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Abstract

We present a method for finding abductive proofs
in first-order Horn theories by using an answer-set
solver. We illustrate our solution with examples
from the domain of natural language understand-
ing. Furthermore we describe a novel way of rank-
ing abductive proofs of logical forms of sentences.

1 Introduction

From a pragmatic perspective, natural language understand-
ing (NLU) can be thought of as first-order abduction [Hobbs
et al., 1993; Ovchinnikova et al., 2014]. The sentence we
want to interpret is what is “observed” and the “best” abduc-
tive proof tells us what the sentence actually means. Abduc-
tive reasoning is ampliative, that is, what we conclude cannot
be proved deductively, but it extends our background knowl-
edge in a coherent way.

Abduction is intractable (cf. [Appelt and Pollack, 1992],
“even in the case of propositional Horn clause theories, the
problem of computing an explanation for an arbitrary propo-
sition is NP hard”). Propositional abduction is known to
be implementable as stable model enumeration [Gelfond and
Kahl, 2014] but in the case of NLU the underlying theory
is first-order. In early experiments with interpretation as
(weighted, i.e., cost-based) abduction, a Prolog-based abduc-
tive theorem prover was used [Hobbs et al., 1993]. Later
a more efficient algorithm based on integer linear program-
ming was developed [Inoue et al., 2012; Ovchinnikova et al.,
2014]. But neither approach allows for seamless integration
of abduction with full-fledged deduction. In this contribution
we present a method for comparatively efficient first-order
abduction based on answer-set solving. We use the solver
described in [Gebser et al., 2012].

In Section 2 we give an overview of the problem illustrated
with a simple example. Section 3 describes the translation
of a first-order abductive problem into an answer-set prob-
lem. Section 4 briefly describes possible integrity constraints
that significantly constrain the proof search space. Section 5
presents a method for selecting the best proof in the domain
of NLU. Section 6 concludes.

2 Preliminaries

Abduction is the reasoning process of finding explanations for
observations. In NLU, the “observations” are (logical forms
of) sentences and the interpretation of a sentence is the “best”
(i.e., most coherent) abductive proof that explains it with re-
spect to a background theory. Formally, I is an interpretation
of observations O with respect to a background theory T if1

(1) T ∪ I � O ∧ T ∪ I 6� ⊥

that is, T ∪I entails O and is consistent. The sentence John is
an elephant may mean that there is an actual elephant whose
name is John, i.e., I can be the literal meaning of the sentence.
But if we know (from context) that John is a person, T ∪ I
will be inconsistent, hence I cannot be the literal meaning
of the sentence and we have to find some other (nonliteral)
interpretation that makes sense in the given context.

We use the logical representation proposed
by Hobbs (1985), which is a “conjunctivist” scope-free
first-order approach to linguistic meaning. Consider the
sentence

(2) John sees Mary.

Irrelevant details aside, its logical representation is2

(3) (∃e, x, y)see ′(e, x, y) ∧ John(x) ∧Mary(y)

that is, there is an eventuality e which is a seeing, John does
it and Mary undergoes it. The logical representation of

(4) John doesn’t see Mary.

would be

(5)
(∃e1, e2, x, y)not

′(e1, e2) ∧ see ′(e2, x, y)∧
∧John(x) ∧Mary(y)

that is, the negation of the eventuality expressed in (3) is as-
serted. Hobbs (2005) showed that an appropriately rich and

1T is a set of first-order formulae and I and O are sets of positive
literals.

2The relation between the primed and unprimed predicates is
given by the following axiom schema (see [Hobbs, 1985]):

P (x) ≡ (∃e)P ′(e, x) ∧Rexist(e)
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Figure 1: Proof of the Tbilisi office
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Figure 2: Parse tree and variable bindings for A boy built a boat

precise theory of commonsense reasoning can be expressed
in this way.

The intended real-world meaning of the logical forms (3)
and (5) is their literal meaning. But the logical representation
can contain linguistic predications that need be interpreted in
order to be given a real-world meaning. The noun phrase
(NP)

(6) the Tbilisi office

is parsed as

(7) (∃x, y)Tbilisi(x) ∧ office(y) ∧ nn(x, y)

that is, there are two entities and an nn (i.e., N-N compound)
relation between them, but the predicate nn only tells us that
x and y are adjacent NPs and x precedes y. If we know from
context that there is an office in Tbilisi, we want to inter-
pret (7) as in(office,Tbilisi). If we have no such informa-
tion, but our background knowledge contains the facts that
Tbilisi is a city and that cities and offices are locations, we
can still draw the (defeasible) conclusion that there is an in
relation between the entities. Whichever the case, though, we
need axiom (8). We use ⇀ to denote (possibly defeasible)
implication in abductive rules and ⊃ to signify implication in
“hard” rules, i.e., P (x) ⇀ Q(x) ≡ P (x) ∧ etc(x) ⊃ Q(x)
where etc is a literal specific to the rule.

