
Ontology Repair Through Partial Meet Contraction

Raphael Cóbe, Renata Wassermann
University of São Paulo

São Paulo, Brazil
{rmcobe,renata}@ime.usp.br

Abstract
The process of building an ontology, be it from
scratch or through reuse and combination of other
ontologies, is known to be susceptible to modeling
errors. Ontology debugging and repair techniques
have attracted attention in the last decade due to the
popularization of the use of ontologies written in
OWL. Belief Change deals with the problem of re-
moving or adding new information to a knowledge
base in a consistent way. In this paper, we look at
the belief change operation known as partial meet
contraction as a construction for ontology repair.
We propose heuristics to improve the performance
of such operation and compare them to an existing
implementation and approaches based on finding
minimal justifications or explanations by means of
experiments with automatically generated ontolo-
gies and real world ontologies from the BioPortal.

1 Introduction
The ontology building task is a non trivial, error prone task
which has, mostly, to be carried out by experts on the domain
being modeled. Most ontology editors offer a connection to
a reasoner in order to test for conflicts. The nature of such
conflicts can be a logical one, where the resulting ontology is
considered inconsistent or incoherent (i.e. the interpretation
of some concept is necessarily empty), or even an unwanted
entailment that should not be valid.

The problem we address in this paper is that of going one
step further and actually providing the ontology developer so-
lutions for the unwanted behavior, guaranteeing that the re-
sulting ontology is safe, i.e., free of conflicts.

In this paper, we propose the use of belief base contraction
to debug and repair ontologies. Belief change [Alchourron et
al., 1985; Hansson, 1999] is the area of knowledge represen-
tation that deals with adding or removing information from a
knowledge base. These changes are often non-trivial, as one
wants to preserve logical consistency. There are typically two
constructions used in the belief change literature: one based
on finding minimal conflict sets and deleting at least one for-
mula from each, and one based on finding maximal conflict-
free sets. The first construction is called kernel contraction
and the second one is known as partial meet contraction.

There have been several proposals to apply belief change
operators to description logics [Flouris, 2006; Ribeiro, 2013]
as well as implementations for ontology repair [Haase et al.,
2005; Kalyanpur, 2006; Schlobach et al., 2007; Qi et al.,
2008; Horridge, 2011]. Virtually all implemented solutions
are based on the idea of kernel construction, i.e., finding min-
imal conflicting sets. However, in order to solve a conflict,
one needs to compute all kernels and then remove at least
one element of each, while in the partial meet approach, if
there are not enough resources available, computing a single
maximal conflict-free set is enough. The selection of a sin-
gle maximal subset is known as maxichoice and although it
presents some incompatibilities with the AGM theory, it is
not a problem to use such approach in the context of belief
bases.

We focus specifically on partial meet contraction, in which
we build maximally conflict-free sub-ontologies in a direct
manner. We propose optimizations for the operators de-
scribed in the literature and test their effectiveness on real
world data gathered from the BioPortal repository1.

The paper proceeds as follows: in the next Section, we
present the operations for belief contraction and related work
on applying belief change to ontologies. In Section 3, we
present the algorithms and heuristics for the construction of
the Remainder Set. In Section 4, we describe the experiments
comparing our approach to the existing ones and in Section 5
we present our conclusions and discuss future work.

2 Belief Base Contraction
The operation of removing information from a knowledge
base is called contraction and there are two main forms of
doing so, Kernel contraction and Partial Meet contraction.
We start by introducing the operations as they were originally
described in the literature. A belief base is a set of formulas
in a given logic.

The first operation works by constructing a set of mini-
mal conflict preserving sub-bases, called Kernel Set, and then
removing the least preferred (according to some preference
order) sentences of each of the sub-bases. The operation of
ranking axioms and selecting the least preferred one is called
Incision Function. These concepts are formally described in
Definitions 1 and 2 respectively. Both concepts are used in

1http://bioportal.bioontology.org/

order to formulate the operation for Kernel contraction pre-
sented in Definition 3.

