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Abstract

Abductive inference provides consistent expla-
nations for observable effects and has been of
special interest in the context of diagnosis. The
abduction problem is in general NP-hard, thus,
there is a high motivation to derive solutions
efficiently for practical instances. In this pa-
per, we focus on propositional abduction in the
framework of model-based diagnosis. We re-
view four algorithms to compute explanations:
one employs an ATMS to derive diagnoses and
the others are conflict-directed methods based
on an unsatisfiable reformulation of the abduc-
tive system description. In an empirical eval-
uation we compare the different approaches on
practical examples. Our experiments indicate
that the ATMS provides the best performance
results for the majority of problems.

1 Introduction

Abductive inference, as a form of non-monotonic reason-
ing, attempts to derive a set of causes which best explain
an effect. Within this paper we focus on logic-based ab-
duction, which is formulated as finding a consistent set
of hypotheses implying a given observation together with
the background knowledge. A variety of approaches,
such as consequence finding [Marquis, 2000] or proof-
tree completion [McIlraith, 1998], have been proposed as
methods for mechanizing abductive reasoning and lead
to the development of several systems, e.g. DART [Gene-
sereth, 1984] or Theorist [Poole et al., 1987]. In the con-
text of logic programming, abductive logic programming
[Kakas et al., 1992] emerged aiming at providing a frame-
work and set of techniques for performing abductive rea-
soning [Denecker and De Schreye, 1998; Van Nuffelen,
2001]. It is well known that abduction is in general an
NP-hard problem with potentially an exponential num-
ber of solutions [Bylander et al., 1991]. Thus, there is
a demand to compute abductive explanations efficiently
for instances of practical size and complexity.
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Even though abduction has been performed in the con-
text of various tasks [Denecker and Kakas, 2002], such
as planning [Poole and Kanazawa, 1994] or natural lan-
guage processing [Ovchinnikova et al., 2014], its preva-
lent application is in diagnosis. Model-based diagno-
sis has been proposed as an improvement to fault lo-
calization and relies on a formal system description en-
compassing structural as well as behavioral knowledge
of the physical artifact. Within the last decades an
extensive body of research has distinguished two logi-
cal definitions: consistency-based and abductive diagno-
sis. Consistency-based diagnosis relies on a formaliza-
tion of the correct system response and identifies fail-
ures through inconsistency [Reiter, 1987]. In contrast,
the abductive approach employs models of faulty behav-
ior to reason from symptoms to causes and is based on
a stricter criteria as it finds consistent explanations en-
tailing the observations [Console et al., 1991]. Abductive
model-based diagnosis has been applied, e.g., to environ-
mental decision support systems [Wotawa et al., 2009].

The computation of explanations has not only been
studied in the context of diagnosis, but also has received
attention in the field of constraint satisfaction prob-
lems and infeasibility analysis. Junker [2004] describes
an algorithm generating preferred explanations for over-
constrained systems. By employing a divide and conquer
strategy, conflicting constraints can be efficiently com-
puted. These contradictions essentially constitute the
causes for the unsatisfiability of the system. Within the
field of infeasibility analysis, conflicts refer to Minimal
Unsatisfiable Subsets (MUSes). Recently, Liffiton et al.
[2015] present a direct MUSes approach which exploits
the power-set lattice. Many algorithms for computing
unsatisfiable cores, however, do not generate them di-
rectly, but rely on their hitting set dual Minimal Cor-
rection Subsets (MCSes). Liffiton and Sakallah [2008]
propose the CAMUS algorithm utilizing this hitting set
duality to produce MUSes by first computing all MCSes.

In this paper, we investigate approaches to comput-
ing explanations in the framework of abductive model-
based diagnosis. In particular, we examine one direct
proof method by exploiting an assumption-based truth
maintenance system (ATMS) to infer consistent diag-
noses. The other techniques utilize the unsatisfiability



of a rewritten system description to derive explanations.
The first algorithm determines conflicts based on a hit-
ting set directed acyclic graph (HS-DAG), while the two
remaining rely on MUSes and MCSes computation.

The remainder of this paper is structured as follows.
Section 2 introduces the theoretical foundations of ab-
ductive model-based diagnosis and further provides def-
initions in the context of unsatisfiable formulas. Subse-
quently, we describe the selected algorithms and tools.
In Section 4 we present the set-up and results of an em-
pirical evaluation, followed by our conclusions.

