
About Security of the RAK DEK

Richard Ostertág

Department of Computer Science, Comenius University,
Mlynská dolina, 842 48 Bratislava, Slovakia

ostertag@dcs.fmph.uniba.sk

Abstract: The RAK DEK operating unit is a standalone
access control system. This unit, and its more advanced
versions, are widely used in Slovakia to protect entrance
doors to block of flats. In this paper we have studied se-
curity of RAK DEK with respect to timing attack. We
have tried two attack vectors. This system shows to be in-
vulnerable to our first attack, but we have succeeded with
the other attack vector. Now we are in state of finishing
functional exploit using identified vulnerability and inves-
tigation of its applicability to the more advanced version
of this family of access control systems.

1 Introduction and Basic Description of the
RAK DEK

The RYS is a Slovak company that develops and sales ac-
cess control and door communication systems. This com-
pany develops its own line of access control systems based
on iButton (a.k.a. touch or digital electronic key – DEK)
and the RAK DEK operating-memory units.

These systems were designed for the apartment build-
ings and became very popular. They are also used to pro-
vide access control in commercial or industrial settings
(e.g. hotels, offices, stores, schools, server housing) [1].

We choose to discuss this system because of its popu-
larity in Slovakia. We have already described cloning of
DEK and generally applicable brute-force attack in [2]. In
this paper we have exploited specific properties of RAK
DEK, so our conclusions apply only to this specific sys-
tem. However, described timing attack may be applicable
even to the other systems using 1-Wire protocol and serial
number iButtons, but actual applicability has to be indi-
vidually investigated.

1.1 Operating-Memory Unit

The operating-memory unit, e.g. RAK-DEK (see figure 1)
is the brain of RYS access control system.

This unit is connected through its RELE output with
door’s electromagnet and through 4-pin connector on
back-side with an iButton touch probe. This unit is ca-
pable to store serial numbers for hundreds of iButtons. If
a user touches the touch probe with a DEK, the iButton se-
rial number is transferred from the DEK to the operating-
memory unit. If the transferred number is stored in the
unit, the unit temporarily deactivates the electromagnets
(using the RELE output) and the user is allowed to enter.

Figure 1: The RAK-DEK operating-memory unit

We are interested in the communication between the
DEK and the operating-memory unit. As the DEK is just
a standard DS1990R serial number iButton R© from Maxim
Integrated Products, Inc., this communication uses stan-
dardized 1-Wire protocol.

1.2 Serial Number iButton

The DS1990R is a rugged button-shaped data carrier,
which serves as an electronic registration number. It is
produced in two basic sizes (F3 and F5) as is schemati-
cally depicted on figure 2.

Figure 2: Schema of DS1990R serial number iButton

For the DEK an iButton of F5 size is used, together with
a plastic holder for it (see figure 3). This holder can be put
on a key chain and can be in different colors (but black is
usually used).

J. Yaghob (Ed.): ITAT 2015 pp. 38–42
Charles University in Prague, Prague, 2015

Figure 3: Picture of DS1990R-F5 serial number iButton

Every DS1990R is factory lasered with a guaranteed
unique 64-bit registration number that allows for the abso-
lute traceability. This 64 bit registration (or serial) number
has internal structure as depicted in figure 4.

Figure 4: Data structure of a DS1990R serial number

It contains: six-byte device-unique serial number, one-
byte family code and one-byte CRC verification. Every
DS1990R have family code fixed to (01)16. There are
also another iButton devices with different family codes.
E.g. (10)16 is a temperature iButton, but they are not usu-
ally used in this kind of systems. Therefore every DEK can
be considered as a 48 bits long factory set unique number
(analogous to unique MAC addresses of network cards).

1.3 Communication Protocol between RAK-DEK
and iButton

All iButton devices utilizes the 1-Wire protocol, which
transfers data serially, half-duplex, through a single data
lead (1-wire) and a ground return (GND).

