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Abstract: Many data mining tasks can be reformulated
as optimization problems, in the solution of which approx-
imation by surfaces plays a key role. The paper proposes
a new efficient computational algorithm for spline surfaces
over uniform grids. The algorithm is based on a recent re-
sult on approximation of a biquartic polynomial by bicubic
ones, that ensures C2 continuity of the corresponding four
bicubic spline components. As a consequence of this bi-
quartic polynomial based approach to constructing spline
surfaces, the classical de Boor’s computational task breaks
down to a reduced task and a simple remainder one. The
comparison of the proposed and classical computational
algorithm shows that the former needs less multiplication
operations resulting in non negligible speed up.

1 Introduction

Recent years a considerable effort has been seen to de-
velop reliable and efficient data mining tools to discover
hidden knowledge in very large data bases. The funda-
mental problem is proposing algorithms to extract some
useful information from very large databases. Fortunately,
many data mining tasks can be reformulated as optimiza-
tion problems, where approximation by surfaces plays
a key role [1], [7].

The goal of the paper is to show that even such standard
result as de Boor’s sequential algorithm for construction of
interpolating spline surfaces can be improved. It suggests
a computational algorithm based on new model equations,
in derivation of which biquartic polynomials played an es-
sential role.

The idea of using quartic and biquartic polynomials in
cubic and bicubic spline construction comes from recent
results of Török and Szabó [16], [19], [13]. They have
proven a key interrelation of these polynomials using the
IZA representation [18], [14], which can incorporate both
interpolation and approximation. The IZA representation
was obtained using an r-point transformation that was a
generalization of its three point ancestor [4]. A three
point transformation was successfully applied to various
approximation problems. Works [15], [8] showed how it
can be used to assess the unknown degree in regression
polynomials. In [5] a three point method was developed
to detect piecewise cubic approximation segments for data
with moderate errors. The technique, based on which the
IZA representation has been derived, was first used in [10].
The paper [17] showed how to properly use the IZA rep-

resentation’s reference points for segment connection and
their relation to derivatives. Papers [6], [14] contain re-
sults on approximation of 3D data based on the reference
point approach. The first remarkable asymptotic proper-
ties of the IZA representation based two-part approxima-
tion model were gained in [11] and [18]. These proper-
ties confirmed the validity of the two-part approximation
model, which led first to [16], where the interrelation of
quartic and cubic polynomials was shown, and then to pa-
pers [19] and [13], [9] that introduced the reduced system
approach to spline curve construction and proved the in-
terrelation of bicubic and biquartic polynomials.

The algorithm presented in this paper has a decreased
number of equations and is based on the generalized re-
sults of [19] and [9].

The structure of the article is as follows. Section two is
devoted to problem statement. To be self-contained, sec-
tion three briefly describes de Boor’s algorithm. The next
section first provides the definition of bicubic and biquar-
tic polynomials. Then it shortly discusses the interrela-
tion of these bivariate polynomials and their role in the
computational schema. Section five contains the proposed
sequential computational algorithm based on reduced sys-
tems. Section six briefly compares the new and the classi-
cal algorithm. The efficiency of the proposed algorithm is
shown in the last but one section by computing the theo-
retical speedup that is approximately 1.33.

2 Problem Statement

The section defines the inputs for the spline surface, and
the requirements that it should fulfil and based on which it
can be constructed.

Consider a uniform grid

[u0,u1, . . . ,u2m]× [v0,v1, . . . ,v2n], (1)

where

ui = u0 + ihx, i = 1,2, . . . ,2m,m ∈ N,

v j = v0 + jhy, j = 1,2, . . . ,2n,n ∈ N.