2 Preliminaries

In this section we define the Propositional Horn Clause
Abductions Problem, which functions as the basis of our
research. Subsequently, we discuss certain subsets of un-
satisfiable formulas and show their connection to abduc-
tive diagnosis.

2.1 Abductive Model-Based Diagnosis

Abductive inference, in the context of formal logic, can
be defined as the search for a set of hypotheses which
entail the observations, while being consistent in con-
junction with the background theory. Model-based di-
agnosis builds upon a formalization of the system be-
havior. Thus, abductive model-based diagnosis requires
a description of the system response in the presence of a
fault in order to compute causes entailing symptoms.

In general logic-based abduction is an intractable
problem, however, there exist certain subsets, such as
definite propositional Horn theories, where abduction is
polynomial [Eiter and Gottlob, 1995; Nordh and Zanut-
tini, 2008]. We draw on these findings and focus in our
research on propositional logic. Note that the follow-
ing definitions are similar to the ones by Friedrich et al.
[1990].

Definition 1 (Knowledge base (KB)) A knowledge
base (KB) is a tuple (A,Hyp,Th) where A denotes the
set of propositional variables, Hyp ⊆ A the set of hy-
potheses, and Th the set of Horn clause sentences over
A.

The set of hypotheses contains the propositions which
can either be assumed true or false and refer to possible
causes. In order to form an abduction problem, in par-
ticular a Propositional Horn Clause Abduction Problem,
we consider in addition to the knowledge base a set of
observations for which explanations are to be computed.

Definition 2 (Propositional Horn Clause Abdu-
ction Problem (PHCAP)) Given a knowledge base
(A,Hyp,Th) and a set of observations Obs ⊆ A then
the tuple (A,Hyp,Th,Obs) forms a Propositional Horn
Clause Abduction Problem (PHCAP).

Definition 3 (Diagnosis; Solution of a PHCAP)
Given a PHCAP (A,Hyp,Th,Obs). A set ∆ ⊆ Hyp is
a solution if and only if ∆ ∪ Th |= Obs and ∆ ∪ Th
6|= ⊥. A solution ∆ is parsimonious or minimal if and
only if no set ∆′ ⊂ ∆ is a solution.

A solution to the PHCAP constitutes an abductive di-
agnosis as it comprises the set of hypotheses explaining
the observations.
Example 1: Consider the simplified example of a con-
verter KB of an industrial wind turbine.

Hyp =

{
mode(Fan,Corrosion),

mode(Fan, TMF ),mode(IGBT,HCF )

}
A =

{
P turbine, T nacelle,mode(Fan,Corrosion),
mode(Fan, TMF ),mode(IGBT,HCF )

}

Th =


mode(Fan,Corrosion)→ P turbine,
mode(Fan, TMF )→ P turbine,
mode(IGBT,HCF )→ T nacelle,
mode(IGBT,HCF )→ P turbine


Let us assume an increased temperature in the na-

celle (T nacelle) and a lower than expected power
output (P turbine) can be observed, i.e. Obs =
{T nacelle, P turbine}. Thus, the solution to the PH-
CAP is ∆1 = {mode(IGBT,HCF )}.

To compute the abductive explanations for an ob-
served effect, one can check all subsets of hypotheses to
determine whether they entail the observations or not.
This approach, however, is computationally expensive
and therefore not applicable in a practical setting.

2.2 SAT-Based Abduction

We assume standard definitions for propositional logic
throughout this section [Chang and Lee, 1973]. If a
propositional formula φ in CNF is unsatisfiable, there
are subsets which are of special interest in the context of
abduction. In this section we define said sets first and
then examine how they can be used for abductive diag-
nosis. The subsequent definitions are taken from Liffiton
and Sakallah [2008].

A Minimal Unsatisfiable Subset (MUS) contains a sub-
set of clauses which cannot be satisfied simultaneously.

Definition 4 (Minimal Unsatisfiable Subset
(MUS)) A subset U ⊆ φ is an MUS if U is unsatisfiable
and ∀Ci ∈ U,U \ ({Ci}) is satisfiable.

Notice that every proper subset of an MUS is satisfiable.
Its hitting set dual, Minimal Correction Subset (MCS),
comprises clauses that correct the unsatisfiable formula
when removed [Birnbaum and Lozinskii, 2003].