Definition 1 (Kernel Set) [Hansson, 1994] Let B be a belief
base and α a sentence. A set B′ is an element of B |= α iff
B′ is a minimal subset of B such that B′ |= α:
• B′ ⊆ B
• B′ |= α

• If B′′ ⊂ B′ ⊆ B, then B′′ 6|= α (minimality)

Definition 2 (Incision Function) [Hansson, 1994] Let B be a
belief base. For any sentence α, an incision function for B is
a function σ such that:
• σ(B |= α) ⊆

⋃
(B |= α) and

• if ∅ 6= X ∈ B |= α then X ∩ σ(B |= α) 6= ∅
Definition 3 (Kernel Contraction) [Hansson, 1994] Let B be
a belief base. For any sentence α and incision function σ, the
kernel contraction of B by α is given by:
• B −σ α = B \ σ(B |= α)

Partial Meet contraction works by building maximal
conflict-free subsets directly. The set of all possible maximal
conflict-free subset is called Remainder Set. The number of
elements in the Remainder Set can be possibly large, thus we
need to select which ones suit best our needs. The operation
of selecting the best elements from the remainder is called
Selection Function. Both concepts are formally described in
Definition 4 and 5, respectively. Definition 6 shows how these
two concepts are used to build a Partial Meet contraction op-
erator.

Definition 4 (Remainder Set) [Alchourron et al., 1985] Let
B be a belief base and α a sentence. A set B′ is an element
of the remainder B⊥α if and only if it is a maximal subset of
B that does not imply α:
• B’ is a subset of B (B′ ⊆ B)

• B′ 6|= α

• If B′ ⊂ B′′ ⊆ B, then B′′ ` α
Definition 5 (Selection Function) [Alchourron et al., 1985]
Let L be a language and B a belief base of this language.
For any sentence α, a selection function for B is a function γ
such that, for any sentence α ∈ L:
• γ(B⊥α) ⊆ B⊥α
• if B⊥α 6= ∅, then γ(B⊥α) 6= ∅
• if B⊥α = ∅, γ(B⊥α) = {B}

Definition 6 (Partial Meet Contraction) [Alchourron et al.,
1985] Let B be a belief base, α a sentence and γ a selection
function. The partial meet contraction of B by α is given by:
• B −γ α =

⋂
γ(B⊥α)

Partial meet contraction is the most well-known construc-
tion for belief contraction. When Hansson introduced ker-
nel base contraction in [Hansson, 1994], it was seen as a
solution much closer to work in artificial intelligence, such
as Truth Maintenance Systems [Doyle, 1979] and Model
Based Diagnosis [Reiter, 1987; Wassermann, 2000] and it

seemed much more amenable to implementation than par-
tial meet contraction. Maybe for this reason, most tools
for ontology debugging use something similar to kernels.
Schlobach and Cornet [Schlobach and Cornet, 2003] call the
minimal inconsistent subsets of an ontology MUPS (Min-
imal Unsatisfiability-Preserving Sub-terminologies) and the
minimal incoherent subsets of an ontology MIPS (Minimal
Incoherence-Preserving Sub-terminologies). They present an
algorithm for computing all the minimal subsets of a given
knowledge base that have a given consequence, which are
called MinAs (Minimal Axiom set) in [Baader et al., 2007]
and served as the basis for Horridge’s Justifications [Hor-
ridge, 2011].

Operators for building kernel elements for ontologies are
largely described at the literature, for instance in [Kalyanpur,
2006; Suntisrivaraporn et al., 2008; Kalyanpur et al., 2007;
Ji et al., 2009; Horridge, 2011]. Several optimizations
have also been proposed, like the Sliding Window technique
[Kalyanpur, 2006] or the Divide and Conquer technique
[Junker, 2001] or the Syntactic Relevance [Ji et al., 2009;
Huang et al., 2005]. They all aim to reduce the number of
calls to the reasoner mechanism and also to reduce the overall
execution time. As we can see, the kernel building challenge
is a problem highly studied on the literature.

On the other hand, Partial Meet contraction has not been
given the same amount of attention. It has been mentioned in
[Wassermann, 2000] and [Nyssen, 2009] that the Remainder
Set can be obtained from the Kernel Set using Reiter’s hit-
ting sets algorithm [Reiter, 1987]. However, it is not easy to
find works that implement a Partial Meet contraction directly.
In [Resina et al., 2014], the authors describe a procedure to
build the Remainder Set, which was used as a baseline for the
comparison of the heuristics we proposed.

