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I. INTRODUCTION

Fuzzy logic can be simply characterized as a special many-
valued logic with special properties aiming at modeling of
the vagueness phenomenon and some parts of the meaning
of natural language by using graded approach, where grades
are (in general) from some lattice structure Q. From formal
point of view fuzzy logic provides a theoretical background for
the graded approach to vagueness. As a mathematical object
fuzzy logic has classical structure of a logic, i.e. it consists of
a first order language J which consists (as classically) of a
set of predicate symbols P ∈ P , a set of functional symbols
f ∈ F and a set of logical connectives {∧,∨,⇒,¬,⊗}.
Moreover J contains also a set Q of logical constants. In
that language, terms and formulas can be defined (by using
of inductive principle) in the same way as for a classical
first order predicate logic. With any classical logic a syntactic
structure is connected. It means that for any formula ψ of a
logic we can derive if that formula is provable (i.e. truth) in that
logic (in symbol ` ψ) or not. Principal tools for calculations
are deduction rules which are used in the logic. In a fuzzy
logic graded versions of deduction rules are used and it means
that we receive also a graded notion of a provability of a
formula, i.e. `α ψ means that ψ is true in the logic in a degree
α, where α ∈ Q. There is another tool for verification of a
provability ` ψ. Instead of syntactic methods (i.e. formal rules
for handling with formulas) we can use semantic methods,
i.e. methods based on interpretations of formulas in models.
A model E of a logic J (not important if a logic is a fuzzy
logic or classical one) is based on some concrete structure A
(in general, an object of some category) and interpretations
of predicate and functional symbols in that structure. As a
result of an interpretation we can define a truth valuation of a
formula in a model E . For a fuzzy logic a truth valuation can
be principally defined in two different ways:

(i) As a fuzzy set object ‖ψ‖, i.e. a special morphism
‖ψ‖ : A→ Q in a corresponding category, or

(ii) As a cut object (|ψ|α)α∈Q, where |ψ|α are special
(nested) subobjects in A in a corresponding category.

Intuitively,

1) If ‖ψ‖ is a fuzzy set object in A, it means that for
any ”element” a ∈ A, ‖ψ‖(a) ∈ Q is a degree in
which a formula ψ is true in model E , if the value
of free variables x in ψ is substituted by elements
a ∈ A.

2) If (|ψ|α)α is a cut object in A, then |ψ|α is a ”subset”
of all interpretations in A of free variables, for which
a formula ψ is true in a model E in a degree at least
α.

It can be then proved that for some types of models and
some fuzzy logic (based on some special deduction rules)
a completeness theorem is true, i.e. `1Q ψ if and only if∨

a∈A ‖ψ‖(a) = 1Q for any model E . For more details
concerning fuzzy logic and its models see e.g. [12].

In the paper we will be interested in constructions of fuzzy
logic models in general settings - in some categories. That
approach enables us to extend significantly a variety of possible
models of fuzzy logic and to create tools for calculating values
‖ψ‖E depending on models E . An idea to construct a model
of a logic in categories is not new. A comprehensive study
has been done in [6], nevertheless all important results were
received for a very special category only, namely for a topos,
which seems not to be very useful for fuzzy set theory. In the
paper we will be interested in more general categories which
are based on sets with similarity relations (i.e. a graded identity
relation) with values in residuated lattice. In general, such
categories are not topoi, but as generalizations of fuzzy sets
seem to be very useful for fuzzy logic models constructions.

As a result, we construct 2 types of models of a fuzzy
logic based on two different categories Set(Q) and SetS(Q)
and for each category we define two different types on formula
interpretations and we show some relationships between these
interpretations.

