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Abstract: Pattern mining in dynamic graphs has received
a lot of attention in recent years. However, proposed meth-
ods are typically limited to specific classes of patterns ex-
pressing only a specific types of changes. In this paper,
we propose a new algorithm, DGRMiner, which is able to
mine patterns in the form of graph rules capturing vari-
ous types of changes, i.e. addition and deletion of vertices
and edges, and relabeling of vertices and edges. This al-
gorithm works both with directed and undirected dynamic
graphs with multiedges. It is designed both for the single-
dynamic-graph and the set-of-dynamic-graphs scenarios.
The performance of the algorithm has been evaluated by
using two real-world and two synthetic datasets.

1 Introduction

Data mining of complex structures has been extensively
studied for quite a while. Recently, more attention has
been drawn to the area of dynamic graphs, i.e. graphs
evolving through time. A lot of research has been car-
ried out both from the global and local perspectives of dy-
namic graphs. For instance, global characteristics such as
density and diameter were studied in real dynamic graphs
in [6]. On the other hand, graph mining on the local level is
most frequently focused on pattern mining. Such patterns
are represented by subgraphs and their evolution through
a short period of time [1, 2, 8].

Nevertheless, most of the pattern mining methods for
dynamic graphs impose various restrictions, such as the
type of the dynamic graphs or the type of changes cap-
tured by such patterns. For example, GERM algorithm [1]
assumes that vertices and edges are only added and never
deleted in the input dynamic graph. Furthermore, it mines
patterns representing only edge additions.

In this paper, we propose a new algorithm DGRMiner
for mining frequent patterns that can capture various
changes in dynamic graphs. Specifically, the patterns are
in the form of predictive rules expressing how a subgraph
can be changed into another subgraph by adding new ver-
tices and edges, deleting specific vertices and edges, or
relabeling vertices and edges. An example of a dynamic
graph and two predictive rules are illustrated in Fig. 1.

The algorithm is able to mine patterns from a single dy-
namic graph and also from a set of dynamic graphs. Such
graph rules are useful for prediction in dynamic graphs,
they can be used as pattern features representing dynamic
graphs or simply for gaining an insight into internal pro-
cesses of the graphs.

The paper is organized as follows. Section 2 gives the
necessary definitions and presents the representation of
dynamic graphs. Section 3 then provides a short descrip-
tion of the gSpan algorithm [13], whose framework is em-
ployed in our new algorithm. In Section 4, we describe the
new algorithm for graph rule mining. Experimental eval-
uation is presented in Section 5. Finally, related work and
conclusion can be found in Section 6 and 7, respectively.

2 Predictive Graph Rules

In this section, we provide definitions of a dynamic graph
and predictive rules. Definitions of significance measures
support and confidence are also part of this section.

2.1 Dynamic Graphs

Before defining a dynamic graph, we need to consider the
notion of a static graph. In this paper, by a static graph we
will denote a directed labeled multigraph without loops
and with a restriction that no two edges with the same
source and target vertices can have the same label. The
proposed mining algorithm, however, can work with undi-
rected edges too. For the sake of simplicity, we will restrict
ourselves only to directed graphs in this section.

Definition 1 (Static graph). A static graph is a 5-tuple G=
(VG,EG, fG, lG,V , lG,E), where VG is a set of vertices, EG is
a set of edges, fG : EG → VG×VG is a map assigning a
pair of vertices (u,v), u 6= v, to every edge, lG,V and lG,E
are two maps describing labeling of the vertices and edges,
respectively. Furthermore, ∀e1,e2 ∈ EG( f (e1) = f (e2)⇒
lE(e1) 6= lE(e2)).

A dynamic graph is then given by a finite sequence of
static graphs in which no two adjacent graphs are identi-
cal as we want to capture only the changes in the dynamic
graph. Moreover, we extend each static graph G by times-
tamp functions tG,V : VG → T and tG,E : EG → T , which
map each vertex and edge to a point in time. We will work
with discretized time and thus T will be the set of integers,
i.e. T = Z.