According to [3], the spline surface is defined by given
values

zi, j, i = 0,1, . . . ,2m, j = 0,1, . . . ,2n (2)
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at the equispaced grid-points, and given first directional
derivatives

dx
i, j, i = 0,2m, j = 0,1, . . . ,2n (3)

at boundary verticals,

dy
i, j, i = 0,1, . . . ,2m, j = 0,2n (4)

at boundary horizontals and cross derivatives

dx,y
i, j , i = 0,2m, j = 0,2n (5)

at the four corners of the grid.
The task is to define a quadruple [zi, j,dx

i, j,d
y
i, j,d

x,y
i, j ] at

every grid-point [ui,v j], based on which a uniform bicubic
clamped spline surface S of class C2 can be constructed
with properties

S(ui,v j) = zi, j,

∂S(ui,v j)

∂x
= dx

i, j,

∂S(ui,v j)

∂y
= dy

i, j,

∂ 2S(ui,v j)

∂x∂y
= dx,y

i, j ,

where the adjacent spline segments are twice continuously
differentiable. Our aim is to solve this task with less equa-
tions and less multiplications than the standard spline con-
struction algorithm [3]. We will achieve this by means of
Hermite splines and using a recently derived relationship
property between biquartic and bicubic polynomials.

3 Carl de Boor’s Algorithm

Paper [3] is devoted to bicubic spline surface interpola-
tion. It formulates the problem and gives the solution to it.
We briefly reformulate the paper’s main result for uniform
splines to show the four main equations, based on which
the numerous tridiagonal systems of de Boor’s algorithm
for solution of the unknown derivatives are constructed.
Thanks to it the paper is self contained and the reader can
count up the number of operational multiplications and so
quantitatively compare de Boor’s and the proposed new
algorithm.

Lemma 1 (de Boor). If the above z values and d deriva-
tives are given, then the values

dx
i, j, i = 1, . . . ,2m−1, j = 0, . . . ,2n,

dy
i, j, i = 0, . . . ,2m, j = 1, . . . ,2n−1,

dx,y
i, j , i = 1, . . . ,2m−1, j = 0, . . . ,2n,

and i = 0, . . . ,2m, j = 1, . . . ,2n−1

are uniquely determined by the following 2(2m)+(2n)+5
linear systems of altogether 3(2m)(2n)+ (2m)+ (2n)−5
equations:
for j = 0, . . . ,2n,

dx
i+1, j +4dx

i, j +dx
i−1, j =

3
hx

(zi+1, j− zi−1, j), (6)

where i = 1, . . . ,2m−1;
for j = 0,2n,

dx,y
i+1, j +4dx,y

i, j +dx,y
i−1, j =

3
hx

(dy
i+1, j−dy

i−1, j), (7)

where i = 1, . . . ,2m−1;
for i = 0, . . . ,2m,

dy
i, j+1 +4dy

i, j +dy
i, j−1 =

3
hy
(zi, j+1− zi, j−1), (8)

where j = 1, . . . ,2n−1;
for i = 0, . . . ,2m,

dx,y
i, j+1 +4dx,y

i, j +dx,y
i, j−1 =

3
hy
(dx

i, j+1−dx
i, j−1), (9)

where j = 1, . . . ,2n−1.

4 Biquartic Polynomials and Bicubic
Splines

The section begins with definition of bicubic and biquar-
tic polynomials. Then it shortly discusses the interrelation
of these bivariate polynomials and its role in the computa-
tional schema.

The tensor product formulas of bicubic Hermite spline
components, see [12], and biquaric polynomials are given
by the following two definitions.

Definition 1. On grid (1) the bicubic Hermite spline com-
ponents Si, j(x,y) for

i = 0,1,2, . . . ,2m−1, j = 0,1,2, . . . ,2n−1,
x ∈ [ui,ui+1], y ∈ [v j,v j+1],

are defined as follows

Si, j(x,y) = λλλ T (x,ui,hx) ·ϕϕϕ i, j ·λλλ (y,v j,hy), (10)

where λλλ is a vector of basis functions

λλλ (t, t0,h) =




(1+2 t−t0
h )(t−t1)2

h2

(t−t0)2(1−2 t−t1
h )