Definition 5 (Minimal Correction Subset
(MCS)) A subset M ⊆ φ is an MCS if φ \M is satisfi-
able and ∀Ci ∈M,φ \ (M \ {Ci}) is unsatisfiable.

Since removing an MCS results in a feasible formula,
any MCS is the complement of some Maximal Satisfiable
Subset (MSS), which is a generalization of a solution to
the MAX-SAT problem.

Definition 6 (Maximal Satisfiable Subset
(MSS)) A subset S ⊆ φ is an MSS if S is satisfiable
and ∀Ci ∈ φ \ S, S ∪ {Ci}) is unsatisfiable.

Example 2: Consider the unsatisfiable formula φ in
CNF.

φ =

C1︷ ︸︸ ︷
(¬a ∨ ¬b ∨ c)∧

C2︷ ︸︸ ︷
(¬c ∨ d)∧

C3︷︸︸︷
(c) ∧

C4︷︸︸︷
(¬d)



The combination of clauses C2, C3 and C4 results in φ
being unsatisfiable, hence the unsatisfiable cores are

MUSes(φ) = {{C2, C3, C4}}.

Via hitting set computation we derive the following set
of MCSes:

MCSes(φ) = {{C2}, {C3}, {C4}}.

Removing any MCS from φ results in the formula be-
ing satisfiable. Subsequently, we can compute the Maxi-
mal Satisfiable Subsets (MSSes) by forming the comple-
ments:

MSSes(φ) = {{C1, C3, C4}, {C1, C2, C4}, {C1, C2, C3}}.

As aforementioned, the MUSes correspond to the expla-
nations of an over-constrained system [Junker, 2004]. In
order to generate abductive explanations on basis of un-
satisfiable formulae, we recast the first condition of Defi-
nition 3 of an abductive explanation from ∆∪Th |= Obs
to Th∪∆∪{¬Obs} |= ⊥ by logical equivalence. {¬Obs}
consists of the complement of each observation in Obs,
i.e. ∀o ∈ Obs : ¬o ∈ {¬Obs}. Thus, computing the ab-
ductive explanations is reformulated as the search for
a refutation proof comprising propositions from Hyp
[McIlraith, 1998]. In other words, we can restate the
problem of computing diagnoses to finding the conflict
sets of Th∧Hyp∧{¬Obs} which by definition are equiv-
alent to the MUSes of said formula.

Naturally, MUSes contains several unsatisfiable sub-
sets irrelevant for the diagnostic task. Since we are solely
interested in minimal explanations, we dismiss certain
subsets and parts of MUSes. We first eliminate all propo-
sitions not corresponding to hypotheses. The resulting
solution may contain supersets of diagnoses, which we
subsequently remove to derive minimal explanations. We
refer to MUSes corresponding to parsimonious abductive
diagnoses as MUSesHyp.

3 Algorithms for Computing Abductive
Explanations

In the following, we depict our four approaches to abduc-
tive diagnosis based on a propositional logic model. For
each method, we give a brief description of the under-
lying notion for deriving explanations and subsequently
discuss specific tools and algorithms included in the em-
pirical evaluation.

3.1 ATMS

De Kleer’s [1986a] ATMS has been recognized as a gen-
eral abduction engine for propositional Horn clause sen-
tences [Levesque, 1989]. An ATMS exploits a graph
representation of the theory, where hypotheses, obser-
vations, and contradiction are vertices. The edges are
determined by the implications of the underlying Horn
clauses. By assigning a label to each node, the ATMS
keeps track of the hypotheses from which each vertex
can be inferred from. Specifically, a label is a set of
sets of hypotheses. Whenever a new rule is applied to
the ATMS, the nodes’ labels are updated, consistency

is ensured, and valid explanations for a given effect can
be directly determined. Notice that the labels can grow
exponentially in the number of assumptions [de Kleer,
1986b].