II. PRELIMINARY NOTIONS AND RESULTS

In this section we present some preliminary notions and
definitions which could be helpful for better understanding
of results concerning sets with similarity relations. Most of
these notions can be found e.g. in [9], [8], [7]. A principal
structure used in the paper is a complete residuated lattice (see
e.g. [12]), i.e., a structure Q = (Q,∧Q,∨Q,⊗Q,→Q, 0Q, 1Q)
such that (Q,∧Q,∨Q) is a complete lattice, (Q,⊗Q, 1Q) is
a commutative monoid with operation ⊗Q isotone in both
arguments and →Q is a binary operation which is residuated
with respect to ⊗Q, i.e.,

α⊗Q β ≤ γ iff α ≤ β →Q γ.



For simplicity the index Q will be sometimes omitted.

Any classical set A can be considered as a pair (A,=),
where = is the equality relation. It is then natural to consider
a generalization of that pair, i.e., a pair (A, δ), where δ is a
similarity relation. Recall that a similarity relation in A is a
map δ : A×A→ Ω such that

(a) (∀x ∈ A) δ(x, x) = 1,
(b) (∀x, y ∈ A) δ(x, y) = δ(y, x),
(c) (∀x, y, z ∈ A) δ(x, y)⊗ δ(y, z) ≤ δ(x, z) (general-

ized transitivity).

A pair (A, δ) will be called Q-set. In the paper, we will
be working not only with Q-sets, but also with ”mappings”
between Q-sets, i.e., it seems to be useful to use a category
theory tools for further investigation of such structures. We
basically use two categories with Q-sets as objects and with
differently defined morphisms. A morphism f : (A, δ) →
(B, γ) in the first category Set(Q) is a map f : A → B
such that γ(f(x), f(y)) ≥ δ(x, y) for all x, y ∈ A. The other
category SetS(Q) is an analogy of the category of sets with
relations between sets as morphisms. Objects of the category
SetS(Q) are the same as in the category Set(Q) and morphisms
f : (A, δ)→ (B, γ) are maps f : A×B → Ω (i.e., Q-valued
relations) such that

(a) (∀x, z ∈ A)(∀y ∈ B) δ(z, x)⊗ f(x, y) ≤ f(z, y),
(b) (∀x ∈ A)(∀y, z ∈ B) f(x, y)⊗ γ(y, z) ≤ f(x, z).
(c) (∀a ∈ A) 1 =

∨
{f(x, y) : y ∈ B}.

If f : (A, δ) → (B, γ) and g : (B, γ) → (C,ω) are two
morphisms in SetS(Q), then their composition is a relation
g ◦ f : A× C → Ω such that

g ◦ f(x, z) =
∨
y∈B

(f(x, y)⊗ g(y, z)).

It should be mentioned that there is another category of sets
with similarity relations as objects, which was intensively
investigated. Namely the category SetS(Q) with morphisms
satisfying previous conditions (a) and (b) only. Unfortunately,
that category is not appropriate for logic interpretation, because
of a lack of categorical products, which are important for
models constructions.

Lemma II.1 There exists a functor F : Set(Q)→ SetS(Q).

As we mentioned in Introduction, a fuzzy set f in an Q-set
(A, δ) in a category K of Q-sets (in symbol: f ⊂∼K

(A, δ))
is a morphism f : (A, δ) → (Q,↔) in a category K, where
↔ is the biresiduation operation in Q defined by α ↔ β =
(α → β) ∧ (β → α). Hence, f ⊂∼Set(Q)

(A, δ), if f : A → Ω

is a map such that δ(x, y) ≤ f(x) ↔ f(y), or equivalently,
f(x)⊗ δ(x, y) ≤ f(y) for all x, y ∈ A. Analogously, a fuzzy
set in the category SetS(Q) is a map f : A × Q → Q which
has to satisfy the following conditions:

1) f(x, α)⊗ δ(x, y) ≤ f(y, α), for all x, y ∈ A,α ∈ Q,
2) f(x, α) ⊗ (α ↔ β) ≤ f(x, β), for all x ∈ A,α, β ∈

Q,
3) 1 =

∨
α∈Q f(x, α), for any x ∈ A.