h2

(t−t0)(t−t1)2

h2

(t−t0)2(t−t1)
h2




T

,

t1 = t0 + h and ϕϕϕ is a matrix of function values and first
derivatives

ϕϕϕ i, j =




zi, j zi, j+1 dy
i, j dy

i, j+1

zi+1, j zi+1, j+1 dy
i+1, j dy

i+1, j+1

dx
i, j dx

i, j+1 dx,y
i, j dx,y

i, j+1

dx
i+1, j dx

i+1, j+1 dx,y
i+1, j dx,y

i+1, j+1



.
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For the spline components the following conditions hold

Si, j(uk,vl) = zk,l , k = i, i+1, l = j, j+1,
∂Si, j(uk,vl)

∂x
= dx

k,l , k = i, i+1, l = j, j+1,

∂Si, j(uk,vl)

∂y
= dy

k,l , k = i, i+1, l = j, j+1,

∂ 2Si, j(uk,vl)

∂x∂y
= dx,y

k,l , k = i, i+1, l = j, j+1.

Based on (10) the second derivatives of Si, j(x,y) can be
expressed effectively, e.g.

∂ 2Si, j(x,y)
∂x2 =

∂ 2λλλ T (x,ui,hx)

∂x2 ·ϕϕϕ i, j ·λλλ (y,v j,hy), (11)

where

∂ 2λλλ (t, t0,h)
∂ t2 =




6(2t−2t0−h)
h3

6(−2t+2t0+h)
h3

2(3t−3t0−2h)
h2

2(3t−3t0−h)
h2




T

.

The biquartic polynomials are also defined by tensor
product.

Definition 2. On grid (1) the biquartic polynomials
Fi, j(x,y) for

i = 0,2,4, . . . ,2(m−1), j = 0,2,4, . . . ,2(n−1),
x ∈ [ui,ui+2], y ∈ [v j,v j+2],

are defined as follows

Fi, j(x,y) = LT(x,ui,hx) ·ΦΦΦi, j ·L(y,v j,hy), (12)

where L is a vector of basis functions

L(t, t0,h) =




−(1+2 t−t0
h )(t−t1)(t−t2)2

4h3

(t−t0)2(t−t2)2

h4

(t−t0)2(t−t1)(1−2 t−t2
h )

4h3

−(t−t0)(t−t1)(t−t2)2

4h3

(t−t0)2(t−t1)(t−t2)
4h3




T

,

t1 = t0+h, t2 = t0+2h and ΦΦΦ is a matrix of function values
and first derivatives

ΦΦΦi, j =




zi, j zi, j+1 zi, j+2 dy
i, j dy

i, j+2

zi+1, j zi+1, j+1 zi+1, j+2 dy
i+1, j dy

i+1, j+2

zi+2, j zi+2, j+1 zi+2, j+2 dy
i+2, j dy

i+2, j+2

dx
i, j dx

i, j+1 dx
i, j+2 dx,y

i, j dx,y
i, j+2

dx
i+2, j dx

i+2, j+1 dx
i+2, j+2 dx,y

i+2, j dx,y
i+2, j+2




.

For uk, vl defined in (1) the following conditions hold

Fi, j(uk,vl) = zk,l , k = j, j+1, j+2, l = j, j+1, j+2,

∂Fi, j(uk,vl)

∂x
= dx

k,l , k = i, i+2, l = j, j+1, j+2,

∂Fi, j(uk,vl)

∂y
= dy

k,l , k = i, i+1, i+2, l = j, j+2,

∂ 2Fi, j(uk,vl)

∂x∂y
= dx,y

k,l , k = i, i+2, l = j, j+2.

The tensor product definition of Fi, j(x,y) by (12) pro-
vides a compact way to express first derivatives, e.g.

∂Fi, j(x,y)
∂y

= LT(x,ui,hx) ·ΦΦΦi, j ·
∂L(y,v j,hy)

∂y
. (13)

Figure 1: Schema of objects of a 2×2 - component bicubic
Hermite spline surface.