(8)
(∀x, y)location(x) ∧ location(y) ∧ in(x, y) ⇀

⇀ nn(y, x)

that is, the fact that x is located in y can be expressed by a
compound nominal at the lexical level. Of course, axiom (8)

is only defeasible, for an in relation can also be expressed by
other linguistic constructions. Thus, to interpret (7) we have
to backchain on axiom (8) and unify both variables. The proof
of (7) is depicted in Figure 1. As can be seen, the abduction
process is first-order even for simple examples.

3 Translation of deductive and abductive

rules

To get the logical form of a sentence we first have to parse
it. Since this paper focuses on interpretation, we will only
sketch very briefly how the parser is implemented. We have
an LFG grammar [Kaplan and Bresnan, 1982; Dalrymple et
al., 1995a; Dalrymple, 2001; Bresnan, 2001] whose rules are
augmented with annotations that incrementally build up the
logical form. Consider the sentence

(9) A boy built a boat.

whose parse tree and variable bindings are given in Figure 2.
The lexicon contains a logical expression for every preter-
minal. For example, the morpholexical entry for boy pro-
vides boy(x1), the entry for built provides build′(e, x2, y2)∧
Past(e), etc. The syntactic rules unify the variables provided
by the nodes they operate on. The rule S → NP VP, for ex-
ample, will unify x1 and x2, thus expressing the fact that the
boy is the agent of e, which is a building event. This way of
semantic parsing is easy to implement if one already has a
rule-based grammar (lexicon and rules).



Alternatively, we could use so-called “glue seman-
tics” [Dalrymple et al., 1993; 1995b], though this would be
less straightforward, since glue semantics produces higher-
order formulae, thus we would have to “flatten” them and
introduce eventualities into the predicates. Yet another possi-
bility is to implement the complete grammar in the abductive
framework itself, as suggested by Hobbs (2003), which has
the advantage that parsing and interpretation can be seam-
lessly integrated and carried out in one step. However if a
wide-coverage rule-based grammar is available, it is proba-
bly better to use it as a “preprocessor”.

Deduction poses no problem to the solver. We can have
rules such as3

(10)
elephant1(x) ⊃ mammal1(x)
mammal1(x) ⊃ animal1(x)

and we can use strong negation and disjunction, as in

(11)
person1(x) ⊃ ¬animal1(x)
person1(x) ⊃ man1(x) ∨ woman1(x)

The main result reported in this paper is a method for convert-
ing abduction with observations that contain variables into an
answer-set problem. We represent observations and assump-
tions as follows:
(12)

observations:
elephant(x) ⇒ pred(elephant, obsrv, varx)
assumptions:
elephant1(x) ⇒ pred(elephant1, asmpt, varx)

that is, variables are encoded as individuals. An abductive
rule is encoded as follows:4

(13)

elephant1(x) ⇀ elephant(x) ⇒
⇒ pred(elephant, x, y)∧
∧x ∈ {obsrv, asmpt} ⊃1

0

⊃1

0
pred(elephant1, asmpt, y)∧

∧explainedBy(elephant, y, rule1(y))∧
∧assumedBy(elephant1, y, rule1(y))

that is, if there is a predication we want to explain that can
be unified with the consequent of an abductive rule, we may
assume the antecedent (but we may ignore the rule because
the cost of assuming the antecedent may be higher than the
cost of assuming the consequent, thus we have to consider
both cases). The auxiliary predications are used in the fol-
lowing rules, which help us guarantee that the computed sta-
ble model is a correct abductive proof (in the sense of [Hobbs

3In the remainder of the paper, we use subscripted predicates
to represent real-world meaning and unsubscripted predicates to
represent lexical meaning. This distinction is necessary in or-
der to accommodate lexical ambiguity and figurative speech such
as metaphors and metonymy. For example, the literal real-world
meaning of John is an elephant (whose logical form is John(x) ∧
elephant(x)) is John1(x)∧ elephant

1
(x), but if we already know

that John is a person (person
1
(John)) we are forced into a figura-

tive meaning such as John1(x)∧clumsy
1
(x). Thus in this sense, to

interpret a sentence is to steer clear of contradictions in the knowl-
edge base.