Wotawa et al. [2009] propose Algorithm abductive-
Explanations, which computes abductive diagnoses for
a given PHCAP by exploiting an ATMS. After passing
the Horn clauses composing the theory to the ATMS, a
single implication is added: o1∧o2∧. . .∧on → obs, where
{o1, o2, . . . , on} correspond to the observations and obs
denotes a new proposition not yet considered in A. The
label of obs comprises all hypotheses which inferred the
observations, thus constitute the solutions to the PH-
CAP. Since the ATMS terminates due to a finite number

Algorithm 1 abductiveExplanations [Wotawa et al.,
2009]

procedure abductiveExplanations (A,Hyp, Th,Obs)
Add Th to ATMS
Add

(∧
o∈Obs o→ obs

)
to ATMS . obs /∈ A

return the label of obs
end procedure

of hypotheses, the Algorithm abductiveExplanations
is guaranteed to halt as well. We utilized a Java imple-
mentation of abductiveExplanations for our empirical
evaluation.

3.2 Conflict-Driven Search via HS-DAG

By detecting a discrepancy between the predicted and
actual behavior, i.e. a conflict, Reiter [1987] derived
consistency-based diagnoses via minimal hitting set com-
putation. A conflict arises when, under the assumption
all components are behaving correctly, an observation
is inconsistent with the expected performance. Thus,
conflicts correspond to hypotheses contradicting obser-
vations. By rewriting the abductive model, as noted in
Section 2.2, we can derive conflicts which constitute ab-
ductive diagnoses.

Reiter’s approach maintains a tree to compute all min-
imal hitting sets based on conflicts. These conflicts can
be generated on demand by applying a theorem prover,
which returns a refutation involving hypotheses if one
exists. Starting from an initial conflict set as root node,
the tree is iteratively extended in a breadth first man-
ner. At each node n, labeled with conflict C, an outgoing
edge h(n) is generated for each c ∈ C. Each edge label
is checked for consistency. In case it is consistent the
corresponding node determines a leaf and thus a mini-
mal hitting set, otherwise a new conflict set is derived,
such that it is disjoint to the current set of edge labels.
Several pruning techniques ensure the minimality of the
hitting sets and allow the use of non minimal conflicts.
Greiner et al. [1989] corrected some inadequacies of Re-
iter’s algorithm and devised an approach performing on
a directed acyclic graph (DAG) instead of a tree.

Algorithm hsdagAB is based on HS-DAG and a theo-
rem prover to derive conflicts and subsequently minimal



abductive explanations. Given a PHCAP, we generate
an implication with a conjunction of observations on the
left hand side and the contradiction on the right hand
side, i.e. o1∧o2∧. . .∧on → ⊥. The theory Th, the impli-
cation, and the theorem prover, represented by TP , are
supplied to HS-DAG. CONF corresponds to the set of
conflicts obtained from the hitting set algorithm. Note
that these conflicts are not ensured to be minimal; thus,
we remove all supersets afterwards.

Algorithm 2 hsdagAB

procedure hsdagAB(A,Hyp, Th,Obs)
∆− Set, CONF ← ∅
TP ← Th ∪

(∧
o∈Obs o→ ⊥

)
. Theorem Prover

CONF ← HS-DAG(TP) . HS-DAG
for all c ∈ CONF do

if 6 ∃c′ ∈ CONF : c′ ⊆ c then
∆− Set← c

end if
end for
return ∆− Set

end procedure

For our evaluation we utilized the publicly avail-
able diagnosis engine JDiagengine1 which implements a
conflict-driven search via HS-DAG [Peischl and Wotawa,
2003] exploiting a Horn clause theorem prover [Minoux,
1988]. JDiagengine as well as hsdagAB are Java imple-
mentations.

3.3 Direct MUS Approach

In Section 2.2 we examined the relation between MUSes
and abductive diagnoses. By rewriting the model to an
unsatisfiable formula, the abduction problem consists in
computing the sets of hypotheses which are responsible
for the infeasibility, i.e. MUSesHyp.

Algorithm musAB employs a MUS enumeration proce-
dure and thereon computes the minimal abductive di-
agnoses, denoted MUSesHyp. We create an unsatisfi-
able CNF encoding of the problem denoted φ. Since Th
consists of Horn clauses, we can easily convert it into a
CNF representation, which we refer to as T . For each
h ∈ Hyp, we create a single clause assuming h to be
true. Additionally, we generate a disjunction containing
the negated observations, i.e. ¬o1 ∨ ¬o2 ∨ . . . ∨ ¬on.