Works [13], [9] prove how is a biquartic polynomial ap-
proximated by four bicubic polynomials. We want to ap-
ply this idea in our new approach to computing uniform
bicubic splines of class C2. The point of the approach is to
solve only one half of derivatives from equations, and the
second half of derivatives to compute from simple formu-
las that are derived from corresponding biquartic polyno-
mials.

Unlike de Boor’s lemma, we provide only the inter-
pretation of the main result of [9]: a 2× 2-component
bicubic Hermite spline of class C1 will be of class C2, if
the grid-points are equispaced and the unknown deriva-
tives of the bicubic spline components at them are com-
puted from a corresponding biquartic polynomial that is
uniquely determined by the spline problem of Section 2
for the [u0,u1,u2]× [v0,v1,v2] grid.

This interrelation between a biquartic and four bicubic
polynomials is illustrated by the schema in Fig. 1. The bi-
quartic polynomial F over [u0,u2]× [v0,v2] is defined by
given nine function values z and sixteen derivatives d that
set up four quadruples [z,dx,dy,dx,y], two pairs [z,dx], two
pairs [z,dy] and a single z. Every bicubic spline compo-
nent is defined by four quadruples [z,dx,dy,dx,y]. The nine
quadruples in the figure are depicted around nine grid-
points. Those eleven directional and cross first derivatives
that are computed from the biquartic polynomial F and
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Figure 2: Schema of objects of a (2m + 1)× (2n + 1) -
component bicubic Hermite spline surface.

that are needed to construct the four bicubic spline com-
ponents S = {S0,0,S0,1,S1,0,S1,1}, are denoted by δ , see
Fig. 1.

The below proposed algorithm was developed by gener-
alizing the above described interrelation between biquartic
and bicubic polynomials. First biquartic polynomials were
handled and then based on them new model equations and
formulas for unknown derivatives of the bicubic spline sur-
face were derived.

Figure 2 illustrates the schema of the proposed compu-
tational algorithm for (2m+ 1)× (2n+ 1) bicubic spline
surface of class C2. There are 2m+ 1 verticals and 2n+
1 horizontals. Rectangles and thick rectangles indicate
the boundary of bicubic spline components and biquartic
polynomials, respectively. There are two types of objects
at every grid-point: known and unknown ones. The given
values and derivatives are denoted by z, d and the unknown
first derivatives by D, δ . Notice that z is provided at every
grid-point and d only along the total grid’s boundary. The
most important is where are the unknown D and δ param-
eters. The D parameters are located only along the thick
rectangles, but never in their center. As we shall see later
the D parameters will be computed from equations and the
δ parameters from explicit formulas. The equations were
derived from the equality of second derivatives of spline
components and the formulas from the biquartic polyno-
mials.

The derived new model equations for the unknown D
derivatives of the spline surface segments and parts of the
explicite formulas for δ are generalization of model equa-
tions and formulas of the unknown derivatives of spline
curve segments, see [16].

5 Reduced System Algorithm

This section presents a new sequential algorithm for com-
puting a C2-class uniform spline surface’s unknown first
derivatives. Its efficiency will be shown in the next sec-
tion. The central part of the algorithm are three new model
equations and five new explicit formulas. We do not derive
these model equations and explicit formulas, only men-
tion that for their derivation we had to (see Fig. 2) thor-
oughly analyse the structure of the bicubic and biquartic
polynomials, specify which derivatives should be the D
and which the δ parameters, understand which polynomi-
als are critical for obtaining the equations and formulas,
and for all this the following steps were needed:

1. construction of some biquartic polynomials Fi, j,
see (12),

2. construction of δ parameters as functions, see (13),
3. construction of some appropriate Hermite spline

components S, see (10), for comparing of their sec-
ond derivatives, see (11).