3 Construction of the Remainder Set
The approach used to build a Remainder Set element is simi-
lar to the one used to build a Kernel Set element. For the Ker-
nel, most algorithms are described in the form of an expand-
shrink algorithm. The idea is to start from the empty set and
add formulas to it until the conflict appears - the expand phase
- and then, as the set may not be minimal, remove any for-
mulas whose removal does not solve the conflict - the shrink
phase.

In the case of the Remainder Set elements we use a shrink-
expand algorithm [Ribeiro, 2013], that first removes axioms
until the conflict no longer exists, then tries to add back the
removed axioms in order to guarantee maximality. The basic
algorithm for building a Remainder can be seen in Listing
1, where O is the ontology for which we want to find the
Remainder Set and ϕ is the formula to be contracted, i.e., the
algorithm returns an element of O⊥ϕ.

Listing 1: Black-Box Algorithm for building a single element
of the remainder
Black-box-remainder(O, ϕ):
#Shrink first
removed_elements← O
remainder_element← ∅
#Now Expand

for each α ∈ removed_elements do
if(remainder_element ∪ {α} 6|= ϕ) then
remainder_element ←

remainder_element ∪ {α}
return remainder_element

The algorithm presented in Listing 1 was proposed by
Resina et al. in [Resina et al., 2014]. The author bypasses
the shrink phase by removing all the axioms from O at once
(trivial shrinking) and passes to the expand, which is done it-
eratively. A small variation of this algorithm would use an
iterative strategy for both the expansion and the shrink phase.
In the rest of this Section, we will describe a set of heuristics
that we developed with the goal of optimizing the execution
of the classical algorithm. The heuristics here proposed are
inspired by the ones used to optimize the classical black-box
algorithm for building kernel elements and are grouped ac-
cording to the phase in which they are used.

3.1 Optimizations for the Shrink Phase
The first heuristics we propose follows the same principle of
the Sliding Window proposed by Kalyanpur in [Kalyanpur et
al., 2005]. The idea is that we can optimize the shrink phase if
we, at each interaction remove more than one axiom at a time.
If the removed axiom set fixes the ontology conflict, then we
can move on to the expand phase and try to re-add the re-
moved axioms one by one. The algorithm for such heuristics
can be seen in Listing 2.

Listing 2: Sliding Window Algorithm for Remainder
Sliding_Window(O,ϕ, window_size):
remainder_set ← ∅
window_start ← 1
window_end ← window_size
Olist ← O
while window_start <= |Olist| do
Osublist ←

Olist.subList(window_start,window_end)
remainder_set ← remainder_set ∪ Osublist

if remainder_set |= ϕ then
remainder_set ← remainder_set\Osublist

window_start ← window_start+1
else
window_start ← window_start+window_size

window_end ← window_start+window_size
if window_end > |Olist| then
window_end ← |Olist|

return remainder_set

Example 1 shows how the proposed heuristics works. No-
tice that this heuristics, as well as most of the algorithms in
the literature, assume that the formulas are presented as a list,
and therefore, ordered. In this work, as in [Horridge, 2011],
we are not presuming any particular ordering, although we
know that it affects the performance of the algorithms.
Example 1 Consider the ontology O = {A v B,B v
D,A v E,E v F} |= A v D nd feed it to the algorithm in
Listing 2.

The algorithm then positions the window over the first ax-
iom we would get:

O = { A v B,B v D,A v E ,E v F}

The sub-ontology resulting from removing the axioms in-
side the sliding window can still entail A v D, thus we have
to slide the window to its next position, resulting in:

O = {A v B, B v D,A v E,E v F }

Now, after removing the axioms inside the window we re-
move the unwanted entailmentA v D. The algorithm returns
the subset removing the axioms within the sliding window.

The next heuristics we propose is to start the shrinking first
removing the axioms that share concepts in their signatures
with the axiom causing the conflict. Listing 3 shows the al-
gorithm that implements such heuristics. The algorithm relies
on the function Signature that returns a set of all Classes
used on the axiom.

