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Abstract
Inspired by the profound effortlessness (but also the
substantial carelessness) with which humans seem
to draw inferences when given even only partial in-
formation, we consider a unified formal framework
for computational cognition, placing our emphasis
on the existence of naturalistic mechanisms for rep-
resenting, manipulating, and acquiring knowledge.
Through formal results and discussion, we suggest
that such fast and loose mechanisms could provide
a concrete basis for the design of cognitive systems.

1 Introduction
The founding statement of Artificial Intelligence [McCarthy
et al., 1955] proceeds on the basis that “every [...] feature of
intelligence can in principle be so precisely described that a
machine can be made to simulate it” and proposes to “find
how to make machines [...] solve kinds of problems now re-
served for humans”. Philosophical considerations aside, the
exceptionally powerful machine learning algorithms and the
ingeniously crafted reasoning algorithms readily testify that
contemporary Artificial Intelligence research has placed more
emphasis on the latter front — the effectiveness of algorithms
in terms of their behavior — and less emphasis on the former
front — their design to simulate features of the human intel-
lect. With Artificial Intelligence research turning sixty years
old, this choice on its emphasis has ultimately led to the re-
cently popularized concerns on its future [Open Letter, 2015].

Refocusing on the former front would seem to necessitate
the abandonment of rigid and convoluted algorithms, and a
shift towards more robust and naturalistic solutions, guided
by psychological evidence on human cognition. Further, and
contra to the specialization of contemporary Artificial Intelli-
gence research, a holistic view of cognition seems warranted,
with perception, reasoning, and learning all being considered
in a unified framework that facilitates their close interaction.

We undertake such an investigation herein, with emphasis
on the fast nature of drawing inferences [Kahneman, 2011],
and the interplay of cognition and perception [Clark, 2013].

2 Perception Semantics
We assume that the environment is at each moment in a state.
An agent cannot directly access such a state. Rather, it uses a

pre-specified language to assign finite names to atoms, which
are used to represent concepts related to the environment. The
set of all such atoms is not explicitly provided upfront. Atoms
are encountered while the agent perceives its environment, or
introduced through the agent’s cognitive processing mecha-
nism. At the neural level, each atom might be thought of as a
set of neurons assigned to represent a concept [Valiant, 2006].

A scene s is a mapping from atoms to {0, 1, ∗}. We write
s[α] to mean the value associated with atom α, and call atom
α specified in scene s if s[α] ∈ {0, 1}. Scenes s1, s2 agree on
atom α if s1[α] = s2[α]. Scene s1 is an expansion of scene
s2 if s1, s2 agree on every atom specified in s2. Scene s1 is a
reduction of scene s2 if s2 is an expansion of s1. A scene s
is the greatest common reduct of a set S of scenes if s is the
only scene among its expansions that is a reduction of each
scene in S. A set S of scenes is compatible if there exists a
particular scene that is an expansion of each scene in S.

In simple psychological terms, a scene can be thought of as
the contents of an agent’s working memory, where the agent’s
perception of the environment state, and any relevant thereto
drawn inferences, are made concrete for further processing.
Following psychological evidence, the maximum number, de-
noted by w, of specified atoms in any scene used by the agent
can be assumed to be a small constant [Miller, 1956].

A propositional formula ψ is true (resp., false) and spec-
ified in s if ψ (resp., ¬ψ) is classically entailed by the con-
junction of: atoms α such that s[α] = 1, and the negation of
atoms α such that s[α] = 0; otherwise, ψ is unspecified in s.

When convenient, we represent fully and unambiguously a
scene as the set of its true literals (atoms or their negations).

To formalize the agent’s interaction with its environment,
let E denote the set of environments of interest, and let a par-
ticular environment 〈dist, perc〉 ∈ E determine: a prob-
ability distribution dist over states, capturing the possibly
complex and unknown dynamics with which states are pro-
duced; a stochastic perception process perc determining for
each state a probability distribution over a compatible subset
of scenes. The agent has only oracle access to 〈dist, perc〉
such that: in unit time the agent senses its environment and
obtains a percept s, resulting by an unknown state t being first
drawn from dist, and scene s then drawn from perc(t). A
percept s represents, thus, what the agent senses from state t.

Example 1. At a pedestrian crossing, the “Don’t Walk” state
(t1) is signaled by a light being red and no audible cue, while



the “Walk” state (t2) is signaled by the same light being green
along with an audible cue. A person (perc1) hears the audi-
ble cue or not irrespectively of whether the signal post hap-
pens to be obscured. A color-blind person (perc2) sees both
red and green lights as yellow, but still perceives the audible
cue, unless the person (perc3) also suffers from hearing loss.
Let s1 = {¬Cue}, s2 = {¬Cue,Red}, s3 = {¬Cue, Yellow}, s4 =
{Cue}, s5 = {Cue,Green}, s6 = {Cue, Yellow}, s7 = {Yellow}.