The below proposed algorithm can be characterized
from two aspects

• what it computes,
• the quality of its outcome.

The algorithm computes D and δ coefficients for bicu-
bic spline surface components from inputs given at equi-
spaced grid-points described in Section 2. The D coeffi-
cients are computed from linear systems based on equa-
tions (14), (16), (18) – (21). The δ coefficients are gained
from explicit formulas (15), (17), (22) – (24). Since the
equations for the D parameters were derived from the
equality of second derivatives of spline components and
the formulas for the δ parameters were gained from bi-
quartic polynomials that as we know grant C2 continuity
of their components, the algorithm provides such coeffi-
cients that the uniform bicubic spline surface will be of
class C2.

Algorithm for computing the unknown first derivatives of
the spline surface in three main steps with reduced sys-
tems.
Inputs: z and d values, see (2) – (5).
Step 1a. Computation of Dx parameters along the hor-
izontals from equation systems.

For each horizontal we construct a system of linear
equations to compute the Dx values, located on the inside
odd grid-points. Each horizontal represents an indepen-
dent tridiagonal system of linear equations.

For each horizontal, see Fig. 2, j = 0,1, . . . ,2n, a tridi-
agonal system is constructed based on equations

Dx
2(i+1), j−14Dx

2i, j +Dx
2(i−1), j =

=
3
hx

(z2(i+1), j− z2(i−1), j)−
12
hx

(z2i+1, j− z2i−1, j),
(14)

where i = 1,2, . . . ,m−1.
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Step 1b. Computation of δ x parameters from explicit
formulas.

To finish the computation of all first partial derivatives
with respect to x we have to calculate

δ x
i, j =

3
4hx

(zi+1, j− zi−1, j)−
1
4
(dx

i+1, j +dx
i−1, j), (15)

where i = 1,3, . . . ,2m−1, j = 1,3, . . . ,2n−1 .
Step 2a. Computation of Dy parameters along the hor-
izontals from equation systems.

For each vertical we construct a system of linear equa-
tions to compute the Dy values, located on the inside odd
grid-points. Each vertical represents an independent sys-
tem of linear equations.

For each vertical, i = 0,1, . . . ,2m, a tridiagonal system
is constructed based on equations

Dy
i,2( j+1)−14Dy

i,2 j +Dy
i,2( j−1) =

=
3
hy
(zi,2( j+1)− zi,2( j−1)−

12
hy

(zi,2 j+1− zi,2 j−1),
(16)

where j = 1,2, . . . ,n−1.
Step 2b. Computation of δ y parameters from explicit
formulas

To finish the computation of all first partial derivatives
with respect to y we have to calculate

δ y
i, j =

3
4hy

(zi, j+1− zi, j−1)−
1
4
(dy

i, j+1 +dy
i, j−1), (17)

where i = 1,3, . . . ,2m−1, j = 1,3, . . . ,2n−1.
At this moment all directional derivatives are known:

some were provided and the unknown D and δ directional
ones were computed in Steps 1 and 2. In the further steps
all directional derivatives will be denoted by d and con-
tained in the right hand side of equations and formulas.
Step 3a. Computation of Dx,y parameters along the bot-
tom and top horizontals, and left vertical from equa-
tion systems.

We construct systems of linear equations for bottom and
top horizontals and left verticals by [3]. The systems for
the bottom boundary horizontal is

Dx,y
i+1,0 +4Dx,y

i,0 +Dx,y
i−1,0 =

3
hx

(dy
i+1,0−dy

i−1,0), (18)

where i = 1, . . . ,2m−1;
for the top boundary horizontal is

Dx,y
i+1,2n +4Dx,y

i,2n +Dx,y
i−1,2n =

3
hx

(dy
i+1,2n−dy

i−1,2n), (19)

where i = 1, . . . ,2m−1;
and for the left boundary vertical is

Dx,y
0, j+1 +4Dx,y

0, j +Dx,y
0, j−1 =

3
hy
(dx

0, j+1−dx
0, j−1), (20)

where j = 1,2, . . . ,2n−1.