1-wire

+5 V

D1

C1 GND

GND

R
P

U

Q2Q1

Master Slave

GND

+5 V

µC

GND

TXM

µC
iButton

V int.DD

RX

TXS

64-bit
ROM ID

GND

RX

Figure 5: Simplified schema of an iButton and a master

Figure 5 depicts simplified implementation of the
1-wire communication using two micro-controllers with
two unidirectional ports. The slave (in this case iButton)
has no power source and is powered from an operating-
memory unit using the parasite power system on data lead.
This system consists of diode D1 and capacitor C1 and pro-
vides power to iButton during low voltage states of 1-wire
bus.

The master uses input port RX to sense value on 1-wire
bus. The slave uses its RX input port the same way. In the
idle state 1-wire bus is pulled up to 5 V by resistor RPU . In
this state all RX ports read logical one. Standard defines
that voltage should be at least 2.2 V to be interpreted as
logical one.

If any device wants to set 1-wire bus to logical zero, it
uses its output port (TXM or TXS) to activate its internal
MOSFET switch (Q1 or Q2) to connect the data lead to
the ground. As a result of this action, 1-wire voltage falls
down to near 0 V. Standard defines that voltage should be
at most 0.8 V to be interpreted as logical zero.

If device wants to set 1-wire bus to logical one, it just
deactivates its internal MOSFET switch. If more devices
set 1-wire bus state at the same time, then resulting state
is logical AND of all states. In other words: if at least one
device is setting 1-wire bus to logical zero, then resulting
state is logical zero.

15.5 16.0 16.5

0

1

2

3

4

5

15.5 16.0 16.5

0

1

2

3

4

50 2 4 6 8

0

1

2

3

4

5

0 2 4 6 8

0

1

2

3

4

5

Reset pulse
Reset pulse

P
re

se
nc

e
pu

ls
e

P
re

se
nc

e
p

ul
se 1 1 0 0 1 1 0 0

Command
 0x33

LSB MSB

V

ms

1 0

Figure 6: Example of real 1-wire communication

Communication always starts by the reset pulse issued
by the master. The reset pulse is just long enough (in this
case 1.1 ms) logical zero state of 1-wire bus (see figure 6).
After this reset pulse all slave devices are reseted to well-
known initial state. All slave devices respond to the reset
pulse by the presence pulse, in this case with length of
0.149 ms. If no presence pulse is detected by the master,
then no iButton is connected to the master. In this situa-
tion RAK-DEK waits for 100 ms and then tries again with
another reset pulse. After successful detection of iButton,
RAK-DEK makes a new, unnecessary, reset pulse for un-
known reasons (again followed by the presence pulse).

After presence pulse, the master will send a command.
RAK-DEK always sends the command 0x33, i.e. the “read

About Security of the RAK DEK 39

ROM” command. This command is transferred from the
master to the slave by serial transfer within defined time
slots. Any time slot is initiated by the master (in this case
RAK-DEK) and starts by falling edge on the data lead.
After 0.025 ms (after this falling edge), the iButton read
state of the 1-wire bus. If it is at least 2.2 V, the master
sends bit 1, otherwise bit 0. Bits are always sent from the
least significant bit to more significant bits.

After receiving the “read ROM” command, the iButton
is ready to send its 64-bit serial number stored in its ROM.
Again, transfer is done in time slots initiated by the master
from LSB to MSB. So, the slave is waiting for the falling
edge. After 0.004 ms (after this falling edge) RAK-DEK
turns off the switch Q1 and the pull up resistor will raise
the data lead to 5 V. So if iButton wants to send bit 1, it
has just to wait. If iButton wants to send bit 0, then in
this 0.004 ms interval iButton activates its switch Q2 for
0.032 ms. In either case RAK-DEK reads state of 1-wire
bus about 0.02 ms from the beginning of time slot. And
again, if it is at least 2.2 V, then master receives bit 1, oth-
erwise bit 0. In figure 6 we can see first 8 bits of serial
number after command 0x33. In the case of DEK it is al-
ways 0x01 (family code). Lower half of figure 6 zooms
to the last but one byte of serial number (in case of this
specific key it is (00110111)2 = (37)16.

Communication ends when RAK-DEK receives whole
64-bit serial number. If received number is on internal list
of authorized DEKs, then RAK-DEK releases electromag-
net holding the doors. At this point RAK-DEK sends the
reset pulse and the whole communication starts again. For
more implementation details of the protocol see [3].