Consider a probability distribution dist assigning probabil-
ities 0.9, 0.1 to states t1, t2, and three perception processes:
perc1(t1) assigns probabilities 0.3, 0.7 to scenes {s1, s2}
perc1(t2) assigns probabilities 0.6, 0.4 to scenes {s4, s5}
perc2(t1) assigns probabilities 0.3, 0.7 to scenes {s1, s3}
perc2(t2) assigns probabilities 0.6, 0.4 to scenes {s4, s6}
perc3(t1) assigns probabilities 0.3, 0.7 to scenes { ∅ , s7}
perc3(t2) assigns probabilities 0.6, 0.4 to scenes { ∅ , s7}

Scenes in each set form a compatible subset, capturing the
possible ways in which the underlying state can be perceived.
Not assigning an a priori meaning to states obviates the need
to commit to an objective representation of the environment,
and accommodates cases where an agent’s perception process
determines not only what the agent does (or can possibly) per-
ceive, but also its interpretation. For instance, no perception
process above specifies the atom Safe of whether the agent it-
self believes it is safe to cross. The value of this atom could be
inferred internally by the agent’s reasoning process after per-
ceiving the other signals, but cannot be meaningfully deter-
mined by the environment state. Furthermore, how an agent
perceives the two states, or even whether it perceives them as
being distinct, depends on the agent’s perception abilities.

An agent’s key task is to decide how to act optimally (given
its perception process) in the current state of the environment.
Decision making is often facilitated by having access to more
information, and reasoning serves this role (amongst others):
it completes information not explicitly available in a percept.1
To do so, it utilizes knowledge that the agent has been given,
or has acquired, on certain regularities in the environment.

3 Reasoning Semantics
Since reasoning serves to complete information, one naturally
seeks representations and processes that determine efficiently
what inferences follow, and allow inferences to follow often.

A rule is an expression of the form ϕ λ, where formula
ϕ is the body of the rule, and literal λ is the head of the rule,
with ϕ and λ not sharing any atoms, and with ϕ being read-
once (no atom appears more than once). The intuitive reading
of a rule is that when the rule’s body holds in a scene, an agent
has certain evidence that the rule’s head should also hold.

A collection of rules could happen to simultaneously pro-
vide evidence for conflicting conclusions. To resolve such
conflicts, we let rules be qualified based on their priorities.

A knowledge base κ = 〈%,�〉 over a set R of rules com-
prises a finite collection % ⊆ R of rules, and an irreflexive
antisymmetric priority relation � that is a subset of % × %.

1Mercier and Sperber [2011] call this process “inferencing”, and
reserve the term “reasoning” for a process that produces arguments.

Although we may not make this always explicit, the rules in
% are named, and the priority relation � is defined over their
names. In general, then, duplicate rules can coexist in κ under
different names, and have different priorities apply on them.

Definition 1 (Exogenous and Endogenous Qualifications).
Rule r1 is applicable on scene si if r1’s body is true in si.
Rule r1 is exogenously qualified on scene si by percept s if
r1 is applicable on si and its head is false in s. Rules r1, r2
are conflicting if their heads are the negations of each other.
Rule r1 is endogenously qualified on scene si by rule r2 if
r1, r2 are applicable on si and conflicting, and r1 6� r2.

Based on qualification, we define the reasoning semantics.

Definition 2 (Step Operator). The step operator for a knowl-
edge base κ and a percept s is a mapping si

κ,s99Ksi+1 from a
scene si to the scene si+1 that is an expansion of s and differs
from s only in making true the head of each rule r in κ that:
(i) is applicable on si, (ii) is not exogenously qualified on si
by s, and (iii) is not endogenously qualified on si by a rule in
κ; such a rule r is called dominant in the step.

Intuitively: The truth-values of atoms specified in percept
s remain as perceived, since they are not under dispute.2 The
truth-values of other atoms in si are updated to incorporate
in si+1 the inferences drawn by dominant rules, and also up-
dated to drop any inferences that are no longer supported.3

The inferences of a knowledge base on a percept are deter-
mined by the set of scenes that one reaches, and from which
one cannot escape, by repeatedly applying the step operator.

Definition 3 (Inference Trace and Inference Frontier). The
inference trace of a knowledge base κ on a percept s is the
infinite sequence trace(κ, s) = s0, s1, s2, . . . of scenes, with
s0 = s and si

κ,s99Ksi+1 for each integer i ≥ 0. The infer-
ence frontier of a knowledge base κ on a percept s is the
subset-minimal set front(κ, s) of the scenes that appear in
trace(κ, s) after removing some finite prefix of trace(κ, s).