Definition 2 (Dynamic graph). A dynamic graph is a finite
sequence DG=(G1,G2, ...,Gn), where Gi is a static graph
extended by timestamp functions tGi,V , tGi,E for all 1 ≤ i ≤
n, and G j 6= G j+1 for all 1≤ j≤ n-1. Graph Gi is referred
to as the snapshot of DG at time i. In addition, for each
1 ≤ i ≤ n, the timestamp functions tGi,V , tGi,E assign to
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Figure 1: An example of a dynamic graph and two predictive graph rules. Numbers after slash symbols represent times-
tamps and dotted edges represent deleted edges.

each vertex and edge the time from which they have their
current label, i.e. tGi,V (v) = min( j|1≤ j ≤ i∧∀k, j ≤ k ≤
i,v ∈VGk ∧ lGk,V (v) = lGi,V (v)) and similarly for tGi,E(e).

As we want to capture patterns with rich information,
we will also assume that the dynamic graph keeps track
of the deleted vertices and edges, but only until they
are added back into the graph. For example, consider
the dynamic graph in Fig. 1 with five snapshots. Then
tG1,V (v1) = 1, tG4,V (v5) = 3, etc. Also notice the edge be-
tween vertices v3 and v1 in snapshot G3. It is deleted in
snapshot G4 but we keep information about this deleted
edge in this snapshot. This information is discarded in
snapshot G5 because a new edge with exactly the same
information is added there.

2.2 Predictive Rules

The aim of the mining algorithm is to find predictive graph
rules, i.e. rules expressing how a subgraph of a snapshot
will most likely change in future. As we want to incor-
porate the time information into the rules and at the same
time we are interested in mining general patterns which
are not tied to absolute time, we need to use relative times-
tamps for rules. A relative timestamp equal to 0 will de-
note a current change and timestamp equal to −t will de-
note a change that happened t snapshots earlier. Now we
can define predictive graph rules as follows.

Definition 3 (Predictive Graph Rule). Let GA, GC be two
static graphs with timestamp functions tGA,V , tGA,E , tGC ,V ,
tGC ,E restricted to range (−∞,0] such that union graph1 of
GA and GC is a connected graph and exactly one of the
following conditions holds:

1A graph created from union of vertices and edges.

i. VGA = /0∧VGC 6= /0∧∀v ∈VGC(tGC ,V (v) = 0)∧
∀e ∈ EGC(tGC ,E(e) = 0)

ii. VGA 6= /0∧VGC = /0

iii. (VGA ∩VGC 6= /0)∧
(∃v ∈VGC(tGC ,V (v) = 0)∨∃e ∈ EGC(tGC ,E(e) = 0))∧
(∀v ∈VGC rVGA(tGC ,V (v) = 0))∧
(∀e ∈ EGC rEGA(tGC ,E(e) = 0))∧
(∀v ∈VGA ∩VGC((tGC ,V (v) = tGA,V (v)−1∧ lGC ,V (v) =
lGA,V (v)) ∨ (0 = tGC ,V (v) ≥ tGA,V (v) ∧ lGC ,V (v) 6=
lGA,V (v)))∧
(∀e ∈ EGA ∩ EGC( fGC(e) = fGA(e) ∧ ((tGC ,E(e) =
tGA,E(e)− 1∧ lGC ,E(e) = lGA,E(e))∨ (0 = tGC ,E(e) ≥
tGA,E(e)∧ lGC ,E(e) 6= lGA,E(e))))

Then we say that GA ⇒ GC is a predictive graph rule,
where GA is called antecedent and GC consequent.

The first two conditions in the above definition cover
situations in which the rules express either addition of an
isolated graph into a dynamic graph or a deletion of a sub-
graph from a dynamic graph. The third condition cov-
ers situations in which one subgraph is transformed into
another subgraph. Here, we require VGA ∩VGC 6= /0 be-
cause we are not interested in rules consisting of unrelated
graphs. In addition, we require the rule to contain at least
one change related to a vertex or an edge. Vertices and
edges occurring only in consequent must have timestamp
equal to 0 as they represent an addition. For vertices and
edges common for both graphs we require that they either
were not changed a thus their relative timestamps differ by
one, or they were changed and thus their timestamp cannot
be lower in the consequent. Moreover, we cannot change
edges by reorienting them, i.e. we would have to delete
the original edge and add a new one with the opposite ori-
entation. Lastly, as we keep track of the deleted edges and
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vertices in the dynamic graph, the predictive rules can also
contain these deleted vertices and edges. It does not pose
any restriction to the patterns, contrariwise it can only help
us capture more information in the patterns in case such
information is present in the dynamic graph.