Example 1 (cont.): Consider again our running exam-
ple of the converter. Let φ be the unsatisfiable CNF
representation of the abduction problem:

C1 : ¬mode(Fan,Corrosion) ∨ P turbine

C2 : ¬mode(Fan, TMF ) ∨ P turbine

C3 : ¬mode(IGBT,HCF ) ∨ P turbine

C4 : ¬mode(IGBT,HCF ) ∨ T nacelle

C5 : mode(Fan,Corrosion)

C6 : mode(Fan, TMF )

C7 : mode(IGBT,HCF )

1http://www.ist.tugraz.at/modremas/index.html

Algorithm 3 musAB

procedure musAB(A,Hyp, Th,Obs)
MUSes,∆− Set← ∅
φ← T ∪Hyp ∪

∨
o∈Obs ¬o

MUSes← MUSes(φ) . MUS enumeration algorithm
for all m ∈MUSes do

M ← m ∩Hyp
end for
for all u ∈M do

if 6 ∃u′ ∈M : u′ ⊆ u then
MUSesHyp ← u

end if
end for
return ∆− Set←MUSesHyp

end procedure

C8 : ¬T nacelle ∨ ¬P turbine

Clauses C1 to C4 refer to T , C5 to C7 to the set Hyp and
clause C8 contains the negation of the set of observations.
We obtain the following MUSes from φ:

MUSes =

{
{C3, C4, C7, C8} , {C1, C3, C5, C7, C8} ,

{C2, C3, C6, C7, C8}

}
Since we are only interested in the abducibles, we re-

move all clauses not associated with hypotheses. Let M
be the resulting set:

M =
{
{C7} , {C5, C7} , {C6, C7}

}
.

Eliminating all supersets we obtain MUSesHyp =
{{C7}} . Hence the abductive diagnosis is ∆1 =
{mode(IGBT,HCF )}.

We implemented musAB in Java and employed the
MUS enumeration tool MARCO2 [Liffiton et al., 2015].
MARCO computes MUSes and MSSes based on an ex-
ploration of the power-set lattice. Given an unsatisfiable
clause set, all of its supersets are unsatisfiable as well;
thus, an MUS defines a ”low point” in an infeasible re-
gion. Similarly, an MSS characterizes a ”high point” in a
satisfiable region. In each iteration MARCO investigates
an unexplored part of the lattice and traverses through
the power-set until either an MUS or an MSS is found.
MARCO is implemented in Python using MUSer23 and
MiniSat4.

3.4 Indirect Approach

Many MUS enumeration algorithms refrain from com-
puting the unsatisfiable cores directly, but exploit its hit-
ting set dual MCS, since finding satisfiable subsets is an
NP-complete problem, whereas UNSAT resides in Co-
NP [Liffiton and Sakallah, 2008]. Therefore, we exam-
ine an indirect approach, which first computes the MC-
Ses and then determines the MUSes [Koitz and Wotawa,
2015b]. In the case of diagnosis we are only interested in
the hypotheses, which have been used to derive a conflict.
Thus, for further computation we select MCS which only
contain clauses referring to explanations. We create the

2http://sun.iwu.edu/ mliffito/marco/
3http://logos.ucd.ie/wiki/doku.php?id=muser
4http://minisat.se/



Figure 1: Cumulative runtimes of abductiveExplanations, hsdagAB, musAB, and satAB for the experiment.

set MCSesHyp such that ∀m ∈MCSesHyp : m ⊆ Hyp.
This has two practical consequences: it reduces the num-
ber of sets to be considered by the hitting set algorithm
and the corresponding MUSes derived from MCSesHyp

already constitute the abductive diagnoses.
Algorithm satAB computes the set of abductive diag-

noses for a given PHCAP based on an MCS enumeration
algorithm. Note that the unsatisfiable model φ is the
same as in the direct MUS approach.

Algorithm 4 satAB

procedure satAB (A,Hyp, Th,Obs)
MCSes,MCSesHyp ← ∅
φ← T ∪Hyp ∪

∨
o∈Obs ¬o

MCSes← MCSes(φ) . MCS enumeration algorithm
for all m ∈MCSes do

if m ⊆ Hyp and m ∪ Th is consistent then
MCSesHyp ← m ∪MCSesHyp

end if
end for
∆− Set← MHS(MCSesHyp) . Minimal hitting set

algorithm
return ∆− Set

end procedure

Example 1 (cont.): Computing the MCSes of φ we
obtain:

MCSes =

{
{C3} , {C7} , {C8} , {C4, C5, C6} ,

{C2, C4, C5} , {C1, C4, C6} , {C1, C2, C4}

}
.