Listing 3: Syntactic Conectedness based algorithm
Syntatic_Relevance_Black-box(O,ϕ):
removed_elements← ∅
#Shrink
ϕsig← Signature(ϕ)
for each α ∈ O do

if ϕsig ∩ Signature(α) <> ∅ then
removed_elements ← removed_elements∪{α}

if O\ removed_elements |= ϕ
#Perform Trivial Shrink
removed_elements← O

#Expand ...

3.2 Optimizations for the Expand Phase
The heuristics that we propose for the expansion phase is
based on the idea from Junker in [Junker, 2001]. The author
proposes to use a divide and conquer based strategy to build
explanations (kernel elements) for a given entailment. This
is the same heuristics used by the Protégé OWLExplanation
plugin.2

Our version uses the same idea, with a slight modification
in the way we divide the input. In [Junker, 2001], the author
divides the input in quarters and tries to combine such quar-
ters hoping to obtain a conflicting subset, then the routine is
executed recursively. In our case, we try to build the largest
conflict-free subset, thus we only divide the input in halves
and check whether any half is conflict free, then we apply the
routine recursively on the remaining elements.

The algorithm for this heuristics can be seen in Listing 4.

Listing 4: Divide and Conquer based algorithm
Divide_and_Conquer_Remainder(Olist,ϕ, Osafe):
if |Olist| = 1 then

if Olist ∪ Osafe 6|= ϕ then
return Olist ∪ Osafe

else
return Osafe

middle ← 1+|Olist|/2
Osublist ← Olist.sublist(1,middle)
if(Osublist ∪ Osafe 6|= ϕ) then
Osafe ← Osafe ∪ Osublist

2https://github.com/matthewhorridge/
owlexplanation

https://github.com/matthewhorridge/owlexplanation
https://github.com/matthewhorridge/owlexplanation

return Divide_and_Conquer_Remainder(
Olist\Osublist,ϕ,Osafe)

else
Osublist ← Olist.sublist(middle,|Olist|)
if(Osublist ∪ Osafe 6|= ϕ) then
Osafe ← Osafe ∪ Osublist

return Divide_and_Conquer_Remainder(
Olist\Osublist,ϕ,Osafe)

else
Osublist ← Olist.sublist(1,middle)
Osafe ← Osafe ∪
Divide_and_Conquer_Remainder(Osublist,
ϕ,Osafe)

Osublist ← Olist.sublist(middle,|Olist|)
return Divide_and_Conquer_Remainder(

Osublist,ϕ,Osafe)

Example 2 illustrates the execution of the algorithm.

Example 2 Consider the ontology O = {A v B,B v
D,A v F, F v D} and suppose that the entailment ϕ =
A v D is conflicting with the purposes for which your ontol-
ogy is being built.

The first interaction of the algorithm would divide O into
O1 = {A v B,B v D} and O2 = {A v F , F v D}, then
we need to check if any of the sub-ontologies is conflict free.
It is the case for O2, thus a recursive call is done using the
rest as input, i.e., O1.

The input O1 is then divided in O11 = {A v B}, from
which we cannot infer A v D. This is the very base case of
the recursion (the base cannot be divided any further) so the
algorithm tries to add it to the safe knowledge base O2 and
the result is still safe, so a recursive call is done on the other
half, i.e., O12 = {B v D}, as input. Again we reach the
base case for our recursion, only this time we cannot add it
because such an action would make the conflicting entailment
valid again.

4 Experiments
We developed a series of software experiments to check the
performance of the algorithms and heuristics that we pro-
posed. These components were developed using the Java pro-
gramming language and are available as a free/open source
software at (https://github.com/raphaelmcobe/
ontology-debug-and-repair). We used two datasets
for our experiments. The first was automatically generated
and the second used the data available at the BioPortal.

The idea behind these experiments was to verify if there
was any case - even an artificially generated one - in which
building the Remainder Set could be easier than building the
Kernel Set. Thus, we were not concerned with the quality of
the remainder element built since it has been shown in [Booth
et al., 2011] that it is always possible to derive the remainder
set from the kernel set.

If we managed to find such input, we would like to verify
if such cases could be found in real world ontologies. This
would serve both as a redeemer of the partial meet construc-
tion in the Artificial Intelligence community and as evidence
for building efficient ontology repair tools.

4.1 Experiment Design
The experiment aimed to prove three hypotheses:
H1: the heuristics proposed have a positive impact on the

performance of the Remainder Set finding algorithm.
We prove this hypothesis by measuring the overall im-
pact on the execution time as well as the number of rea-
soner calls.