2 Hardware

To be able to interact with RAK-DEK we need to imple-
ment an iButton emulator. We decided to use an Arduino
compatible hardware platform developed at Slovak Uni-
versity of Technology – Acrob [4], depicted on figure 7.

Figure 7: Acrob – an educational robotic platform

This hardware platform uses the Atmel ATmega328P
microcontroller running on 16 MHz, which we pro-
grammed in C++ like language, using standard Arduino
IDE [5].

In contrast to our previous paper [2], where we have
simulated operating-memory unit by Acrob, now we have
to buy a real RAK-DEK operating-memory unit, because
timing attacks are very sensitive to implementation details.
We still use one Acrob device for emulation of iButtons.

The 1-Wire protocol uses only one data line. We im-
plement this line by connecting together digital pin 12 of
Acrob, with the center pad of touch probe (this is equiva-
lent to connecting directly with pin 2 of the RAK-DEK).
This probe is connected to the RAK-DEK using 4-pin con-
nector on the back-side of PCB. To establish a ground re-
turn we connect Acrob GND pin with outside ring of touch
probe (this is equivalent to connecting directly with pin 1
on the RAK-DEK).

The touch probe gives us one more information channel
– the LED. RAK-DEK is blinking with this LED to make
it easier to locate the touch probe at night. Also the LED
lights up for some time when iButton touches the probe.

To be able to analyze even this source of information
we decided to use a photoresistor facing to the LED in
the touch probe. We used a photoresistor module with an
opamp used as a comparator and a potentiometer for set-
ting a threshold. When light intensity is over the threshold,
then DO pin of the module is on logical 0 level (near 0 V),
otherwise it is on logical 1 level (near 3.3 V because we
have used 3.3 V as Vcc for the module). We have connected
DO pin on the photoresistor module to pin 8 on Acrob.

0 2 4 6 8 10

0

1

2

3

4

5

0 2 4 6 8 10

0

1

2

3

4

50 2 4 6 8 10

0

1

2

3

4

5

0 2 4 6 8 10

0

1

2

3

4

50 2 4 6 8 10

0

1

2

3

4

5

0 2

0

1

2

3

4

54 6 8 10

0

1

2

3

4

5

0 2 4 6 8 10

0

1

2

3

4

5

698 700 702 704 706 ms

0

1

2

3

4

5700 702 704 706 708

700 702 704 706 708

0

1

2

3

4

5700 702 704 706 708

700 702 704 706 708

0

1

2

3

4

5700

698 700 702 704 706 708

0

1

2

3

4

5

V

1-wire 1-wire

LED is ONdelayed start

delayed stop

Photoresistor (analog)

Photoresistor (digital)

Photoresistor (analog)

Photoresistor (digital)

Figure 8: Calibration of the photoresistor module

Photoresistors are slow and that is why we can see a de-
layed start and a delayed stop in figure 8. We have rotated
the potentiometer to set the threshold around 620 mV. By
this calibration we obtained a small stop delay at cost of
longer start delay and hight sensitivity to ambient light. In

40 R. Ostertág

this case it was not problem. We know, that LED starts to
lit at the start of second reset pulse and the ambient light
was shielded. In fact, the length of the stop delay is not im-
portant, we only need it to be constant. If smaller delays
are needed then phototransistor can be used.

3 The Brute Force Attack

If we omit the predictable parts of serial numbers (i.e. fam-
ily code and CRC), we have to find six bytes. Our empir-
ical observations suggest that serial numbers are allocated
in sequence. All keys we have seen so far had zeros in two
most significant bytes of these six bytes. Therefore for a
brute force attack it would be sufficient to try all 232 serial
numbers of the form mentioned above.

In our experiments we have observed that RAK-DEK
is issuing the reset pulse every 100 ms when waiting for
DEK. But if DEK is found, then next rest pulse does
not come immediately, but always after 700 ms from the
first. This does not leave any space for timing attack
and substantially increases time for the bruteforce attack
that we have estimated in [2]. If we assume 700 ms as
an upper bound to try one serial number, we will need
700ms×24×8/60/60/24/365.5≈ 95 years for a success-
ful brute force attack in the worst case.