Step 3b. Computation of Dx,y parameters from the in-
side grid-points using systems of equations

For the odd verticals, i = 2,4,6, . . . ,2m, a tridiagonal
system is constructed based on equations

Dx,y
i, j+2−14Dx,y

i, j +Dx,y
i, j−2 =

=
1
7
(dx,y

i−2, j+2 +dx,y
i−2, j−2)−2dx,y

i−2, j+

+
3

7hx
(dy

i−2, j+2 +dy
i−2, j−2)+

3
7hy

(−dx
i−2, j+2 +dx

i−2, j−2)+

+
9

7hx
(dy

i, j+2 +dy
i, j−2)+

9
7hxhy

(−zi−2, j+2 + zi−2, j−2)+

+
12
7hx

(−dy
i−1, j+2−dy

i−1, j−2)+
12
7hy

(dx
i−2, j+1−dx

i−2, j−1)+

+
3
hy

(dx
i, j+2−dx

i, j−2)+
27

7hxhy
(−zi, j+2 + zi, j−2)+

+
36

7hxhy
(zi−1, j+2− zi−1, j−2 + zi−2, j+1− zi−2, j−1)−

− 6
hx

dy
i−2, j +

12
hy

(dx
i, j+1 +dx

i, j−1)+
108

7hxhy
(zi, j+1− zi, j−1)−

− 18
hx

dy
i, j +

144
7hxhy

(−zi−1, j+1 + zi−1, j−1)+
24
hx

dy
i−1, j,

(21)

where j = 4,6, . . . ,2n−4.
Mention must be made, that this step was the most criti-

cal. At first after computation of Dx,y unknowns along the
bottom and top horizontals in Step 3a we got equations
with six Dx,y unknowns on the left side. Török suggested
to compute the Dxy parameters along the left vertical us-
ing de Boors equation in Step 3a and thanks to this three
of six Dx,y parameters could be moved to the right side as
computed.
Step 3c. Computation of δ x,y parameters from explicit
formulas

To finish the computation of all first cross derivatives
we have to calculate for the even verticals and the even
horizontals

δ x,y
i, j =

1
16

(dx,y
i+1, j+1 +dx,y

i+1, j−1 +dx,y
i−1, j+1 +dx,y

i−1, j−1)−

− 3
16hy

(dx
i+1, j+1−dx

i+1, j−1 +dx
i−1, j+1−dx

i−1, j−1)−

− 3
16hx

(dy
i+1, j+1 +dy

i+1, j−1−dy
i−1, j+1−dy

i−1, j−1)+

+
9

16hxhy
(zi+1, j+1− zi+1, j−1− zi−1, j+1zi−1, j−1),

(22)
where i = 1,3, . . . ,2m−1, j = 1,3, . . . ,2n−1;
for the even verticals and the odd horizontals

δ x,y
i, j =

3
4hy

(dx
i, j+1−dx

i, j−1)−
1
4
(dx,y

i, j+1 +dx,y
i, j−1), (23)

where i = 1,3, . . . ,2m−1, j = 2,4, . . . ,2(n−1);
and for the odd verticals and the even horizontals

δ x,y
i, j =

3
4hy

(dx
i, j+1−dx

i, j−1)−
1
4
(dx,y

i, j+1 +dx,y
i, j−1), (24)

where i = 2,4, . . . ,2m−1, j = 1,3, . . . ,2n−1.
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6 The Comparision of the New and
de Boor’s Algorithm

We sum up the complete spline task and how is it com-
pleted by the considered two algorithms. Then we give
some details about the role of the biquartic polynomials
that are absent in de Boor’s algorithm but played a crucial
task in the design of the proposed one.