In Fig. 1 we can see two examples of graph prediction
rules. Both rules depict changes in connection and also
label changes. There is also a vertex with label A in both
rules which is not changed and thus its timestamp is de-
creased by one in the consequent.

In order to select only interesting rules, various mea-
sures of significance are typically used. Here, we use sup-
port and confidence. As we use relative timestamps for
graphs in rules, we also need to provide the notion of an
occurrence of such a graph in the given dynamic graph.

Definition 4 (Occurrence of a rule graph). Let G be a
graph used in a rule, say in antecedent without loss of
generality, with timestamp functions tG,V , tG,E , and let
DG = (G1, ...,Gi, ...,Gn) be a dynamic graph. We say that
G occurs in snapshot Gi, written as Gv Gi, if there exists
a function ϕ : VG→VGi such that:

i. ∀u ∈ VG(ϕ(u) ∈ VGi ∧ lG,V (u) = lGi,V (ϕ(u)) ∧
tG,V (u) = tGi,V (ϕ(u))− i),

ii. ∀e ∈ EG( fG(e) = (u,v) ⇒ ∃!e′ ∈ EGi( fGi(e
′) =

(ϕ(u),ϕ(v)) ∧ lG,E(e) = lGi,E(e
′) ∧ tG,E(e) =

tGi,E(e
′)− i)

Definition 5 (Support and Confidence). Let GA⇒ GC be
a rule and DG = (G1, ...,Gi, ...,Gn) a dynamic graph. We
define support of GA⇒GC, support of GA, and confidence
of GA⇒ GC as follows:

σDG(GA⇒ GC) = |{i|GA v Gi,GC v Gi+1,

1≤ i≤ n−1}|/(n−1)
σDG(GA) = |{i|GA v Gi,1≤ i≤ n−1}|/(n−1)

con fDG(GA⇒ GC) = σDG(GA⇒ GC)/σDG(GA)

For a set of dynamic graphs DGS =
{DG1,DG2, ...,DGm} we extend these definitions as
follows:

σDGS(GA⇒ GC) = |{i|σDGi(GA⇒ GC)> 0,
1≤ i≤ m}|/m

σDGS(GA) = |{i|σDGi(GA)> 0,1≤ i≤ m}|/m

con fDGS(GA⇒ GC) = σDGS(GA⇒ GC)/σDGS(GA)

Thus, support of a rule for a single dynamic graph ex-
presses the fraction of snapshots that were changed by the
rule. For a set of dynamic graphs, we count the fraction
of dynamic graphs that had at least one snapshot changed
by the rule. Confidence expresses the frequency of such a
change if we observe an occurrence of the antecedent. For
example, both rules in Fig. 1 have support equal to 0.25
and confidence equal to 1.

Given a minimum support value σmin and a minimum
confidence value con fmin, the task is to find all predictive
graph rules for which σ ≥ σmin and con f ≥ con fmin.

3 gSpan Revisited

The novel algorithm for mining predictive graph rules em-
ploys the framework of the gSpan algorithm [13]. We
modified and further extended this framework for the pur-
pose of mining graph rules from dynamic graphs. First,
we revise the main ideas of gSpan and then we provide the
details of the new algorithm.

gSpan [13] is an algorithm for mining frequent patterns
(subgraphs) from a set of simple undirected static graphs.
Simple means that it does not handle multiedges. The out-
put frequent subgraphs are connected.

gSpan starts from single-edge patterns and extends
these patterns edge by edge to create larger patterns.
Each such pattern can be encoded by a DFS (Depth-First
Search) code. A DFS code of a pattern represents a spe-
cific DFS traversal of the pattern and it is represented by
a list of 5-tuples (i, j, li, l(i, j), l j). Such a 5-tuple represents
an edge between the i-th and j-th discovered vertices by
the DFS traversal, li and l j are labels of those vertices, and
l(i, j) is the label of the edge. Thus, the first 5-tuple has al-
ways i = 0 and j = 1, and it holds for other 5-tuples that
i < j if it is a forward edge in the DFS traversal and i > j
if it is a backward edge.