4 The Timing Attack

As a last resort we have tried to analyze time that elapses
from the moment we send 64-bit serial number to the
moment LED goes off. Ours idea was to store one
key, e.g. 0x0000000000000000 into RAK-DEK unit and
then emulate two keys, e.g. 0xFF00000000000000 and
0x00000000000000FF, and measure time needed for the
LED to go off in both cases. Through this experiment we
have realized that RAK-DAK is firstly validating CRC and
family code. It is not possible to do tests with an unreal-
istic DEK. Therefore we choose one valid DEK and make
modifications only to its 6 inner bytes in such way to not
modify resulting CRC. Then we tried to send four differ-
ent keys to RAK-DEK with different positions of the first
discrepancy from stored key. Resulting times are depicted
in figure 9.

From this figure we can see, that RAK-DAK is clearly
comparing DEK bytes form LSB to MSB, because time
is increasing as position of first discrepancy goes to more
significant bytes. Also we can see a nice linear relation-
ship between the position and the time. Using a linear
regression we estimated it to be:

f (p) = (1.33ms)p+307.96ms

Based on this liner regression we can say that test of
one byte from electronic key takes approximately 1.3 ms.
To verify correctness of this hypothesis we loaded some
random DEKs into RAK-DEK. Then we tried to identify

0 1 2 3 4 5 6
Pos.

308

310

312

314

ms

Figure 9: Position of first discrepancy vs. LED lit time.
Positions are numbered from right (LSB) to left (MSB).

value on position 1 (position 0 always has value of 0x01).
But our implementation did not work. Finally, we found
that RAK-DAK is comparing key bytes from LSB to MSB,
but firstly it checks if CRCs are equal. This is probably
an optimization to speed up comparison of long byte se-
quences in case we have their CRCs already precomputed.

Using this information, we can do much better then
brute force attack. We still need to search through the key
space, but we can do it byte by byte now. Starting from
CRC (at position 8) and then going from position 1 to 5,
calculating value at position 6 in such way not to change
resulting CRC. If we see that system response delayed by
1.3 ms we know, that we hit correct value for actual po-
sition and we can advance to next position, until correct
DEK is found. Using this technique and our experience
of position 5 and 6 to be zero on all known DEKs we can
estimate time of successful attack, in worst case, as:

700ms×4×28/60≈ 12 minutes.

5 Conclusion

We have investigated possibilities of timing attacks on
RAK-DEK. We identified timing attack vulnerability ex-
ploiting LED on the touch probe. We are now in state of
finishing a functional exploit using identified vulnerability
and investigation of its applicability to more advanced ver-
sion of this family of access control systems. This attack
requires only access to an Arduino compatible device and
a photoresistor (cost around 30.00AC). The time needed for
this attack is less than 12 minutes.

On the other hand, this attack can easily be mitigated by
disconnecting LED in the touch probe from RAK-DEK.
Better solution would be to modify firmware of RAK-
DEK to turn off LED with next reset pulse (which is al-
ready fixed to 700 ms after beginning of communication).

This work was supported by VEGA grant 1/0259/13.

About Security of the RAK DEK 41

References

[1] RYS: Access control and door entry systems. (http://
www.rys.sk/html_eng/english.htm) [Online; accessed
8-July-2015].

[2] Ostertág, R.: About security of digital electronic keys. In:
ITAT 2013: Information Technologies – Applications and
Theory, North Charleston: CreateSpace Independent Pub-
lishing Platform (2013) 122–124 ISBN: 978-1490952000.

[3] Maxim Integrated Products, Inc.: Book of iButton standards
(application note 937). http://www.maximintegrated.
com/en/app-notes/index.mvp/id/937 (2002) [Online;
accessed 8-July-2015].

[4] Balogh, R.: Acrob - an educational robotic plat-
form. AT&P Journal Plus 10 (2010) 6–9 ISSN 1336-
5010. http://ap.urpi.fei.stuba.sk/balogh/pdf/
10ATPplusAcrob.pdf [Online; accessed 8-July-2015].

[5] Arduino: Arduino software. (http://www.arduino.cc/
en/main/software) [Online; accessed 8-July-2015].

42 R. Ostertág