H2: there are cases at which building a single element of the
Remainder Set is at least as efficient as building a single
element of the Kernel Set. This hypothesis is proved if
we are able to find cases at which building a remainder
element is faster or makes less calls to the reasoner than
building a kernel element.

H3: there are cases at which it is easier to build a remainder
element than building the whole Kernel Set. We verify
with this hypothesis that that even if we are not able to
build a remainder element as fast as a kernel element
it may be the case that building the whole Kernel Set
takes longer or makes more calls to the reasoner than
building a single remainder element. This is still a good
result because building the Kernel Set is just the first step
towards fixing the conflicts. The user will still have to
use an incision function to order and remove the less
preferred axioms of each kernel element. In this case
we were not concerned with the quality of the remainder
element built.

For our experiment we chose to collect two metrics: Rea-
soner calls, and Overall execution time. We tested the fol-
lowing combination of heuristics for the remainder element
building:

R1: Syntactic Connectedness based Shrinking and Iterative
Expansion;

R2: Syntactic Connectedness based Shrinking and Divide
and Conquer based Expansion;

R3: Trivial Shrinking (removal of all ontology axioms) and
Divide and Conquer based Expansion;

R4: Trivial Shrinking and Iterative Expansion;
R5: Sliding Window Shrinking and Iterative Expansion;
R6: Iterative Shrinking and Iterative Expansion.

For the kernel element building we used the combination
of Syntactic Connectedness based Expansion and Divide and
Conquer based Shrinking. This combination is the same used
by Horridge in [Horridge, 2011] and in the OWLExplanation
plugin, which is considered state of art implementation for
building justifications (Kernel Sets). The author argued that
such heuristics presented better performance. For other opti-
mizations refer to [Horridge, 2011]. The plugin was used in
the experiments described in Section 4.3 where we build the
whole Kernel Set.

The algorithms presented on this paper were implemented
using the Java Language (Oracle JVM v. 1.7.0 51) and the
tests were executed on a Linux machine running Ubuntu
13.10 (Kernel 3.11.0-19-generic) with an Intel 12 core CPU
(XEON X5660) and 32 GB of RAM. The java VM was fed
with the parameters: -Xms 2048m -Xmx16384m. Each

https://github.com/raphaelmcobe/ontology-debug-and-repair
https://github.com/raphaelmcobe/ontology-debug-and-repair

test had a timeout, arbitrarily defined of 45 seconds for the
tests with generated data and 330 seconds for each entail-
ment tested at the BioPortal ontologies. The version of the
OWLExplanation plugin used was 1.0.3, checked out from
its github repository on October 14th, 2014.

4.2 Generated Data
The generated data used to test our hypotheses follows Defi-
nition 7.
Definition 7 [Resina et al., 2014] A Large Kernel and Small
Remainder Ontology is built using the template:

O =

(B tB′)(a)

B tB′ v B1, B tB′ v B′1,
B1 tB′1 v B2, B1 tB′1 v B′2,

...
Bn−1 tB′n−1 v Bn, Bn−1 tB′n−1 v B′n

It is interesting to notice that if we build the Kernel Set K

and the Remainder Set R for the entailment (Bn t B′n)(a)
in O we notice that |K| = 2n and |R| = n + 1. Example 3
shows how Definition 7 can be used to generate an ontology.

Example 3 If we build the ontologyO using the template de-
scribed at the Definition 7 and calculate the kernel K and
remainder R sets, considering n = 2 and the entailment
O |= (B2 tB′2)(a) we would get:

K =

{(B tB′)(a), B tB′ v B1, B1 tB′1 v B2},
{(B tB′)(a), B tB′ v B′1, B1 tB′1 v B2},
{(B tB′)(a), B tB′ v B1, B1 tB′1 v B′2},
{(B tB′)(a), B tB′ v B′1, B1 tB′1 v B′2}

R =

{ O \ {(B tB′)(a)},
O \ {B tB′ v B1},
O \ {B tB′ v B′1}

}
Figures 1 and 2 sumarize the comparison between opera-

tors for building a kernel and a remainder element. We chose
the best results among the heuristics combinations for build-
ing remainder elements. In the case of the remainder building
algorithm we selected the two best results: the one using the
Syntactic Connectedness for the shrinking and iterative ex-
pansion and the Divide and Conquer for expansion and Triv-
ial shrinking. We also plotted the results of the baseline algo-
rithm for building a remainder element, proposed by Resina
et al. [Resina et al., 2014], which uses the trivial shrink and
iterative expansion combination.