As there are more ways the DFS traversal can be per-
formed on a single pattern, there are also more DFS codes
for each pattern. A lexicographic order is defined on DFS
codes and the minimum one is maintained for each pat-
tern. This lexicographic order is also applied on codes of
different patterns to represent the search space as a tree,
called DFS Code Tree. In this DFS Code Tree, each vertex
represents one DFS code and children of a vertex can be
obtained by all possible single-edge extensions of the ver-
tex. Therefore all codes on the same level of the tree have
the same number of edges. Moreover, children of a vertex
are ordered according to the lexicographic order. gSpan
generates larger patterns in such a way that it corresponds
to a depth-first search traversal of this DFS Code Tree, i.e.
it generates patterns according to the lexicographic order.
gSpan does not have to extend each pattern in all possi-
ble ways, it is enough to grow edges only from vertices on
the rightmost path2. Specifically, it grows either a back-
ward edge from the rightmost vertex3 to another vertex
on the rightmost path or a forward edge from a vertex on
the rightmost path to a newly introduced vertex. When
traversing the search space, gSpan checks whether the pat-
tern of the considered DFS code is frequent. If not, it
prunes the search space tree on this vertex and backtracks.
This is possible because of the anti-monotonicity of the
support measure. It also checks whether the considered
code is the minimum one for the corresponding pattern.
If it is not minimum, the search space tree is pruned on
this vertex because all patterns in this pruned subtree were
already found earlier.

2The rightmost path is given by the DFS code and it is the path from
the root to the lastly discovered vertex by the DFS traversal.

3The last vertex on the rightmost path from root.
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Algorithm 1 gSpan(D,S)
1: sort the labels in D by their frequency;
2: remove infrequent vertices and edges;
3: relabel the remaining vertices and edges;
4: S1← all frequent 1-edge graphs in D;
5: Sort S1 in DFS lexicographic order;
6: S← S1;
7: for each edge e ∈ S1 do
8: initialize s with e, set s.D by graphs containing e;
9: Subgraph_Mining(D,S,s);

10: D← D− e;
11: if |D|< σmin then
12: break;

Algorithm 2 Subgraph_Mining(D,S,s)
1: if s 6= min(s) then
2: return;
3: S← S∪{s};
4: enumerate s in each graph in D and count its children;
5: for each c, c is s’ child do
6: if σ(c)≥ σmin then
7: s← c;
8: Subgraph_Mining(Ds,S,s);

The pseudocode of gSpan is given in Algorithm 1.
By removing the infrequent vertices and edges, the input
graphs can be significantly reduced and the overall effi-
ciency increased. Frequent vertices are appended to re-
sults as the smallest frequent patterns. The main part of
the algorithm starts from single-edge patterns. Specifi-
cally, Subgraph_Mining 2 procedure is recursively called
on each such pattern. This procedure first tests whether
the code s is minimum. If it is minimum, it enumerates its
children by taking single-edge extensions. The procedure
is then called on the frequent children.

4 DGRMiner Algorithm

In this section we describe the new algorithm called DGR-
Miner. It is based on the framework of gSpan, however,
the framework is modified and extended. First, we provide
necessary details about main modifications used in DGR-
Miner and then we present the pseudocode of the whole
algorithm with description of remaining building blocks.

4.1 Static Representation of the Dynamic Graphs by
Union Graphs

The first step is a transformation of an input dynamic
graph4 into a data structure that can be considered as a
set of static graphs. The idea is that we are able to repre-
sent the graph rules by single graphs and the input dynamic

4Here, we assume that there is only one dynamic graph on the input.
Extension to a set of dynamic graphs is described in Subsection 4.4.

graph as a set of static graphs in such a way that a modified
static subgraph mining algorithm can be employed.

Let us start with the transformation of rules. In order
to create a single graph from a rule, we take the union of
the vertices and edges from its antecedent and consequent.
Edges and vertices that do not represent any change in the
rule will keep their labels and timestamps from the conse-
quent. Let us remind that rules have relative timestamps
less than or equal to 0 and thus these edges and vertices
will have timestamps less than 0. Edges and vertices rep-
resenting addition will keep their consequent timestamp,
which is 0, but their labels will contain flag representing
addition, for example label A will be changed to +A. How-
ever, timestamps of vertices and edges that were deleted
or relabeled will have timestamps that are opposites of the
antecedent timestamps. We know that consequent times-
tamps of such changes are equal to 0 so we can easily get
the original value of the antecedent. We take the oppo-
site values because later it will help us recognize current
changes simply by timestamps greater than or equal to 0.
Vertices and edges that were deleted or relabeled will also
have new labels that can be easily decoded, for example
−A for deletion of an object with label A and A => B for
relabeling from A to B. Transformed rules from Fig. 1 are
shown in Fig. 2.