4p ⊃1

0 q means 0{q}1 :- p, that is, the consequent may or
may not be included in the stable model.

et al., 1993]):5

(14)

assumedBy(p, x, r) ⊃ assumed(p, x)
pred(p, asmpt, x)∧ ∼assumed(p, x) ⊃ ⊥

explainedBy(p, x, r1) ∧ explainedBy(p, x, r2)∧
∧r1 6= r2 ⊃ ⊥

that is, a predication can be assumed only if it can be derived
by backchaining on an abductive rule and a predication can
be explained by no more than one rule.

The most important aspect is how variables in observa-
tions are handled. Since an answer-set program (ASP) has
to be effectively propositional, we have to “emulate” equal-
ity. If a predication containing a “reified” variable (e.g.,
varx) can be unified with another predication, we can bind
the variable. For example, if the knowledge base contains
person1(John) and we observe or assume person1(varx),
we may add eq(John, varx) to the stable model. We may
also decide not to bind a variable, in which case a new in-
dividual has to be added to the knowledge base. Of course,
we need axioms that guarantee that eq is an equivalence rela-
tion. We will not list all of them here but let us mention the
most important axiom schema. If P is a predicate, we need
P (x)∧eq(x, y) ⊃ P (y) in order for deduction to work. Thus
whenever we bind a variable, the knowledge base grows (in
the worst case exponentially). There is no way around this
problem since answer-set solving is propositional. Luckily
for us, the logical form of a sentence contains only few vari-
ables (around a dozen), hence the presented method is viable
for NLU. In actual fact, we are sacrificing space for time,
since we need new literals for each variable assignment.

The rules described above correctly define all and only the
stable models that correspond to an abductive proof in our
NLU framework. We use defeasible rules to infer what might
be true (thus extending our knowledge) based on what we al-
ready now. We process one sentence at a time in order to keep
the proof search space as small as possible. Of course, in a
connected discourse this may lead to a contradiction. Gener-
ally we try to assume as little as possible (see Section 5), but if
we arrive at a contradiction, we have to backtrack and repro-
cess part of the discourse. We plan on using a truth mainte-
nance system in the future, but for the time being, we simply
reinterpret the sentences which might be affected by the false
assumption.

We will now illustrate with an example how the solver finds
proofs. Consider the following observation, abductive rules,
and known facts (as usual, x is a variable and a, b are con-
stants):

(15)

observation: q(x)
rule: p(x) ⇀ q(x)
rule: r(x) ⇀ q(x)
facts: p(a), r(b)

The complete proof graph for (15) is given in Figure 3.
The labelled edges are possible “merges” (variable bind-
ings by unification) and the unlabelled edges are licensed by
backchaining on abductive rules. A proof is equivalent to a

5∼ denotes default negation.
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Figure 4: Proofs of (15)

subgraph of the complete proof graph complying with the fol-
lowing conditions:

1. An observation or assumption is explained by no more
than one rule.6

2. There is a path from any assumption to an observation
(i.e., we eliminate assumptions that do not contribute to
the explanation of an observation).

3. Variable assignments conform to the usual constraints
on equivalence.

All the proofs of (15) are depicted in Figure 4. The corre-
sponding hypotheses (including the observation) are:7

(16)

q(x)
p(x) ∧ q(x)
r(x) ∧ q(x)

q(a)
q(b)

4 Constraining the proof search space

In modern answer-set solvers, aggregate functions such as
count, sum, or max can be used. We can thus define a pred-

6This condition does not mean that a literal cannot be implied by
more rules, it only says that only one (defeasible) rule is taken to be
its explanation.

7In the domain of NLU, the logical form of a sentence is an ex-
istential closure so we would have to introduce a new individual for
every free variable.

icate whose argument tells us the size of (that is, the number
of assumptions in) a proof and rule out any proof that is too
big:

(17)
numberOfAssumptions(x) = |{p : assumed(p)}|

numberOfAssumptions(x)∧
∧x > maxNumberOfAssumptions ⊃ ⊥

We can also have a predicate that tells us the length of the
proof path from p1 to p2 and an integrity constraint that rules
out any proof whose length is greater than an integer constant,
maxProofLength:

(18) proofLength(p1, p2, l) ∧ l > maxProofLength ⊃ ⊥

These two simple integrity constraints can significantly con-
strain the proof search space, thus speeding up the enumera-
tion of proofs.

5 Ranking abductive proofs

Even a relatively simple background theory, as in our ex-
periments, will have at least hundreds of abductive and de-
ductive rules, which means that the logical form of an av-
erage sentence can have many different proofs (since both
deduction and abduction are explosive). Moreover in a
long discourse consisting of many sentences, the knowl-
edge base will contain many individuals available for unifica-
tion, which can multiply the number of proofs. The method
of weighted-abduction [Hobbs et al., 1993; Hobbs, 2001;
2003] seems to yield good results, but it cannot be used in
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Figure 6: Interpretation of bank account

an answer-set program because it works with real numbers.
While it is possible to enumerate all the abductive proofs and
evaluate them later, we decided to try to solve the ranking
problem within ASP. In this section, we describe how to rank
proofs using the answer-set solver.