We can see that the operators for building a remainder ele-
ment had a better performance for both algorithms in the case
of reasoner calls. The same could be observed during the
time analysis. In this case, we observed a better performance
by the remainder building algorithm that used syntactic con-
nectedness, followed by the kernel building algorithm and the
worst result was the remainder building algorithm that used
Divide and Conquer.

We can see from the Figures that we were able to prove all
of our hypotheses, we were able to introduce heuristics that
resulted in better performance than what is described at the
literature (H1). Our results also showed that, for this kind

Figure 1: Comparison between algorithm for building a ker-
nel and remainder element (Reasoner calls)

of input, building a remainder element is easier - in terms
of reasoner calls and overall execution time - than building a
kernel element (H2 and H3).

We were able to find a template for constructing an on-
tology for which building a remainder element is easier than
building a kernel element. We went a step further and tried to
find real world ontologies at which that is also the case.

During the development of our study we also evaluated ex-
periments using ontologies with small Kernel Sets and large
Remainder Sets. Such dataset only confirmed the intuition
that building a kernel element has better performance than
building a remainder element.

Figure 2: Comparison between algorithm for building a ker-
nel and remainder element (Execution time)

4.3 BioPortal Data
We have conducted an experiment using the data available
at the BioPortal repository, maintained by the National Cen-
ter for Biomedical Ontology - NCBO. The same dataset was

used by Horridge at [Horridge, 2011]. The expressivity of the
ontologies collected vary from EL to SHROIQ.

During the data selection procedure, Horridge filtered only
ontologies that were described using SHROIQ or a less ex-
pressive language. Then he filtered ontologies that were writ-
ten in OWL and OBO since standard tools could be used to
manipulate them. After selecting the files, Horridge enumer-
ated all non-trivial entailments, which are axioms entailed by
the reasoner that were not explicitly defined. The resulting
dataset had 72 ontologies.

We selected 51 of the 72 ontologies to test our algorithms.
We chose the ontologies that had 1 MB or less, since our ex-
periments were not yet optimized and do not scale. The total
amount of tested entailments was 3812.

We gathered data regarding the overall execution time and
reasoner calls and only compared the execution of the algo-
rithm for finding a remainder element and the whole kernel,
provided by the OWLExplanation plugin.

During the experiment we used the same heuristics com-
bination from the experiment with generated data for the re-
mainder element building algorithm. For the comparison, we
tested the state of art kernel finding software, which is dis-
tributed with the Protégé3 editor.

Each ontology had its own set of accompanying entail-
ments to be tested and in Table 1 we show the percentage
in which the algorithm behaved better, i.e., the percentage of
entailments for which the operator had the best performance.

For the case of the reasoner calls test we observed that,
within the defined timeout, 19 ontologies had better perfor-
mance on building a single remainder element compared to
building the whole Kernel Set. That represents approximately
40% of the ontologies. This result helped us prove our third
hypothesis (H3) with real world data at least comparing the
number of reasoner calls. Also, in all cases, the heuristics that
we proposed had better performance than the baseline algo-
rithm for building a remainer element by Resina et al. [Resina
et al., 2014], with exception of the Sliding Window heuristic,
that had worse performance than the algorithm from Resina
et al. [Resina et al., 2014]. We believe that this is the case
because we have to better calibrate the sliding window size
before running the experiments. We used 10 as the window
size. This size was the same reported by Kalyanpur [Kalyan-
pur, 2006] as being the best for the kernel element building
algorithm based on sliding windows. This result goes on the
direction of proving our first hypothesis (H1) also with real
world data.

Table 1 summarizes the data collected at our experiment
regarding the number of reasoner calls.

The results comparing execution time were not as good as
the number of reasoner calls. The numbers for this experi-
ment are presented on Table 1.