Transformation of the input dynamic graph is very sim-
ilar. Suppose that we have n snapshots in the dynamic
graph. As the first snapshot does not represent any changes
by itself, we create n− 1 new graphs in the following
way. When creating the k-th graph, consider union of ver-
tices and edges from snapshots 1 to k as an antecedent,
where vertices and edges have their last assigned labels
and timestamps of last changes relative to k. We can as-
sume that all vertices and edges from the first snapshot had
timestamps equal to 1. Similarly, use snapshots 1 to k+1
to create a consequent. Then we use the method for rule
transformation to create the k-th graph. All n− 1 graphs
can be computed in a single pass as we can update the i-th
graph to get the (i+1)-th one.

Union of all graphs from the beginning may contain ver-
tices and edges with very old changes that are not useful
for the predictive rules. We use a window parameter to re-
move such vertices and edges from the union graphs. As
edges cannot exist without their adjacent vertices, we do
not remove old vertices adjacent to edges that are not old.
Union graphs of the dynamic graph from Fig. 1 are shown
in Fig. 2. In this case, window size is not set.

4.2 Modified DFS Code

Now that we have the dynamic graph represented by union
graphs, which can be viewed as a set of static graphs, we
made a large step towards mining the graph rules. There
are, however, still several issues to be addressed.

Let us start with a richer representation of edges. In
Section 3, we showed that gSpan uses 5-tuples of the
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Figure 2: The union graph representation of the dynamic
graph and the rules from Fig. 1.

form (i, j, li, l(i, j), l j) to represent edges of patterns. In or-
der to incorporate relative timestamps of rules and orien-
tation of the edges, we simply extend these 5-tuples to
9-tuples of the form (i, j, li, ti,d(i, j), l(i, j), t(i, j), l j, t j). It is
the same as the original 5-tuple except for the new el-
ements. Specifically, ti, t j, t(i, j) are used for the rela-
tive timestamps of vertex i, vertex j, and the edge be-
tween i and j. Element d(i, j) represents the orientation
of the edge between i and j, and it is one of the fol-
lowing: ←, →, −. The last one is used for undirected
edges. Each pattern, i.e. graph rule in the condensed rep-
resentation, can be represented as a list of such 9-tuples.
Furthermore, it is easy to extend the gSpan’s DFS Code
for these 9-tuples and thus we can create ordering be-
tween patterns and find a minimum DFS Code for each
pattern. For example, suppose that we obtained the fol-
lowing order of vertex labels: A, +x, C=>D, A=>B, -x.
Then the minimum code of the Predictive Rule 1 from
Fig. 2 is (0,1,A,−1,→,+x,0,A => B,1),(0,2,A,−1,→,
+x,0,A => B,1),(0,3,A,−1,←,−x,1,C => D,1).

4.3 Time Abstraction

In order to be able to deal with a broader class of dynamic
graphs, we extended the mining algorithm to include two
time abstraction methods. By time abstraction we mean
usage of coarser timestamp values of union graphs in situ-
ations where exact values are not required or suitable.

The first method helps us to ignore timestamps of ver-
tices. Specifically, we apply the signum function to all
relative timestamps of vertices. Thus, negative times-
tamps become equal to −1 and positive timestamps be-
come equal to 1. This method is useful for dynamic graphs
in which all or almost all changes are caused by edges and
vertices remain more or less intact.

The second method also uses the signum function but
now it converts timestamps of both vertices and edges. It is
useful in situations where patterns in dynamic graphs are
very diverse and it is not possible to find many frequent
patterns with exact timestamps.

4.4 The Complete DGRMiner

In this section we provide remaining details and a de-
scription of the whole DGRMiner algorithm for predictive
graph rule mining. The pseudocode of DGRMiner is given
in Algorithm 3.

