphological image and signal processing from the
viewpoint of fuzzy formal concept analysis was presented
in [1]. The main results offer the possibility to interpret the
binary images as the classical formal concepts and open
digital signals as fuzzy formal concepts.

Regarding one-sided fuzzy approach from Section 3,
a set of representative symptoms for the disease are inves-
tigated in [21]. Furthermore, the application of fuzzy con-
cepts clustering in the domain of text documents [13, 35]
or attribute characterizations of cars in generalized one-
-sided concept lattices [19] are the subjects of study.

In our future work, our aim is to extend the results pre-
sented in [23, 24, 25] and to verify the methods in the ap-
plications from the educational area or in the area of social
networks. More particular, for a given set of students from
a longitudinal survey about the relationships between the
students in the secondary school classes, we can compute

a) the clusters of students sensed similar by their school-
mates (by modified Rice-Siff algorithm from Subsec-
tion 3.1),

b) the clusters of more popular students or less popu-
lar students (by upper or lower cuts of subset quality
measure from Subsection 3.2),

c) the stable clusters of students sensed similar due to
random fluctuation of data (by Gaussian probabilistic
index from Subsection 3.3).

The another possibility is to consider a set of students
and their scores of the tests from different subjects (see
Fig. 7). Take for example student b2 and find the students
with better results as b2 in all subjects. From Section 3
we have that {b2}↑↓ = {b1,b2}. Will it be valid after the
repeated exams? We suppose that student b3 will not be
better than b1 or b2. However, how about student b4? What
is the probability of that some other student will join the
group {b1,b2} in other testing?
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Figure 7: Students and their scores

We can answer these question by Gaussian probabilistic
index presented in Subsection 3.3. The Gaussian normal
distribution one can replace by real observations of teach-
ers who can estimate the standard deviations for each in-
dividual student. We can suppose that one of the students
will obtain roughly 90% in the most of exams, but once a
time it can happened that he/she will pass 70% for differ-
ent reasons, otherwise will reach 98%.

In another way, the paper [31] compares sev-
eral collaborative-filtering techniques on a dataset from
courses with only a few of students. The random Galois
lattices [16], the randomized formal contexts of a discrete
random variable, a generalized probability framework [17]
and stability in a multi-adjoint framework [28, 29, 30] or
heterogeneous framework [4] will be the point of interest
in our future work, as well.
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[2] Antoni, L., Krajči, S.: Quality measure of fuzzy formal
concepts. In: Abstracts of 11th International Conference
on Fuzzy Set Theory and Applications FSTA (2012), p. 18
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[21] Kiseliová, T., Krajči, S.: Generation of representative
symptoms based on fuzzy concept lattices. In: Reusch,
B. (eds.) Computational Intelligence, Theory and Appli-
cations. Advances in Soft Computing 33, Springer (2005)
349–354

[22] Klimushkin, M., Obiedkov, S., Roth, C.: Approaches to the
selection of relevant concepts in the case of noisy data. In:

Kwuida, L., Sertkaya, B. (eds.) ICFCA 2010. LNCS 5986,
Springer, Heidelberg (2010) 255–266
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