Theorem 1 (Properties of the Inference Frontier). Consider a
knowledge base κ, and a percept s. Then, front(κ, s) exists,
is unique, is non-empty, and includes finitely-many scenes.

Proof. An immediate consequence of Definition 3.

Example 2. Consider a knowledge base κ with the rules r1 :
Penguin  ¬Flying, r2 : Bird  Flying, r3 : Penguin  
Bird, r4 : Feathers Bird, r5 : Antarctica∧Bird∧Funny 
Penguin, r6 : Flying Wings, and the priority r1 � r2. For
percept s = {Antarctica,Funny,Feathers}, trace(κ, s) =

{Antarctica,Funny,Feathers},
{Antarctica,Funny,Feathers,Bird},
{Antarctica,Funny,Feathers,Bird,Flying,Penguin},
{Antarctica,Funny,Feathers,Bird,¬Flying,Penguin,Wings},
{Antarctica,Funny,Feathers,Bird,¬Flying,Penguin},
{Antarctica,Funny,Feathers,Bird,¬Flying,Penguin}, . . .

2Overriding percepts can be accounted for by introducing rules
that map each perceived atom to a duplicate version thereof, which
is thereafter amenable to endogenous qualification by other rules.

3Such updates are accommodated by having scene si+1 be an ex-
pansion of the percept s, but not necessarily of the current scene si.



and front(κ, s) is the singleton set whose only member is the
scene {Antarctica,Funny,Feathers,Bird,¬Flying,Penguin}.

Observe the back and forth while computing trace(κ, s).
Initially Bird is inferred, giving rise to Flying, and then to
Wings. When Penguin is later inferred, it leads rule r1 to op-
pose the inference Flying from rule r2, and in fact to override
and negate it. As a result of this overriding of Flying, infer-
ence Wings is no longer supported through rule r6, and is also
dropped, even though no other rule directly opposes it.

Thus, the inference trace captures the evolving contents of
an agent’s working memory, while the inference frontier cap-
tures the memory’s final (possibly fluctuating) contents. Re-
lated is a point by Harman [1974], who insists that we should
not infer that intermediate steps do not occur simply because
we do not notice them, and that our inability to notice them
might be due to the sheer speed with which we go through
them. Indeed, assuming that rule applicability is checked in
parallel (as for neurons in the brain), and recalling that scene
capacity is upper-bounded by a small constant w (ensured, for
instance, by keeping only the subpart of each scene that is co-
herent, as determined by an agent’s knowledge base [Murphy
and Medin, 1985]), one can see this sheer speed of reasoning.

Intuitively, each rule (i.e., its associated neuron) checks, in
parallel, to see if it is applicable on the current scene si, and
if its head is not specified in the input percept s. The bound w
on the size of scenes ensures the high efficiency of this check.
All rules that pass the check proceed to attempt to write, in
parallel, their head in a shared memory location (one for each
atom), and the rule with the highest priority succeeds, giving
rise to a scene si+1 such that si

κ,s99Ksi+1. Going from here
to computing the inference frontier requires checking for re-
peated scenes in the inference trace. If only singleton infer-
ence frontiers are of interest (as discussed next), such check-
ing reduces to whether si = si+1, which, again, can be done
efficiently. The nature of this computation is supported within
the Priority CRCW PRAM model [Cormen et al., 2009].

3.1 Entailment of Formulas
In general, the inference frontier may include multiple scenes,
and one can define multiple natural notions for entailment.
Definition 4 (Entailment Notions). A knowledge base κ ap-
plied on a percept s entails a formula ψ if ψ is:
(N1) true in a scene in front(κ, s);
(N2) true in a scene in front(κ, s) and not false in others;
(N3) true in every scene in front(κ, s);
(N4) true in the greatest common reduct of front(κ, s).

Going from the first to the last notion, entailment becomes
more skeptical. Only the first notion of entailment captures
what one would typically call credulous entailment, in that
ψ is possible, but ¬ψ might also be possible. The following
result clarifies the relationships between these notions.
Theorem 2 (Relationships Between Entailment Notions). A
knowledge base κ applied on a percept s entails ψ under Ni
if it entails ψ under Nj , for every pair of entailment notions
Ni, Nj with i < j. Furthermore, there exists a particular
knowledge base κ applied on a particular percept s that en-
tails a formula ψi under Ni but it does not entail ψi under
Nj , for every pair of entailment notions Ni, Nj with i < j.