A set of all fuzzy sets f ⊂∼K
(A, δ) in a Q-set (A, δ) is

an object function of a functor, for K = Set(Q) or SetS(Q).
In fact, there exists a functor FK : K → Set that is defined
by FK(A, δ) = {s : s ⊂∼K

(A, δ)}. If f : (A, δ) → (B, γ)

is a morphism in K, then the map FK(f) : FK(A, δ) →
FK(B, γ) is defined differently for categories K = Set(Q)
and K = SetS(Q). We have,

FSet(Q)(f)(s)(b) =
∨
x∈A

s(x)⊗ γ(b, f(x)),

for all b ∈ B and any s ⊂∼Set(Q)
(A, δ) (see [8]) and for the

category SetS(Q) we have,

(∀b ∈ B)(∀α ∈ Q)FSetS(Q)(f)(s)(b, α) =
∨
a∈A

f(a, b)⊗s(a, α),

for all b ∈ B,α ∈ Q (see [9]).

Proposition II.1 There exists a natural transformation

σ : FSet(Q) → FSetS(Q) ◦ F.

Not every maps A→ Q or A×Q→ Q, respectively, are
morphisms in category Set(Q) or SetS(Q), respectively. On
the other hand, any such maps can be extended to morphisms,
according the following methods.

Lemma II.2 Let (A, δ), (B, γ) be Q-sets and let g : A×B →
Q be a map, such that 1 =

∨
b∈B g(a, b), for any a ∈ A. Let

g̃ : A×B → Q be defined by the formula

g̃(a, b) =
∨
x∈A

∨
y∈B

g(x, y)⊗ δ(a, x)⊗ γ(b, y).

Then

1) g̃ is a morphism in SetS(Q),
2) g̃ =

∧
{h : h is a morphism (A, δ) → (B, γ) in

SetS(Q), h ≥ g},
3) If g is a morphism in SetS(Q), then g̃ = g.

Lemma II.3 Let (A, δ) be an Q-set and let s : A → Q be
a map. Then we define a map ŝ : A → Q such that ŝ(a) =∨
x∈A δ(a, x)⊗ s(x) for all a ∈ A. Then

1) ŝ : (A, δ)→ (Q,↔) is a morphism in Set(Q),
2) If s : (A, δ)→ (Q,↔) is a morphism in Set(Q) then

ŝ = s,
3) ŝ =

∧
{t : t is a morphism (A, δ) → (Q,↔), t ≥ s

in Set(Q)}.

It is well known that any classical fuzzy set (with values in
a residuated lattice Q) in a set A can be alternatively expressed
as a system of α-cuts C = (Cα)α, where C is a nested system
of subsets of A. In our previous papers ([8], [7]) we proved that
analogical representations of fuzzy sets by special cuts, named
f-cuts, exists in categories Set(Q),SetS(Q). The definitions of
these f-cuts is as follows.

Definition II.1 Let (A, δ) be a Q-set. Then a system C =
(Cα)α∈Q of subsets in A is called an f-cut in (A, δ) in the
category Set(Q) if



1) ∀a, b ∈ A, a ∈ Cα ⇒ b ∈ Cα⊗δ(a,b),
2) ∀a ∈ A,∀α ∈ Q,

∨
{β:a∈Cβ} β ≥ α⇒ a ∈ Cα.

Definition II.2 Let (A, δ) be a Q-set. Then a system (Cα)α∈Q
is called an f-cut in (A, δ) in the category SetS(Q), if

1) Cα ⊆ A×Q, for any α ∈ Q,
2) ∀a, b ∈ A, (a, β) ∈ Cα ⇒ (b, β) ∈ Cα⊗δ(a,b),
3) ∀a ∈ A,∀γ ∈ Q,

∨
{β:(a,γ)∈Cβ} β ≥ α⇒ (a, γ) ∈

Cα,
4) ∀a ∈ A,∀α, γ ∈ Q, (a, α) ∈ Cβ ⇒ (a, γ) ∈

Cβ⊗(α↔γ),
5) ∀a ∈ A, 1 =

∨
{(α,β):(a,α)∈Cβ} β

It is cleat that not every system of subsets (Cα)α from A or
A×Q is an f-cut. On the other hand, analogously as for fuzzy
set, such systems can be extended to f-cuts, as the following
lemmas show.