5 Final Remarks
In this paper we presented new algorithms for building re-
mainder elements. We conducted experiments in order to
prove that in some (real) cases it is easier to build a remainder
element than the whole kernel. We believe that building the

3http://protege.stanford.edu/

Operator Total
RC % - RC Total

Time % - Time

R1 1517 39.80% 94 2.47%
R2 22 0.58% 1 0.03%
R3 51 1.34% 41 1.08%
R4 2 0.05% 2 0.05%
R5 1 0.03% 1 0.03%
R6 5 0.13% 2 0.05%
OWLExplanation

Plugin 1970 51.58% 3427 89.90%

Table 1: Total number of entailments and percentages at
which each algorithm presented better performance results:
reasoner calls - RC, and execution time - time

whole kernel can be used as a fine-grained debugging strategy
and although it is the case that it is easier to build the Kernel
Set in general, the user may still have to define an incision
function in order to fix the ontology. Such function might
cause an overhead. We were not specially concerned with the
remainder element quality. Still, the Syntactic Connected-
ness heuristics can build remainder elements discarding the
axioms syntactically connected to the unwanted entailment
first, which can be a desired property at the ontology repair.

We tested our heuristics using real and automatically gen-
erated data. We have found real world cases that proved that
it is not the case that it is always easier to build the Kernel Set
than building a remainder element. Still, further investigation
is needed in order to check how often these cases appear in
larger data sets.

During our experiment we observed a few interesting
cases (6.4% of the entailments), where the kernel algorithm
could not terminate within the allocated time: ontology
semanticscience-integrated-ontology (3 entailments), imgt-
ontology (25 entailments), biotop (4 entailments), amino-acid
(3 entailments), and adverse-event-reporting-ontology (1 en-
tailment).

In ontology imgt-ontology, the Syntactic Connectedness
heuristics did not present the best performance results. In
this case, the trivial shrinking proved to be a better option in
3 entailments checked.

For the future, we intend to test our algorithms with a larger
dataset of real world ontologies and implement a Protégé plu-
gin for debugging based on remainder elements. We also
plan to check the algorithms behaviour after introducing the
idea of ontology modules. In that way, we could isolate sub-
ontologies, preferring a sub-set of axioms over another, thus
building remainder elements more suitable for the ontology
designer needs.

References
[Alchourron et al., 1985] C.E. Alchourron, P. Gärdenfors,

and D. Makinson. On the Logic of Theory Change: Partial
Meet Contraction and Revision Functions. The Journal of
Symbolic Logic, 50(2):510–530, 1985.

[Baader et al., 2007] Franz Baader, Rafael Peñaloza, and
Boontawee Suntisrivaraporn. Pinpointing in the descrip-

tion logic EL. In Proceedings of the International Work-
shop on Description Logics (DL), 2007.

[Booth et al., 2011] Richard Booth, Thomas Meyer, Ivan
Varzinczak, and Renata Wassermann. On the link between
partial meet, kernel, and infra contraction and its applica-
tion to horn logic. J. Artif. Int. Res., 42(1):31–53, Septem-
ber 2011.

[Doyle, 1979] Jon Doyle. A truth maintenance system. Arti-
ficial Intelligence Journal, 12(3):231–272, 1979.

[Flouris, 2006] Giorgos Flouris. On Belief Change and On-
tology Evolution. PhD thesis, University of Crete, 2006.

[Haase et al., 2005] P. Haase, F. van Harmelen, Zh. Huang,
H. Stuckenschmidt, and Y. Sure. A framework for han-
dling inconsistency in changing ontologies. In Proceed-
ings of the Fourth Internation Semantic Web Conference,
volume 3729 of LNCS, pages 353–367. Springer, 2005.

[Hansson, 1994] Sven Ove Hansson. Kernel contraction.
The Journal of Symbolic Logic, 59(03):845–859, 1994.

[Hansson, 1999] Sven Ove Hansson. A Textbook of Belief
Dynamics. Kluwer Academic Press, 1999.

[Horridge, 2011] Matthew Horridge. Justification based ex-
planation in ontologies. PhD thesis, the University of
Manchester, 2011.