Proof. The first claim follows easily. For the second claim,
consider a knowledge base κ with the rules r1 : >  a, r2 :
a b, r3 : a∧b c, r4 : c ¬a, r5 : c b, and the prior-
ity r4 � r1, and consider a percept s = ∅. trace(κ, s) com-
prises the repetition of the five scenes {a}, {a, b}, {a, b, c},
{¬a, b, c}, {¬a, b}, which constitute front(κ, s). The claim
follows by letting ψ1 = a, ψ2 = b, ψ3 = a∨b, and observing
that the greatest common reduct of front(κ, s) is ∅.

Note the subtle difference between the entailment notions
N3 and N4: under N4 an entailed formula needs to be not
only true in every scene in front(κ, s), but true for the same
reason. This excludes reasoning by case analysis, where an
inference can follow if it does in each of a set of collectively
exhaustive cases. When front(κ, s) = {{α} , {β}}, for in-
stance, the formula α∨β is true in every scene in front(κ, s)
by case analysis, and is entailed under N3, but not under N4.

When the inference frontier comprises only a single scene
(which is, therefore, a fixed-point of the step operator), all en-
tailment notions coincide. In the sequel we restrict our focus,
and define our entailment notion only under this special case,
remaining oblivious as to what entailment means in general.

Definition 5 (Resolute Entailment). A knowledge base κ is
resolute on a percept s if front(κ, s) is a singleton set; then,
the unique scene in front(κ, s) is the resolute conclusion of
κ on s. A knowledge base κ applied on a percept s on which
κ is resolute entails a formula ψ, denoted (κ, s) ||= ψ, if ψ is
true in the resolute conclusion of κ on s.

Although the entailment semantics itself is skeptical in na-
ture, the mechanism that computes entailment is distinctively
credulous. It jumps to inferences as long as there is sufficient
evidence to do so, and no immediate / local reason to qualify
them. If reasons emerge later that oppose an inference drawn
earlier, those are considered as they become available.

This fast and loose mechanism follows Bach [1984], who
argues for approaching default reasoning as “inference to the
first unchallenged alternative”. It is also reminiscent of the
spreading-activation theory [Collins and Loftus, 1975], which
can inform further extensions to make the framework even
more psychologically-valid (e.g., reducing the inference trace
length by including a decreasing gradient in rule activations).

3.2 Why Not Equivalences?
Are prioritized implications no more than syntactic sugar to
conceal the fact that one is simply expressing a single equiv-
alence / definition for each atom? We dismiss this possibility.

Consider a knowledge base κ. Let body(r0) and head(r0)
mean, respectively, the body and head of rule r0 in κ. Let
str(r0) mean the set of rules ri in κ such that r0, ri are
conflicting, and r0 6� ri; i.e., the rules that are stronger (or,
more precisely, not less preferred) than r0. Let exc(r0) ,∨
ri∈str(r0) body(ri); i.e., the condition for exceptions to r0.
Let cond(λ) ,

∨
ri:head(ri)=λ

(body(ri) ∧ ¬exc(ri)); i.e.,
the conditions under which literal λ is inferred. For each atom
α, let def(α) , (U ∨ cond(α)) ∧ ¬cond(¬α), where U is
an atom that does not appear in κ and is unspecified in ev-
ery percept of interest. Let T [κ] be the theory comprising an
equivalence def(α) ≡ α for each atom α appearing in κ.



We show, next, a precise sense in which this set of equiva-
lences captures the reasoning via the prioritized rules in κ.

Theorem 3 (Prioritized Rules as Equivalences). Consider a
knowledge base κ, a percept s = ∅, and a scene si specifying
every atom in rule bodies in κ. Then: si

κ,s99Ksi+1 if and only
if si+1 = {α | def(α) ≡ α ∈ T [κ], def(α) is true in si} ∪
{¬α | def(α) ≡ α ∈ T [κ], def(α) is false in si}.

Proof. Each dominant rule in si
κ,s99Ksi+1 leads the associated

equivalence to infer the rule’s head. Atoms with no dominant
rules are left unspecified by the associated equivalences.

In Theorem 3 we have used the step operator with the per-
cept s = ∅ simply as a convenient way to exclude the process
of exogenous qualification, and show that endogenous qual-
ification among prioritized rules is properly captured by the
translation to equivalences. It follows, then, that if one were
to define a step operator for equivalences and apply the exoge-
nous qualification coming from an arbitrary percept s on top
of the drawn inferences, one would have an equivalent step
operator to the one using prioritized rules with the percept s.

What is critical, however, and is not used simply for con-
venience in Theorem 3, is the insistence on having a scene si
in which every atom in rule bodies in κ is specified. Indeed,
the translation works as long as full information is available,
which is, of course, contrary to the perception semantics we
have argued for. For general scenes the translation is prob-
lematic, as illustrated by the following two natural examples.