In case of (2m + 1)(2n + 1) grid-points, to fulfill
the complete spline task means to construct (2m)(2n)
spline components using (2m+1)(2n+1) various quadru-
ples, where one quadruple looks the following way:
[z,dx,dy,dx,y]. The input comprises (2m + 1)(2n + 1) z
values, 2(2n+ 1) dx, 2(2m+ 1) dy and 4 dx,y derivatives.
The unknown derivatives require computation.

In de Boor’s algorithm every unknown derivative is
computed from equations that are of four types, see (6)–(9)
and [3]:

• from 2n+1 systems with 2m−1 variables
(2n+1)(2m−1) derivatives dx are computed,

• from 2 systems with 2m−1 variables
2(2m−1) derivatives dx,y are computed,

• from 2m+1 systems with 2n−1 variables
(2m+1)(2n−1) derivatives dy are computed,

• from 2m+1 systems with 2n−1 variables
(2m+1)(2n−1) derivatives dx,y are computed.

The proposed algorithm’s benefit is that lesser number
of unknown derivatives (D parameters) are computed from
systems of equations, see Tab. 3, compared to de Boor’s
algorithm [3]. The remaining derivatives (δ parameters)
are computed from explicit formulas. This was achieved
thanks to using mn biquartic polynomials Fi, j(x,y) be-
hind the scene, whose definitions use only (m+1)(n+1)
quadruples.

The algorithm’s drawback is that it uses more types of
relation: six types of equations and five types of explicit
formulas. Nevertheless it has to compute approximately
12/5 times less equations within systems – compare Tab. 2
and Tab. 3 from Section 7.

Let us have a closer look at biquartic polynomials and
their role in the algorithm’s design. One biquartic poly-
nomial Fi, j(x,y) needs 25 parameters, see Definition 2.
We distinguish between four types of F polynomials,
see Fig. 2,

1. at the corners,

2. at boundary horizontals,

3. at boundary verticals,

4. over the inside grid-points.

While for example for the biquartic polynomial F over in-
side grid-points all the sixteen derivatives are unknown,

they are D parameters, for F from the corners only seven
are unknown and nine are given, these are the d param-
eters. After obtaining the D parameters the remaining
derivatives are computed based on F . From every F
eleven delta parameters can be obtained: two pairs of
type [δ x,δ x,y], two pairs of type [δ y,δ x,y] and one triple
[δ x,δ y,δ x,y]. Naturally, δ parameters are functions of D
parameters, see [9].

After introducing the new algorithm in the previous sec-
tion and giving a short insight into its design in this one,
the next section is devoted to its quantitative characteriza-
tion.

7 Number of Multiplications

The standard way of solving a tridiagonal linear system



b 1 0
1 b 1
0 1 b

. . .
. . .

. . .
. . .

b




︸ ︷︷ ︸
AAA




d1
d2
d3
...

dK




︸ ︷︷ ︸
ddd

=




r1−d0
r2
r3
...
rK−dK+1




︸ ︷︷ ︸
rrr

uses the LU factorization AAAddd = LLL UUU ddd︸︷︷︸
yyy

= rrr, where

LLL =




1 0
l2 1
0 l3 1

. . .
. . .

. . .
. . .

lK 1



,

UUU =




u1 1 0
0 u1 1

u2
. . .

. . .
. . .

uK



,

the ui and li elements are computed as, see [2],

LLLUUU : u1 = b, {li =
1

ui−1
, ui = b− li}, i = 2, ...,K, (25)

and the forward (Fw) and backward (Bw) steps of the so-
lution are

Forward: LLLyyy = rrr, (26)

where y1 = r1, {yi = ri− liyi−1}, i = 2, . . . ,K;

Backward: UUU ddd = yyy, (27)

where dK = yK
uK

, {di =
1
ui
(yi− xi+1)}, i = K−1, . . . ,1.