The basic idea, coming from Hobbs et al. (1993), is that
one should prefer proofs that unify assumed predications with
what we already know and assume as little as possible. In
other words, maximally coherent (with respect to the con-
text) and minimally ampliative proofs are preferred. We add
one more criterion: salience. Informally, individuals that
occurred recently in the discourse have higher salience. If
the pronoun he is used in a sentence, it is interpreted by
backchaining on the following abductive rule:

(19) person1(x) ∧male1(x) ⇀ he(x)

that is, he refers to a male person. To bind the variable, we
have to find an individual which conforms to the selectional
constraints. But there can be many such individuals in the
knowledge base. Thus we rank the proofs with respect to
their salience, which is the sum of the saliences of all indi-
viduals unified with a variable. Newly introduced constants
are assigned the highest salience, as in the case of c for the

indefinite NP in

(20)
He bought a book.
he(x) ∧ buy′(e, x, c) ∧ book(c)

If there is elephant(x) among the ob-
servations and the knowledge base contains
elephant1(E

1

1
), elephant1(E

2

2
), elephant1(E

3

3
),8 there

are three literal interpretations in which the variable x is
unified, as illustrated in Figure 5. Based on a linguistic
insight, we want to prefer the proof which unifies the variable
x with the most salient individual.

Unification can help us resolve lexical ambiguity even
when there are no individuals in the knowledge base which
could be unified with the variables. Consider the compound
nominal

(21)
bank account
bank(x) ∧ account(y) ∧ nn(x, y)

and assume that we have the following background theory

8The upper index expresses the salience of the individual.



(with five lexical rules and one commonsense rule):

(22)

bank1(x) ⇀ bank(x)
bank2(x) ⇀ bank(x)

account1(x) ⇀ account(x)
account2(x) ⇀ account(x)
appurt1 (x, y) ⇀ nn(y, x)

account1(x) ∧ bank1(y) ⇀ appurt1 (x, y)

that is, accounts (defeasibly) appertain to banks and the
relation appurt(enance) can be expressed by a compound
nominal (nn).9 We see in Figure 6 that two predications
are unified. If we interpreted bank(x) as bank2(x) and/or
account(y) as account2(y), there would be no unification of
predications and hence the proof would be less coherent.

As we have just shown, abduction can be used to lexically
disambiguate phrases even if there is no additional context
or previous discourse. Of course, in order for this method to
work background theories are needed that capture relations
between entities that occur in the sentence. Creating com-
monsense knowledge bases is generally a very complex task
but it is feasible at least for smaller closed domains.

There can be many proofs with the same number of unified
predications, thus we need a criterion that will help us distin-
guish them. The simplest criterion is the size of the proof, i.e.,
the number of assumptions made. Intuitively, we do not want
to assume more than is necessary; if an assumption does not
help us arrive at a more coherent proof (that is, a proof with
more unifications), is should be omitted. This simple idea
seems to be good enough to rule out most undesired proofs.

We can use the predicate numberOfAssumptions de-
fined in Section 4 and an analogously defined predicate
numberOfUnifications to select the best proof. Our method
for ranking abductive proofs yields slightly better results than
that proposed by Hobbs et al. (1993) in our evaluation, but
this does not mean that it is better because the difference is
not statistically significant and because Hobbs’ method relies
on probabilistic weights which are hard to “get right” empir-
ically. Nevertheless our method is relatively simple and can
be implemented in ASP (for it uses only natural numbers).

6 Conclusions

We have presented a method for translating (a fragment of)
first-order abduction into an answer-set program in the con-
text of NLU. The heretofore used algorithms do not allow for
seamless integration of the process of abduction with deduc-
tion. Our method helps the solver confine the search space by
ruling out logically impossible proofs (with respect to a back-
ground theory). We have also suggested how to rank proofs
within the answer-set program, since the original framework
of weighted abduction would require an additional step to
evaluate the proofs. An evaluation has shown that in con-
junction with a state-of-the-art answer-set solver, our method
is an order of magnitude faster than the approach based on a
general automated theorem prover.

There is no doubt that first-order Horn abduction is useful
in many areas of artificial intelligence. Our future work will

9bankx and accountx are different lexical meanings of bank
and account, respectively.

investigate how the proposed method for ranking proofs can
be applied to automated goal-driven planning with incom-
plete information.
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