Example 3. Consider a knowledge base κ with the rules r1 :
Bird  Flying, r2 : Penguin  ¬Flying, and the priority
r2 � r1. The resulting equivalence is of the form: (U∨Bird)∧
¬Penguin ≡ Flying. By applying Theorem 3, when si is the
scene {Bird,Penguin}, {Bird,¬Penguin}, {¬Bird,Penguin},
or {¬Bird,¬Penguin}, both the considered knowledge base
κ and the resulting equivalence give, respectively, rise to the
same inference ¬Flying, Flying, ¬Flying, or ‘unspecified’.
However, when si = {Bird}, the considered knowledge base
gives rise to the inference Flying, whereas the resulting equiv-
alence gives rise to the inference ‘unspecified’ for Flying.

Since the two formalisms agree on what to infer on a fully-
specified scene, they disagree on a general scene only when
one infers ‘unspecified’ and the other does not; i.e., they never
give rise to contradictory inferences in any single step. How-
ever, because of the multiple steps in the reasoning process,
contradictory inferences may arise at the end. Further, it is not
always the case that the knowledge base gives more specified
inferences when the formalisms disagree in a single step.

Example 4. Consider a knowledge base κ with the rules r1 :
β  α, r2 : ¬β  α. The resulting equivalence is of the
form: > ≡ α. On a scene si that specifies β, the formalisms
coincide, but on the scene si = ∅, the considered knowledge
base gives rise to the inference ‘unspecified’ for α, whereas
the resulting equivalence gives rise to the inference α.

Thinking that formalisms are more appropriate (in terms of
completeness) if they give more specified inferences, comes
from viewing them as computational processes meant to im-
plement an underlying mathematical logic. As we have seen,
however, case analysis might not be natural, and excluding it

could be psychologically-warranted. In this frame of mind,
it is the knowledge base that is more appropriate in both our
examples, jumping to the conclusion that birds fly when no
information is available on their penguin-hood, but avoiding
to draw a conclusion that would follow by a case analysis.

Beyond the conceptual reasons to choose prioritized rules
over equivalences, there are also certain formal reasons. First,
reasoning with equivalences is an NP-hard problem: evalu-
ating a 3-CNF formula (as the body of an equivalence) on a
scene that does not specify any formula atoms amounts to de-
ciding the formula’s satisfiability [Michael, 2010; 2011]. Sec-
ond, the knowledge representable in an equivalence is subject
to certain inherent limitations, which are overcome only when
multiple equivalences are used instead [Michael, 2014].

Of course, one could counter-argue that the case analysis,
and the intractability of reasoning that we claim is avoided
by using prioritized rules can easily creep in if, for instance, a
knowledge base includes the rule ϕ λ for ϕ = β∨¬β, or ϕ
equal to a 3-CNF formula. Our insistence on using read-once
formulas for the body of rules avoids such concerns.

Our analysis above reveals that the choice of representa-
tion follows inexorably from the partial nature of perception.
Prioritized rules are easy to check, while allowing expressiv-
ity through their collectiveness, and easy to draw inferences
with, while avoiding non-naturalistic reasoning patterns.

3.3 Why Not Argumentation?
Abstract argumentation [Dung, 1995] has revealed itself as a
powerful formalism, within which several forms of defeasible
reasoning can be understood. We examine the relation of our
proposed semantics to abstract argumentation, by considering
a natural way to instantiate the arguments and their attacks.
Definition 6 (Arguments). An argument A for the literal λ
given a knowledge base κ and a percept s is a subset-minimal
set of explanation-conclusion pairs of the form 〈e, c〉 ordered
such that: if e equals s, then c is a literal that is true in s; if
e equals a rule r in κ, then c is the head of the rule, and the
rule’s body is classically entailed by the set of conclusions in
the preceding pairs in A; c equals λ for the last pair in A.

We consider below two natural notions for attacks.
Definition 7 (Attack Notions). An argumentA1 for literal λ1
attacks an argumentA2 for literal λ2 given a knowledge base
κ and a percept s if there exist 〈e1, c1〉 ∈ A1 and 〈e2, c2〉 ∈
A2 such that c1 = λ1, c2 = ¬λ1, e2 is a rule in κ, and either
e1 = s or: (N1) e1 is a rule in κ and e2 6� e1; (N2) for every
〈e, c〉 ∈ A1 such that e is a rule in κ, it holds that e2 6� e.
Definition 8 (Argumentation Framework). The argumenta-
tion framework 〈A,R〉 associated with a knowledge base κ
and a percept s comprises the set A of all arguments for any
literal given κ and s, and the attacking relation R ⊆ A × A
such that 〈A1, A2〉 ∈ R if A1 attacks A2 given κ and s.

Most typical semantics for abstract and logic-based argu-
mentation frameworks give rise to multiple extensions, and
differ from our formalism either because they produce credu-
lous inferences, or because determining their skeptical infer-
ences requires checking all such extensions. We show below
that the grounded semantics can also be differentiated from
our proposed formalism, even if not on these same grounds.