[Huang et al., 2005] Zhisheng Huang, Frank van Harmelen,
and Annette ten Teije. Reasoning with inconsistent ontolo-
gies. In IJCAI-05, Proceedings of the Nineteenth Inter-
national Joint Conference on Artificial Intelligence, Edin-
burgh, Scotland, UK, July 30-August 5, 2005, pages 454–
459, 2005.

[Ji et al., 2009] Qiu Ji, Guilin Qi, and Peter Haase. A
relevance-directed algorithm for finding justifications of dl
entailments. In Asuncin Gmez-Prez, Yong Yu, and Ying
Ding, editors, The Semantic Web, volume 5926 of Lec-
ture Notes in Computer Science, pages 306–320. Springer
Berlin Heidelberg, 2009.

[Junker, 2001] Ulrich Junker. QUICKXPLAIN: Conflict de-
tection for arbitrary constraint propagation algorithms. In
Proceedings of the IJCAI Workshop on Modelling and
Solving Problems with Constraints (IJCAI’01). Morgan
Kaufmann, 2001.

[Kalyanpur et al., 2005] Aditya Kalyanpur, Bijan Parsia, and
James Hendler. A tool for working with web ontologies.
International Journal on Semantic Web and Information
Systems (IJSWIS), 1(1):36–49, 2005.

[Kalyanpur et al., 2007] Aditya Kalyanpur, Bijan Parsia,
Matthew Horridge, and Evren Sirin. Finding all justifi-
cations of OWL DL entailments. In The Semantic Web,
volume 4825 of Lecture Notes in Computer Science, pages
267–280. Springer, 2007.

[Kalyanpur, 2006] Aditya Anand Kalyanpur. Debugging and
repair of OWL ontologies. PhD thesis, the University of
Maryland, 2006.

[Nyssen, 2009] Rafael Peñaloza Nyssen. Axiom pinpointing
in description logics and beyond. PhD thesis, Dresden
University of Technology, 2009.

[Qi et al., 2008] Guilin Qi, Peter Haase, Zhisheng Huang,
Qiu Ji, JeffZ. Pan, and Johanna Vlker. A kernel revi-
sion operator for terminologies algorithms and evaluation.
In The Semantic Web - ISWC 2008, volume 5318 of Lec-
ture Notes in Computer Science, pages 419–434. Springer,
2008.

[Reiter, 1987] Raymond Reiter. A theory of diagnosis from
first principles. Artificial Intelligence, 32:57–95, 1987.

[Resina et al., 2014] Fillipe Resina, Márcio Moretto Ribeiro,
and Renata Wassermann. Algorithms for multiple con-
traction and an application to OWL ontologies. In Pro-
ceedings of the Brazilian Conference on Intelligent Sys-
tems (BRACIS). IEEE, 2014.

[Ribeiro, 2013] Márcio Moretto Ribeiro. Belief revision in
non-classical logics. Springer, 2013.

[Schlobach and Cornet, 2003] Stefan Schlobach and Ronald
Cornet. Non-standard reasoning services for the debug-
ging of description logic terminologies. In Proceedings of
the Eighteenth International Joint Conference on Artificial
Intelligence (IJCAI), pages 355–362. Morgan Kaufmann,
2003.

[Schlobach et al., 2007] S. Schlobach, Z. Huang, R. Cornet,
and F. van Harmelen. Debugging incoherent terminolo-
gies. Journal of Automated Reasoning, 39:317–349, 2007.
10.1007/s10817-007-9076-z.

[Suntisrivaraporn et al., 2008] Boontawee Suntisrivaraporn,
Guilin Qi, Qiu Ji, and Peter Haase. A modularization-
based approach to finding all justifications for OWL DL
entailments. In John Domingue and Chutiporn Anutariya,
editors, The Semantic Web, volume 5367 of Lecture Notes
in Computer Science, pages 1–15. Springer Berlin Heidel-
berg, 2008.

[Wassermann, 2000] Renata Wassermann. An algorithm for
belief revision. In Proceedings of the Seventh Interna-
tional Conference on Principles of Knowledge Represen-
tation and Reasoning (KR). Morgan Kaufmann, 2000.

	Introduction
	Belief Base Contraction
	Construction of the Remainder Set
	Optimizations for the Shrink Phase
	Optimizations for the Expand Phase

	Experiments
	Experiment Design
	Generated Data
	BioPortal Data

	Final Remarks