Proposition II.2 Let (A, δ) be a Q-set and let (Cα)α be a
system of subsets in a set A. For any α ∈ Q we set

Cα = {a ∈ A :
∨

{(x,β):x∈Cβ}

β ⊗ δ(a, x) ≥ α}.

Then

1) Cα ⊆ Cα for all α ∈ Q,
2) (Cα)α is an f-cut system in (A, δ) in the category

Set(Q),
3) If (Cα)α is an f-cut system in (A, δ) in the category

Set(Q), then Cα = Cα for all α ∈ Q.
4) If (Dα)α is a system of subsets in A such that Cα ⊆

Dα for all α ∈ Q, then Cα ⊆ Dα for all α ∈ Q.

An analogical result holds for the category SetS(Q).

Proposition II.3 Let (A, δ) be a Q-set and let (Cα)α be
a system of subsets in a set A × Q, such that 1 =∨
{(α,β):(a,α)∈Cβ} β, for all a ∈ A. For any α ∈ Q we set

Cα =

{(a, β) ∈ A×Q :
∨

{(x,τ,ρ):(x,τ)∈Cρ}

ρ⊗ δ(a, x)⊗ (τ ↔ β) ≥ α}.

Then

1) Cα ⊆ Cα for all α ∈ Q,
2) (Cα)α is an f-cut in (A, δ) in the category SetS(Q),
3) If (Cα)α is an f-cut in (A, δ) in the category SetS(Q),

then Cα = Cα for all α ∈ Q.
4) If (Dα)α is a system of subsets in A such that Cα ⊆

Dα for all α ∈ Q, then Cα ⊆ Dα for all α ∈ Q.

Analogously as for fuzzy sets, there exists a functor CK :
K→ Set, such that CK(A, δ) is the set of all f-cuts in (A, δ)
in a category K = Set(Q),SetS(Q) (for details see [10], [7]).
In the same papers the following theorem is proved.

Theorem II.1 For a category K = Set(Q), SetS(Q), there
exists a natural isomorphism ΨK : FK → CK.

It means, especially, that for any Q-set (A, δ) and any category
K = Set(Q),SetS(Q), there exists a bijection ΨK,(A,δ) :
CK(A, δ)→ FK(A, δ).

Proposition II.4 There exists a natural transformation

τ : CSet(Q) → CSetS(Q) ◦ F.

We show only how that transformation is defined. Let (A, δ)
be a Q-set and let C = (Cα)α ∈ CSet(Q)(A, δ) be an f-cut
in (A, δ) in the category Set(Q). Then τ(A,δ)(C) = (Dα)α,
where Dα = {(a, γ) :

∨
a∈Cβ β ↔ γ ≥ α}.

III. CONSTRUCTION OF MODELS OF A FUZZY LOGIC IN
CATEGORIES SET(Q) AND SETS(Q)

Let us recall some definitions and results concerning inter-
pretation of a fuzzy logic in models based on Q-sets (see [12],
[11]). Recall that a first order predicate fuzzy logic is based
on a first order language J which consists (as classically) of
a set of predicate symbols P ∈ P , a set of functional symbols
f ∈ R and a set of logical connectives {∧,∨,⇒,¬,⊗}.
Terms and formulas are defined analogously as for the classical
predicate logic by using of the inductive principle.