First, DGRMiner converts the input dynamic graph into
a set of union graphs as described in Section 4.1. In the
case of a set of dynamic graphs, the algorithm simply com-
putes union graphs for each one of them and then con-
catenates the results. It only needs to keep the mapping
of those union graphs into the original dynamic graphs in
order to be able to compute their support and confidence
correctly. Optional application of an abstraction method,
described in Section 4.3, follows next. Then the algorithm
removes infrequent vertices and edges but only those that
represent changes as the other ones may be used later for
confidence computation. When computing frequencies, it
takes labels, timestamps, and edge orientations into ac-
count. Before moving to single-edge patterns, DGRMiner
outputs frequent single-vertex patterns with high enough
confidence. To compute confidence, it needs to decode an-
tecedents of the patterns and then compute their support.
After that, the algorithm takes frequent initial edges and
sort them according to the extended version of the DFS
lexicographic order of gSpan. An initial edge is such an
edge that represents a change or at least one of its vertices
does.

Now for each initial edge we recursively call subproce-
dure DGR_Subgraph_Mining, which searches for patterns
growing from a given initial edge. This subprocedure, de-
scribed in Algorithm 4, uses several arguments. s denotes
the current pattern, which is represented by its DFS Code.
In D and A we keep union graphs in which current pattern
and its antecedent can be found. Finally, when growing
patterns from the i-th initial edge, we keep the first i ini-
tial edges in Estart . This last argument is used in function
min, which can be found in the first line of Algorithm 4.
The purpose of this function is to check whether the DFS
code of the given pattern is minimum, i.e. it was not found
earlier when traversing the search space. Because all pat-
terns grow only from the initial edges S1, it is enough to
check whether we cannot represent the current pattern by
a smaller DFS Code which starts by one of the edges in
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Algorithm 3 DGRMiner(DG)
1: convert the input dynamic graph(s) DG into the union

graph representation D;
2: optional: apply a time abstraction method on union

graphs;
3: remove infrequent vertices and edges;
4: output frequent change vertices with high enough con-

fidence;
5: S1← all frequent initial edges in D sorted in DFS lex-

icographic order;
6: for i← 1 to |S1| do
7: p← i-th edge from S1

8: p.D← graphs which contain p;
9: p.A← graphs which contain antecedent of p;

10: Estart ← first i edges from S1

11: DGR_Subgraph_Mining(p,p.D,p.A,Estart );

Algorithm 4 DGR_Subgraph_Mining(s,D,A,Estart )
1: if s 6= min(s,Estart) then
2: return;
3: enumerate s in each graph in D and count its children;
4: remove children of s which are infrequent;
5: enumerate antecedent of s in graphs given by A;
6: set s.A by graphs which contain antecedent of s;
7: con f ← confidence of s;
8: if con f ≥ con fmin then
9: output s;

10: sort remaining children in DFS lexicographic order;
11: for each child c do
12: DGR_Subgraph_Mining(c,c.D,s.A,Estart );

Estart . If we can find such a smaller code, then the pattern
must have been discovered earlier a thus we backtrack.

If the code is minimum, we continue by enumerating
the pattern in relevant graphs given by D and searching for
its children candidates. This step is similar to the one in
gSpan. Also, all infrequent children are removed. Before
saving the current pattern, we need to compute its confi-
dence. As we described in Section 4.1, we are able to ex-
tract the antecedent from the current pattern and then count
its occurrences. Set A represents a set of candidate graphs,
in which we should search for the antecedent occurrences.
The actual set of graphs containing the antecedent is then
saved to s.A, where s.A ⊆ A, and it used as the A set for
the pattern’s children.

Before recursive processing of the children of the cur-
rent pattern, we need to sort the children according to the
extended version of the DFS lexicographic order. Set c.D
was created when the pattern s was enumerated and its
children were counted.

5 Experiments

In this section we present results of experiments on three
datasets. All the experiments were conducted by a C++

Dataset Dynamic graphs Snapshots
ENRON 1 895
RESOLUTION 103 2911
SYNTH 1 101
SYNTH 20 20 2020

Table 1: Datasets used for experiments.

Rank Vertex label
Employee Emp
Vice President VP
Director Dir
President Pres
Manager Man
Trader Trad
CEO CEO
Managing Director Legal Department MDLP
In House Lawyer Law
Managing Director MD

Table 2: Ranks of employees in the Enron dataset and the
corresponding vertex labels.

implementation of DGRMiner on a PC equipped with
CPU Intel i5-4570, 3.2GHz, 16GB of main memory, and
running 64-bit version of Windows 8.1. For all exper-
iments, we set con fmin = 0 and window size for union
graphs equal to 10.