The tridiagonal systems of equations for de Boor’s and
our algorithm are solved by LU decomposition. All the
systems of these algorithms are diagonally dominant with
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(25) (26) (27)

Dim. LU Fw Bw RHS Total mult.
NNN×NNN γN N γN βN 2γN +βN +N

Table 1: Count of multiplications in one system of equa-
tions

de Boor System Equation βββ
Step 1 (6) 2n+1 2m−1 1

Step 2 (7) 2 2m−1 1

Step 3 (8) 2m+1 2n−1 1

Step 4 (9) 2m+1 2n−1 1

Total equations 12mn+2m+2n−5

Total mult.
24γmn+24mn+4γm+4γn

+4m+4n−10γ−1

Table 2: Count based characteristics – de Boor’s algorithm

Proposed System Equation βββ
Step 1a (14) 2n+1 m−1 2

Step 2a (16) 2m+1 n−1 2

Step 3a (18) 1 2m−1 1

Step 3a (19) 1 2m−1 1

Step 3a (20) 1 2n−1 1

Step 3b (21) m n−1 17

Total equations 5mn+2m+n−5

Total mult.
10γmn+30mn+4γm+2γn

−13m+n−10γ−12

Table 3: Count based characteristics – proposed algorithm

Proposed Formula βββ
Step 1b (15) m(2n+1) 2

Step 2b (17) (2m+1)n 2

Step 3c (22) mn 4

Step 3c (23) m(n−1) 2

Step 3c (24) mn 2

Total formulas 7mn+n

Total mult. 16mn+2n

Table 4: Count based characteristics – explicit formulas in
proposed algorithm

elements 1, 4, 1 and 1,−14, 1. The LU and backward steps
contain a division that is indicated by γ , the ratio between
division and multiplication: the performance of a division
operation is equivalent to γ multiplications.

The proposed and de Boor’s algorithm differ

• in number of systems of equations,

• in number of equations within systems,

• in number of multiplication operations on right hand
side (RHS) of equations.

Tab. 1 presents the number of multiplications for solv-
ing one general tridiagonal N×N matrix, where β denotes
the number of multiplications on the right hand side of an
equation.

The second and third columns of Tab. 2 and Tab. 3 pro-
vide the count of equations within the given steps (equa-
tions) and the count of equations within a system, respec-
tively, for a grid of size (2m+ 1)× (2n+ 1). The last but
one rows contain the total number of equations. The total
count of multiplications to solve the tridiagonal systems
within de Boor’s and the proposed algorithm are in the last
row.

In the proposed algorithm we evaluate in addition to the
solution of the tridiagonal systems of equations, see Tab. 3,
as well as δ parameters using explicit formulas. Therefore
the total number of multiplications in the proposed algo-
rithm based on tables 3 and 4 is

10γmn+46mn+4γm+2γn−13m+3n−10γ−12.

We can see that the number of multiplication in the pro-
posed algorithm is less. The theoretical speed up for some
various grid sizes were computed under assumption that
γ = 3.5. Based on Tab. 5 we can conclude that the pro-
posed model is asymptotically 1.33 times faster.

Grid de Boor Proposed Speed up
11×11 2 835 2 033 1.394

101×101 271 755 203 003 1.339

1001×1001 27 017 955 20 255 453 1.333

(106 +1)× (106 +1) 27 ·1012 20.25 ·1012 1,333

(1012 +1)× (1012 +1) 27 ·1024 20.25 ·1024 1,333

Table 5: Speed up

8 Conclusion

We suggested a new efficient sequential algorithm for
computation of a spline surface over an equispaced
grid. Its theoretically evaluated asymptotic speed up over
de Boors algorithm is approximately 1.33. The algorithm
has also a very nice property from the view point of par-
allel computation: the computation of the second half of
unknowns based on explicit equations can be parallelized
automatically. Naturally, parallel methods, suggested for
solving tridiagonal systems of de Boor’s algorithm can be
used for solution of the new algorithm’s tridiagonal sys-
tems as well. Therefore, the proposed reduced system
based algorithm is preferable over de Boor’s algorithm not
only for sequential, but also for parallel computation.
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