Definition 9 (Argumentation Framework Entailment). A set
∆ of arguments entails a formula ψ if ψ is classically entailed
by the set {λ | A ∈ ∆ is an argument for λ} of literals. An
argumentation framework 〈A,R〉 entails a formula ψ if ψ is
entailed by the grounded extension of 〈A,R〉.
Theorem 4 (Incomparability with Argumentation). There ex-
ists a knowledge base κ, a percept s, and a formula ψ such
that: (i) κ is resolute on s, and (κ, s) ||= ¬ψ, (ii) for either at-
tack notion N1, N2, the argumentation framework 〈A,R〉 as-
sociated with κ and s is well-founded, and 〈A,R〉 entails ψ.

Proof. Let ψ=a. Consider a knowledge base κ with the rules

r1 : > a r2 : > b r3 : > c r4 : c ¬b
r5 : b ¬a r6 : b d r7 : d ¬a r8 : ¬a d

and the priorities r4 � r2, r5 � r1, r7 � r1. Consider the
percept s = ∅, on which κ is resolute. Indeed, trace(κ, s)
equals ∅, {a, b, c} , {¬a,¬b, c, d} , {¬a,¬b, c, d} , . . ., and
front(κ, s) = {{¬a,¬b, c, d}}. Clearly, (κ, s) ||= ¬a.

Consider, now, the set ∆ = {A1, A2} with the arguments
A1 = {〈r3, c〉 , 〈r4,¬b〉}, A2 = {〈r1, a〉}. Observe that no
argument A3 is such that 〈A3, A1〉 ∈ R. Furthermore, any
argument A4 such that 〈A4, A2〉 ∈ R includes either 〈r5,¬a〉
or 〈r7,¬a〉, and necessarily 〈r2, b〉. Thus, 〈A1, A4〉 ∈ R, and
therefore ∆ is a subset of the grounded extension of 〈A,R〉.
Clearly, 〈A,R〉 entails a. Also, 〈A,R〉 is well-founded.

The incomparability — even for resolute knowledge bases
and well-founded argumentation frameworks — is traceable
to the skeptical and rigid semantics of argumentation, which
meticulously chooses an argument (and thus a new inference)
to include in the grounded extension, after ensuring that the
choice is globally appropriate and will not be later retracted.

Such a treatment that reasons ideally and explicitly from
premises to conclusions is dismissed by Bach [1984], as not
even being a good cognitive policy. Rather, he stipulates that:
“When our reasoning to a conclusion is sufficiently complex,
we do not survey the entire argument for validity. We go more
or less step by step, and as we proceed, we assume that if each
step follows from what precedes, nothing has gone wrong[.]”.
Our framework makes concrete exactly this point of view.

4 Learning Semantics
Bach [1984] aptly asks: “Jumping to conclusions is efficient,
but why should it be reliable?”. We respond by positing that
the reliability of a knowledge base can be guaranteed through
a process of learning. An agent perceives the environment,
and through its partial percepts attempts to identify the struc-
ture in the underlying states of the environment. How can the
success of the learning process be measured and evaluated?

Given a set P of atoms, the P -projection of a scene s is
the scene sP , {λ | λ ∈ s and the atom of λ is in P}; the P -
projection of a set S of scenes is the set SP , {sP | s ∈ S}.
Definition 10 (Projected Resoluteness). Given a knowledge
base κ, a percept s, and a set P of atoms, κ is P -resolute on
s if the P -projection of front(κ, s) is a singleton set; then,
the unique scene in the P -projection of front(κ, s) is the
P -resolute conclusion of κ on s.

Definition 11 (Projected Completeness). Given a knowledge
base κ, a percept s, and a set P of atoms such that κ is P -
resolute on s, and si is the P -resolute conclusion of κ on s,
κ is P -complete on s if si specifies every atom in P .
Definition 12 (Projected Soundness). Given a knowledge
base κ, a compatible subset S of scenes, a percept s, and
a set P of atoms, such that κ is P -resolute on s, and si is the
P -resolute conclusion of κ on s, κ is P -sound on s against
S if {si} ∪ S is compatible; i.e., there is no atom that is true
(resp., false) in si and false (resp., true) in some scene in S.

The notions above can, then, be used to evaluate the per-
formance of a given knowledge base on a given environment.
Definition 13 (Knowledge Base Evaluation Metrics). Given
an environment 〈dist, perc〉 ∈ E, a set P of atoms, and a
real number ε ∈ [0, 1], a knowledge base κ is ε-resolute, ε-
complete, or ε-sound on 〈dist, perc〉 with focus P if with
probability at least ε an oracle call to 〈dist, perc〉 gives rise
to a state t being drawn from dist and a scene s being drawn
from perc(t) such that, respectively, κ is P -resolute on s, κ
is P -complete on s, or κ is P -sound on s against S, where S
is the compatible subset of scenes determined by perc(t).