5.1 Enron

The first dataset used in experiments is based on the email
correspondence in the Enron company [3]. For our ex-
periments we used preprocessed version of this email traf-
fic [10]. Specifically, we used the data containing informa-
tion about time, sender, receiver, and LDC topic. From the
set of senders and receivers we created vertices of our dy-
namic graph. These vertices do not change through time.
Each email message sent between a sender and a receiver
is represented by addition of a directed edge in the dy-
namic graph. If the graph already contains the same edge,
we just update its time of addition. Snapshots of the dy-
namic graph corresponds to days. As there were messages
with anomalous dates, we removed all messages sent be-
fore 1998 and got 894 days of activity. With one extra
day for vertex initialization we got 895 snapshots, as can
be seen in Table 1. We used LDC topics as edge labels.
There are 32 regular LDC topics expressing the topics of
the messages plus two special topics used to label outlier
messages and messages with non-matching topic. We also
used rank of employees [10] to label vertices. Vertices
with unknown rank were removed from the graph and thus
only 130 vertices remained. Ranks and corresponding la-
bels are available in Table 2.

Results on ENRON with σmin = 0.1 can be found in the
first row in Table 3. We decided to apply the time abstrac-
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Dataset Union Union σmin con fmin
Time abstraction 1-vertex All Running

vertices edges vertices all rules rules time (sec)
ENRON 46290 182720 0.10 0 X × 0 187 24.6
ENRON DEL 47612 196653 0.10 0 X × 0 233 29.3
RESOLUTION 15966 5275 0.05 0 × × 26 36 0.3
RESOLUTION 15966 5275 0.05 0 × X 17 321 3.4
SYNTH 1124 2404 0.10 0 × X 6 82 0.3
SYNTH 20 31455 52112 0.10 0 × × 121 1604 50.9

Table 3: Results of experiments. Number of union vertices and edges is taken over all union graphs of the given dataset.
1-vertex rules are rules whose union graph consists of only one vertex. Running time is averaged over five runs. For all
experiments we set window of size 10 when building union graphs.

tion method for vertices because they are only added in the
first snapshot and never changed. We found 187 frequent
rules, none of which was a single-vertex rule.

We also modified the previous dataset by deleting edges
which were not updated immediately the next day. This
modified dataset is named ENRON DEL in Table 3. The
change allows us to capture patterns which could not be
captured only by edge additions. Examples of two rules
from this dataset are shown in Fig. 3.

5.2 Resolution Proofs in Propositional Logic

We used the set of graphs representing resolutions in
propositional logic from [11] as the second dataset. Ver-
tices of these graphs contain lists of literals in proposi-
tional logic. All edges are directed and have the same la-
bel in these graphs. These dynamic graphs are evolving
by vertex and edge addition or deletion, and by change of
vertex labels. Time of these events was transformed into a
discrete sequence. Because there were 19 different assign-
ments in total, the dynamic graphs had quite distinct vertex
labels. In order to find frequent patterns, we restricted the
dataset to only one assignment. Specifically, we took the
assignment with the greatest number of solutions. This set
of graphs contained 103 dynamic graphs with 2911 snap-
shots in total, see RESOLUTION dataset in Table 1. The
initial snapshot of each dynamic graph in an empty graph.
For more details about this data refer to [11].

We conducted two experiments on this dataset, both
with σmin = 0.05 as there were not many frequent patterns.
One with no time abstraction, and one with time abstrac-
tion of both vertices and edges. From Table 3 we can see
that the time abstraction helped us to find ten times more
frequent rules for the same value of the minimum support.
Furthermore, most of the rules were 1-vertex rules when
the abstraction was not applied. Such rules capture vertex
additions, deletions and relabelings without any context
and may not be very informative.