Extracting the MCSes, which only contain clauses
from Hyp and are consistent with regard to the the-
ory, results in MCSesHyp = {{C7}}. By comput-
ing the hitting set of MCSesHyp, we obtain the set
of MUSes solely referring to explanations, which are in
fact the set of abductive diagnoses. In our example
∆1 = {mode(IGBT,HCF )}.

For our evaluation we implemented satAB in Java and
utilized the MCSLS

5 tool by Marques-Silva et al. [2013]
as the MCS computation procedure . MCSLS is written
in C++, employs MiniSat6, and provides the possibil-
ity to apply several MCS enumeration algorithms. We

5http://logos.ucd.ie/web/doku.php?id=mcsls
6http://minisat.se/

decided for the CLD approach of MCSLS, which takes
advantage of disjoint unsatisfiable cores. Regarding the
hitting set computation, we engaged a Java implemen-
tation of the Binary Hitting Set Tree algorithm [Lin and
Jiang, 2003] which performed well in a comparison of
minimal hitting set algorithms [Pill et al., 2011].

4 Empirical Evaluation

In this section, we describe our empirical evaluation set-
up and report on the obtained results. All the numbers
presented in this section were obtained from a Lenovo
ThinkPad T540p Intel Core i7-4700MQ processor (2.60
GHz) with 8 GB RAM running Ubunutu 14.04 (64-bit).

We generated propositional Horn models from several
Failure Mode Effect Analyses covering various techni-
cal systems by utilizing a mapping function. A detailed
description of the conversion process can be found in
Wotawa [2014] and Koitz and Wotawa [2015a]. Table 2
provides an overview of the models’ structure as well as
some characteristics of the problem instances. It is worth
noting that the system descriptions vary in the number
of hypotheses (Hyp), possible observables (Obs), and im-
plications (Th). Due to theory comprising Horn clauses,
a conversion into a CNF representation, suitable for the
MUS-based and MCS-based computation, is straightfor-
ward.

In the experiments, we computed the abductive ex-
planations for |Obs| from one to the maximum number
of effects possible. The observations were generated ran-
domly; however, the same set was used for all algorithms.
The results reported in Table 1 have been obtained from
ten trials and all algorithms faced a 200 seconds runtime
limit.

To compare the algorithms, we only measured the time
to compute minimal diagnoses, i.e. we disregarded the
mapping, model conversion, as well as the time it re-
quired to communicate with the solvers. In case of musAB
and satAB we parsed the execution time measured by the
tools themselves, which was available in the output.

Note that for certain instances hsdagAB, satAB and
musAB exceeded the predefined runtime threshold, which
we marked with T in the table. Thus, for the cumulative



abductiveExplanations hsdagAB satAB musAB
Model MIN MAX AVG MIN MAX AVG MIN MAX AVG MIN MAX AVG

Electrical circuit < 1 129 19.44 < 1 T 5131.66 < 1 145.05 51.49 8 6881 700.06
FCS < 1 5 0.23 < 1 18 1.22 < 1 5.12 0.78 7 1974 419.95
ACD < 1 12 0.28 < 1 3 0.31 < 1 7 0.34 7 122 42.28

Main bearing < 1 1 0.02 < 1 1 0.04 < 1 1 0.07 11 269 93.86
HIFI - FPU < 1 1 0.04 < 1 174 9.42 < 1 6.05 1.98 7 469 141.82

MiTS 1 < 1 1 0.09 < 1 1 0.10 < 1 2.42 0.23 7 37 19.1
MiTS 2 < 1 12 0.57 < 1 164891 3522.88 < 1 11 2.53 7 5281 905.45

PCB < 1 1 0.01 < 1 1 0.01 < 1 1 0.12 7 12 9.36
Inverter < 1 55 2.62 < 1 T 15406.82 < 1 T 3799.10 8 T 14573.4
Rectifier < 1 4 0.32 < 1 25830 233.51 < 1 11450.6 455.11 8 T 17173.03

Transformer < 1 1 0.01 < 1 < 1 < 1 < 1 0.73 0.04 7 36 19.63
Backup components < 1 25 2.03 < 1 T 4113.47 < 1 35.84 9.69 8 T 14526.67

Table 1: Experimental results of the four algorithms on the experiment instances. Models, where an algorithm exceed
the given run time threshold at least once, are marked with T.