Let K be a category with Q-sets as objects and such that
for any set of objects {(Ai, δi) : i ∈ I} there exists a product
(A, δ) =

∏
i∈I(Ai, δi). Recall that a product of {(Ai, δi) :

i ∈ I} in a category K is an object (A, δ) with morphisms
pri : (A, δ) → (Ai, δi) such that for any other object (B, γ)
with morphisms qi : (B, γ)→ (Ai, δi) there exists the unique
morphism q =

∏
i qi such that the diagram commutes:

(A, δ) (A, δ)

pri

y xq=∏
i qi

(Ai, δi)
qi←−−−− (B, γ).

Recall, how a product is constructed in our categories Set(Q)
and SetS(Q). Let (Ai, δi) be Q-sets, i ∈ I . Let us consider
the category Set(Q), firstly. Then

∏
i∈I(Ai, δi) = (AI , δI),

where AI is the cartesian product of sets Ai and δI(a,b) =∧
i∈I δi(ai, bi), for any a,b ∈ A. The projection morphisms

pri : (AI , δI) → (Ai, δi) are classical projection maps and if
qi : (B, γ) → (Ai, δi) are morphisms, for i ∈ I , the unique
morphism

∏
i qi is such that

∏
i qi(b) = (qi(b))i ∈ AI , for

any b ∈ B.

Now, let us consider the category SetS(Q). A product
(AI , δI) is the same object as in the category Set(Q), but
with different projection morphisms pri defined such that
pri : (AI , δI) → (Ai, δi) in the category SetS(Q), i.e.
pri : AI × Ai → Q, such that pri(a, b) = δi(ai, b), for
a ∈ AI , b ∈ Ai. If qi : (B, γ) → (Ai, δi) are morphisms,
for i ∈ I , the unique morphism

∏
i qi is such that

∏
i qi :

B × AI → Q,
∏
i qi(b,a) =

∧
i qi(b, ai). If (Ai, δi) = (A, δ)

for every i = 1, . . . , n, then
∏
i(Ai, δi) will be denoted by

(An, δn).

We now introduce two types of models of a fuzzy logic in
a category K = Set(Q) or SetS(Q).



Definition III.1 A fuzzy set model of a language J in a
category K is

EK = ((A, δ), {PE,K : P ∈ P}, {fE,K : f ∈ R}),

where

(1) (A, δ) is an Q-set from a category K,
(2) PE,K is a fuzzy set in (A, δ)n in a category K, i.e.,

a morphism (A, δ)n → (Q,↔),
(3) fE,K : (A, δ)n → (A, δ) is a morphism in a category

K.

Definition III.2 A cut model of a language J in a category
K is

DK = ((A, δ), {PD,K : P ∈ P}, {fD,K : f ∈ R}),

where

(1) (A, δ) is an Q-set from a category K,
(2) PD,K is an f-cut in (A, δ)n in a category K, PD,K =

(Pα)α,
(3) fD,K : (A, δ)n → (A, δ) is a morphism in a category

K.

If ψ is a formula in a fuzzy logic with a set X of free
variables, then an interpretation ‖ψ‖ of ψ will be different for
different types of a model.

(a) Interpretation ‖ψ‖E,K in a model EK is a fuzzy set
in a category K,

(b) Interpretation ‖ψ‖D,K in a model DK is an f-cut in
a category K.

Intuitively,

1) If ‖ψ‖ is a fuzzy set in (A, δ)X , it means that for
any a = (ax)x∈X ∈ AX , ‖ψ‖(a) ∈ Q is a degree in
which a formula ψ is true in model E , if the value of
a variable x is substituted by element ax ∈ A.

2) If ‖ψ‖ is an f-cut (|ψ|α)α in (A, δ)X , then |ψ|α is a
set of all interpretations (in A) of free variables from
X , for which a formula ψ is true in a model E in a
degree at least α.