5.3 Synthetic Datasets

Besides real-world data, we also tested our method on a
synthetic datasets. One of this dataset, SYNTH in Ta-
ble 1, was generated in the following way. First, a graph

Figure 3: Examples of two rules from ENRON DEL.

with 10 vertices and 20 randomly assigned edges was cre-
ated. Then we iteratively built 100 snapshots, each snap-
shot from the previous one by randomly chosen changes.
The number of changes ranged uniformly 0–1 for vertex
deletion, 0–1 for edge deletion, 0–1 for vertex addition, 0–
3 for edge addition, 0–2 for vertex label change, and 0–2
for edge label change. All newly selected vertex (edge)
labels were chosen from a uniform distribution over set
{A,B} ({y,z}). Each new snapshot had to be different from
the previous one. In order to keep approximately the same
number of vertices (edges) through time, additions or dele-
tions of vertices (edges) were suspended if the number of
vertices (edges) was not in the [k/2,2k] interval, where k
= 10 (and k = 20 for edges). The second dataset, SYNTH
20, was created from 20 dynamic graphs, each one of them
built by the process just described.

For SYNTH and σmin = 0.1, the time abstraction of both
vertices and edges was applied because there were almost
no frequent patterns without the abstraction. On the other
hand, experiments on SYNTH 20 with 20 dynamic graphs
did not require any time abstraction and approximately
1600 frequent rules were found for the same value of the
minimum support. This suggests that the support defini-
tion for a single dynamic graph is stricter than the one for
a set of graphs.

6 Related Work

Several algorithms have been proposed for graph rule min-
ing. However, a lot of these algorithms are expecting
that the only changes in a dynamic graph are caused by
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edge additions, or by vertex additions if the vertices be-
long to the edges being added. These algorithms include
GERM [1], LFR-Miner [7], and the algorithms presented
in [5, 9]. These algorithms also pose various restrictions
on the form of the rule graphs.

The work most related to ours is probably the algorithm
for mining interesting patterns and rules proposed in [8].
This algorithm allows multiedges and also performs sim-
ilar time abstraction, however, it also supposes that labels
do not change and rules express only edge addition. More-
over, antecedents of the rules have to be connected. This
is a stricter requirement than the one given by our algo-
rithm, which requires only the union graphs of rules to be
connected.

Predictive graph rules can be also seen as subgraph se-
quences of length two. Mining of subgraph subsequences
from a set of graph sequences (dynamic graphs) is con-
sidered in [4], where algorithm FRISSMiner is proposed.
This algorithm also works with union graphs, however, it
builds the union graph from the whole sequence, i.e. the
whole dynamic graph. FRISSMiner allows all types of
changes in the input graph sequences but the subgraph se-
quences are not required to include the changes and thus
user would still need to search for patterns representing
changes in graphs. In addition, the algorithm is not de-
signed for a single-dynamic-graph scenario.

Dynamic GREW [2] and the algorithm from [12] mine
also patterns capturing information from several snap-
shots. They assume that the input dynamic graph has a
fixed set of vertices, and edges are inserted and deleted
over time, which makes them quite restricted.

Except for FRISSMiner, the algorithms presented in this
section are designed only for the single-dynamic-graph
scenario. On the contrary, FRISSMiner is designed only
for the set-of-dynamic-graphs scenario.

Experimental comparison of the above algorithms with
DGRMiner is difficult due to the fact that each algorithm
mines different type of patterns. Also, different definitions
of support and confidence affect which patterns are fre-
quent. For example, GERM computes absolute support
and counts multiple occurrences of a pattern in a snapshot.
On the other hand, DGRMiner computes support of a pat-
tern as a fraction of snapshots containing at least one oc-
currence of the pattern. Another difficulty arises from the
fact that implementations of the algorithms, with the ex-
ception of GERM, are not freely available for download.
Lastly, the datasets used for experimental evaluation of the
above algorithms are often either not available or it is not
possible to reproduce the same data.

7 Conclusion

We proposed a new algorithm DGRMiner for mining fre-
quent predictive graph rules from both single dynamic
graphs and sets of dynamic graphs. This algorithm is able
to capture various changes in dynamic graphs. Edges in

dynamic graphs are allowed to be directed or undirected
multiedges. DGRMiner uses support and confidence as
significance measures of the rules. Such graph rules are
useful for prediction in dynamic graphs, they can be used
as pattern features representing dynamic graphs or sim-
ply for gaining an insight into internal processes of the
graphs. We evaluated the algorithm on two real-world and
two synthetic datasets.

As future work, we plan to further investigate time ab-
straction methods and other ways of support computation.
We also intend to modify the method for mining frequent
closed patterns.
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