It would seem unrealistic that a single globally-appropriate
tradeoff between these evaluation metrics should exist, and
that a learner should strive for a particular type of knowledge
base independently of context. Nonetheless, some guidance
is available. Prior work [Michael, 2014] shows that one can-
not be expected to provide explicit completeness guarantees
when learning from partial percepts, and that one should fo-
cus on soundness, letting reasoning over the multiple rules be-
ing considered to improve completeness to the extent allowed
by the perception process perc that happens to be available.

The seemingly ill-defined requirement to ensure soundness
against the unknown compatible subset S — effectively, the
state t that underlies percept s— can be achieved optimally in
some defined sense by (and only by) ensuring that the drawn
inferences are consistent with the percept s itself [Michael,
2010]; or, in the language of this work, that the rules used are
not exogenously qualified during the reasoning process.

Note that although the reasoning process can cope with ex-
ogenous qualification, this ability should be used in response
to unexpected / exceptional circumstances, and only as a last
resort. It is the role of the learning process to minimize the oc-
currences of exogenous qualifications, and to turn them into
endogenous qualifications, through which the agent internally
can explain why a certain rule failed to draw an inference.

Interestingly, the position above echoes evidence from the
behavioral and brain sciences, asserting that the human brain
is ultimately a predictive machine that learns (and even acts)
in a manner that will minimize surprisal in its percepts [Clark,
2013]. Our analysis reveals that surprisal minimization is not
necessarily an end in itself and a goal of the learning process,
but rather a means to the reliability of the reasoning process.

Examining learnability turns out to offer arguments for and
against our proposed formalism. On the positive side, learn-
ing when the atoms are not determined upfront remains pos-
sible and enjoys naturalistic algorithms for several problems
[Blum, 1992]. Priorities between implications can be identi-
fied by learning default concepts [Schuurmans and Greiner,



1994] or learning exceptions [Dimopoulos and Kakas, 1995].
On the negative side, partial percepts hinder learnability, with
even decision lists (hierarchical exceptions, bundled into sin-
gle equivalences) being unlearnable under typical worst-case
complexity assumptions [Michael, 2010; 2011]. Noisy per-
cepts also critically hinder learnability [Kearns and Li, 1993].

Back on the positive side, environments without adversar-
ially chosen partial and noisy percepts undermine the non-
learnability results. The demonstrable difference of a collec-
tion of prioritized implications from a single equivalence fur-
ther suggests that the non-learnability of the latter need not
carry over to the former. Back on the negative side again,
learning from partial percepts cannot be decoupled from rea-
soning, and one must simultaneously learn and predict to get
highly-complete inferences [Michael, 2014]. Efficiency con-
cerns, then, impose restrictions on the length of the inference
trace, which, fortuitously, can be viewed in a rather positive
light as being in line with psychological evidence on the re-
stricted depth of human reasoning [Balota and Lorch, 1986].

Overall, our framework would seem to lie at the edge be-
tween what is or is not (known to be) learnable. This realiza-
tion can be viewed as favorable evidence, since, one could ar-
gue, evolutionary pressure would have pushed for such an op-
timal choice for the cognitive processing in humans as well.

4.1 Boundaries of Learnability
Unsurprisingly, then, establishing the formal learnability of a
knowledge base should be viewed as a major open challenge,
and one that might need to be guided by a deeper understand-
ing of how humans come to acquire their world knowledge.
Nonetheless, we are able to provide some initial directions.

We consider certain complexity metrics for any knowledge
base κ = 〈%,�〉. The breadth of κ is the maximum number b
of body atoms in a rule r ∈ %. The depth of κ is the maximum
number d such that r0 � r1 � . . . � rd for rules ri ∈ %. A
Boolean (logic) circuit implements κ over a set P of atoms if
for every percept sP on which κ is P -resolute, the circuit on
sP outputs the P -resolute conclusion of κ on sP . The circuit
complexity of κ over P is the minimum size of such a circuit.
Theorem 5 (Unlearnability of Unbounded-Breadth Knowl-
edge Bases). For any positive integer b, and any set Pb of
atoms, there exists a set Eb of environments on each of which
there exists a target knowledge base with breath b and depth
1 that is 1-resolute, 1-complete, and 1-sound with focus Pb.
Under cryptographic assumptions, and for any ε > 0, there
is no algorithm that, given b and oracle access to an envi-
ronment 〈dist, perc〉 ∈ Eb, runs in time polynomial in the
circuit complexity of the target knowledge base over Pb, and
returns with probability at least ε a knowledge base that is ε-
complete and (1/2+ε)-sound on 〈dist, perc〉with focus Pb.