Now we present these definitions of ‖ψ‖ in our two types of
models. First of all, we need to define an interpretation of terms
in our models. The definition will be the same for all two types
of models. Let G = EK or DK be a model of a language J in a
category K. An interpretation of a term with a set of variables
contained in a set X is a morphism ‖t‖G,K : (A, δ)X → (A, δ)
in a category K, defined as follows:

1) Let t = x, where x ∈ X . Then ‖t‖G,K := prx :
(A, δ)X → (A, δ) is the x-projection morphism in
the category K.

2) Let t = f(t1, . . . , tn). Then ‖t‖G,K is a composition
(in K) of morphisms

(A, δ)X
∏
i ‖ti‖G,K−−−−−−−→ (A, δ)n

fG,K−−−−→ (A, δ).

For example, for K = SetS(Q) we have ‖t‖G,SetS(Q)(a, b) =∨
x∈An

∧n
i=1 ‖ti‖(a, xi)⊗ fG(x, b), where a ∈ AX , b ∈ A.

A definition of ‖ψ‖ will differs for different types of
models and different categories K = Set(Q),SetS(Q). Defi-
nitions will be done by the induction principle depending on
a structure of ψ.

Definition III.3 (Interpretation in models ESet(Q), ESetS(Q))
Let K be the category Set(Q) or SetS(Q), respectively. An
interpretation ‖ψ‖ = ‖ψ‖E,K,X of ψ with free variables in a
set X in a category K is defined as follows.

1) Let ψ ≡ P (t1, . . . , tn). Then ‖ψ‖E,K is defined as
the composition of the following morphisms in K:

(A, δ)X
∏
i ‖ti‖E,K−−−−−−−→ (A, δ)n

PE,K−−−−→ (Q,↔).

2) Let ψ ≡ t1 = t2. Then ‖ψ‖E,K is the composition of
the following morphisms in K:

(A, δ)X
‖t1‖E,K×‖t2‖E,K−−−−−−−−−−−→ (A, δ)2

(A, δ)2 ∆K,E−−−−→ (Q,↔),

where ∆K,E is a morphism in K, which interprets
equality in a model EK.

3) Let ψ ≡ σ∇τ , where ∇ represents logical connec-
tives ∧,∨, =⇒ ,⊗, respectively. Then ‖ψ‖E,K is the
composition of the following morphisms:

(A, δ)X
‖σ‖E,K×‖τ‖E,K−−−−−−−−−−→ (Q,↔)2

(Q,↔)2 �K,E−−−−→ (Q,↔),

where �K,E is a morphism in K, which inter-
prets logical operations ∧,∨,→,⊗, respectively, in
a model EK.

4) Let ψ ≡ ¬σ. Then ‖ψ‖E,K is the composition of the
following morphisms:

(A, δ)X
‖σ‖E,K−−−−−→ (Q,↔)

¬K,E−−−−→ (Q,↔),

where ¬K,E is a morphism in K, which interprets
logical negation in a model EK.

5) Let ψ ≡ (∀x)σ. Then ‖σ‖E,K,X∪{x} is already
defined as a morphism (A, δ)X × (A, δ) → (Q,↔)
in K. Then we set

‖ψ‖E,K,X(a) =
∧
x∈A
‖σ‖E,K,X∪{x}(a, x).

Let us now consider some examples of interpretations
of logical connectives in categories Set(Q) and SetS(Q),
presented in the definition.

Example III.1

1) A reasonable example of a morphism ∆Set(Q),E could be
the morphism δ̂ : (A, δ)2 → (Q,↔) (see Lemma I.3), i.e.

δ̂(a, b) =
∨

x,y∈A
δ(x, y)⊗ (δ(a, x) ∧ δ(b, y)).

2) A morphism ∆SetS(Q),E can be also defined as a map A2×
Q→ Q by using results from Lemmas I.1-I.3 in several natural
ways, i.e.:

(i) ∆SetS(Q),E((a, b), α) = F (δ̂)((a, b), α),



(ii) ∆SetS(Q),E((a, b), α) = F̃ (δ)((a, b), α).