Structure # Diagnoses

Model Hyp Obs Th Max Avg SF DF TF

Electrical
circuit

32 17 52 792 189.1 3 3 12

FCS 17 17 56 28 3.68 5 3 15
ACD 13 16 52 12 2.46 3 4 4
Main bear-
ing

3 5 20 3 2.34 3 0 0

HIFI-FPU 17 11 35 42 9.44 7 21 7
MiTS 1 17 21 47 12 5.04 3 3 4
MiTS 2 22 15 48 288 33.46 4 12 6
PCB 10 11 24 2 1.52 1 2 2
Inverter 29 38 165 200 21.79 2 14 16
Rectifier 20 17 93 64 8.1 16 32 64
Transformer 4 8 22 2 1.1 2 2 2
Backup
components

25 30 114 252 19.86 7 18 27

Table 2: Features of the models and the evaluation ex-
amples. SF, DF, and TF refer to single, double, and
triple faults, respectively.

runtimes, shown in Figure 1, we utilized the maximum
of 200 seconds in cases the limit was surpassed.

Whereas some of the small runtimes are arguable due
to the measurement in the milliseconds range, Table 1
as well as Figure 1 reveal that abductiveExplanations
(Mean = 2.41 ms, SD = 12.36 ms, Median = 0 ms) out-
performs hsdagAB (Mean = 12261.77 ms, SD = 3162.5
ms, Median = 1 ms), satAB (Mean = 1741.39 ms, SD
= 15633.06 ms, Median = 1 ms), and musAB (Mean =
45947.85 ms, SD = 82289.36 ms, Median = 118 ms).
Unsurprisingly, the larger considered examples are more
computationally demanding, especially with the model
of the electrical circuit featuring a larger set of possible
hypotheses and diagnoses.

In cases where the maximum cardinality of the diag-
noses is limited, HS-DAG computes solutions rather ef-
ficiently. However, in our examples, we enumerated all
solutions, thus neither the size nor the number of hitting
sets was restricted, which can result in some cases in an
extensive graph.

The MCS-based approach performs rather poorly on
the example of the converter. According to Marques-
Silva et al. [2013] the number of SAT calls for the CLD
approach depends on the size of the underlying formula,
which in our case is determined by the size of the the-
ory and the number of hypotheses, which explains the
computation time for the inverter example. It is worth

mentioning that in the majority of cases the hitting set
computation accounted for a negligible fraction of the
total runtime of satAB.

The performance of MARCO is very much depen-
dent on the traversal of the graph towards a ”low point”
or ”high point” in the power-set lattice, i.e. MUS or
MSS, respectively. Thus, the number of clauses, which
shape the power lattice, influences the MARCO’s run-
time. Therefore, in particular the larger instances re-
quire more computation time.

Note that we did not focus on an efficient encoding or
any kind of pre-compilation to speed up the reasoning
process. Further, in the case of MUS- and MCS-based
algorithms, there is no focus on the abducibles, as for the
ATMS and the HS-DAG. Thus, a large number of sets
is generated, which are not of interest for the diagnostic
task.

5 Conclusion
Abductive reasoning is of special interest in the context
of diagnosis. In this paper we focused on the model-
based approach utilizing a logic system description. We
reviewed four different algorithms to compute abductive
explanations for a propositional diagnosis problem. On
the one hand, we investigated a direct strategy based on
an ATMS, and on the other hand examined three ap-
proaches relying on conflict computation of an unsatisfi-
able model. In our tests, the conflict-based methods did
not offer advantages against the ATMS. The SAT-based
approaches have the drawback of not being focused on
the set of abducibles, but rather enumerate all sets re-
gardless if the clause corresponds to a hypothesis or not.
Further, we could observe that in fact MCS enumeration
and subsequent hitting set computation is preferable to
the direct MUS approach. Surprisingly, HS-DAG did not
perform well even on the smaller examples. We explain
this, by the encoding of the problem, which has not been
ideal for utilized theorem prover.
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