Proof. A circuitC over b input variables can be implemented
within a knowledge base κ with breadth b and depth 1: κ in-
cludes the rule r0 : > ¬α; for each disjunct ϕ in the DNF
representation of C, κ includes the rule r : ϕ  α and the
priority r � r0. The proof rests on the unlearnability of cir-
cuits under standard cryptographic assumptions [Kearns and
Vazirani, 1994] and proceeds roughly analogously to existing
unlearnability results; e.g., [Michael, 2014, Theorem 8].

Does a result analogous to Theorem 5 hold for knowledge
bases with unbounded depth? The question is inapplicable if
one disallows duplicate rules with different names (and prior-
ities), since breadth bounds imply depth bounds. With dupli-
cation things are less clear, and the question remains open.

Our discussion points to the main research problem: estab-
lishing the existence of naturalistic learning algorithms for
bounded-breadth and bounded-depth knowledge bases.

4.2 Does Learning Suffice?
One may wonder whether updating a knowledge base through
a process of learning suffices, or whether extra revision pro-
cesses are needed (e.g., removing parts of the knowledge base
through belief revision [Peppas, 2008]). We show that learn-
ing new rules suffices to nullify the effect of existing parts of
the knowledge base, if this happens to be desirable, without a
“surgery” to the existing knowledge [McCarthy, 1998].
Definition 14 (Knowledge Base Equivalence). Knowledge
bases κ1, κ2 are equivalent if for every percept s (on which
both κ1 and κ2 are resolute), front(κ1, s) = front(κ2, s).

Below we write κ1 ⊆ κ2 for two knowledge bases κ1 =
〈%1,�1〉 , κ2 = 〈%2,�2〉 to mean %1 ⊆ %2 and �1 ⊆ �2.
Theorem 6 (Additive Elaboration Tolerance). Consider two
knowledge bases κ0, κ1. Then, there exists a knowledge base
κ2 such that κ1 ⊆ κ2 and κ0, κ2 are equivalent.

Proof. Set κ2 := κ1. For each rule r : ϕ  λ in κ1, add to
κ2 the rule f1(r) : ϕ ¬λwith a fresh name f1(r). For each
rule r : ϕ  λ in κ0, add to κ2 the rule f0(r) : ϕ  λ with
a fresh name f0(r). Give priority to rule f0(r) over every
other rule that appears in κ2 because of κ1. For every priority
ri �0 rj in κ0, add to κ2 the priority f0(ri) �2 f0(rj).

5 Conclusions
For everyday cognitive tasks (as opposed to problem solving
tasks), humans resort to fast thinking [Kahneman, 2011], a
form of which we have formalized. The formalism has been
implemented in Mathematica, and is being used for an empir-
ical exploration of possible learning strategies and other ex-
tensions. A Prolog meta-interpreter (supporting two natural
representations of prioritized implications) for the reasoning
semantics has also been implemented to evaluate reasoning.

Related to our work is a neuroidal architecture that exploits
relational implications and learned priorities [Valiant, 2000a],
but does not examine the intricacies of reasoning with learned
rules on partial percepts. Extending this work to use relational
rules can proceed via known reductions [Valiant, 2000b].

In addition to other possible extensions (e.g., asynchronous
and / or probabilistic application of rules, decreasing gradi-
ent in rule activations, time-stamped atoms for temporal rea-
soning, coherence mechanism to ensure cognitive economy),
and further formal analysis (e.g., establishing learnability and
complexity results), we believe that, ultimately, the challenge
is the design and development of a cognitive system with the
following properties — towards which our formalism makes a
concrete step, and following which it can be further extended:
(1) perpetual and sustainable operation, without suppositions
on pre-specified and bounded collections of atoms or rules;



(2) continual improvement and evaluation, without desig-
nated training and testing phases for its learning process;
(3) autodidactic learnability, avoiding any dependence on
some form of external human supervision [Michael, 2010];
(4) a holistic architecture, integrating seamlessly perception,
reasoning, and learning in a coherent whole [Michael, 2014];
(5) non-rigidness and robustness, accommodating a graceful
recovery from externally and / or internally-induced errors,
a point raised by von Neumann [1961] when envisioning the
differences of a future logical theory of computation from for-
mal logic: “1. The actual length of ‘chains of reasoning’ [...]
will have to be considered.” and “2. The operations of logic
[...] will all have to be treated by procedures which allow ex-
ceptions (malfunctions) with low but non-zero probabilities.”.

In mechanizing human cognition, it might be that getting
the behavior right offers too little feedback [Levesque, 2014],
and that looking into the human psyche is the way to go.
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