3) ∧Set(Q),E which interprets logical connective ∧ can be
∧Q. In fact, the following holds for any a, a′, b, b′ ∈ A:

(a ∧Q a′)↔ (b ∧Q b′) ≥ (a↔ b) ∧Q (a′ ↔ b′),

which represents a fact that ∧Q : (Q,↔)2 → (Q,↔) is a
morphism in Set(Q).

4) ∧SetS(Q),E can be defined by ∧SetS(Q),E((β, γ), α) =
α ↔ (β ∧ γ). In fact, ∧SetS(Q),E : (Q,↔)2 → (Q,↔) is
a morphism in SetS(Q), as it can be proved by a simple
calculation.

5) On the other hand, the operation →Q is not a mor-
phism in Set(Q) and a reasonable candidate for interpretation
→Set(Q),E of a logical implication in Set(Q) can be then →̂.

6) Analogously,→SetS(Q),E can be defined naturally in two
different ways:

(i) →SetS(Q),E= ˜F (→Set(Q),E),
(ii) →SetS(Q),E= F (→̂Set(Q),E).

7) ¬Set(Q),E can be defined as a morphism (Q,↔) →
(Q,↔), such that ¬Set(Q),E(α) = ¬̂(α) =

∨
β∈Q(β →

0Q)⊗ (α↔ β).

Proposition III.1 ‖ψ‖E,K,X is a fuzzy set in (A, δ)X in any
category K = Set(Q), SetS(Q).

Definition III.4 (Interpretation in model DSet(Q)) An inter-
pretation ‖ψ‖ = ‖ψ‖D,Set(Q),X of ψ with free variables in a
set X in the category Set(Q) is an f-cut (|ψ|α)α in (A, δ)X

defined as follows (instead of ‖t‖D,Set(Q) we write ‖t‖, for any
term t).

1) Let ψ ≡ P (t1, . . . , tn). Then

|ψ|α = {a ∈ AX : (‖t1‖(a), . . . , ‖tn‖(a)) ∈ Pα}.

2) Let ψ ≡ t1 = t2. Then

|ψ|α = {a ∈ AX : ∆Set(Q),D(‖t1‖(a), ‖t2‖(a)) ≥ α},

where ∆Set(Q),D is a morphism in Set(Q), which
interprets equality in a model DSet(Q).

3) Let ψ ≡ σ∇τ , where ∇ represents logical con-
nectives ∧,∨, =⇒ ,⊗, respectively. Let ‖σ‖ =
(|σ|β)β , ‖τ‖ = (|τ |γ)γ be f-cuts in (A, δ)X . Then

|ψ|α = {a ∈ AX : (
∨

a∈|σ|β

β)�Set(Q),D(
∨

a∈|τ |γ

γ) ≥ α},

where�Set(Q),D is a morphism (Q,↔)2 → (Q,↔) in
Set(Q), which interprets logical operations ∧,∨,→
,⊗, respectively, in a model DSet(Q).

4) Let ψ ≡ ¬σ. Let ‖σ‖ = (|σ|β)β be an f-cut. Then

|ψ|α = {a ∈ AX : ¬Set(Q),D(
∨

a∈|σ|β

β) ≥ α},

where ¬Set(Q),D is a morphism in Set(Q), which
interprets logical negation in a model DSet(Q).

5) Let ψ ≡ (∀x)σ. Then ‖σ‖D,Set(Q),X∪{x} is already
defined as an f-cut (|σ|β)β in (A, δ)X∪{x} and we
set

|ψ|α = {a ∈ AX :
∧

{(x,β):x∈A,β∈Q,(a,x)∈|σ|β}

β ≥ α}.

Proposition III.2 ‖ψ‖D,Set(Q),X = (|ψ|α)α is an f-cut in
(A, δ)X in the category Set(Q).

Finally, we will describe an interpretation in the model
DSetS(Q).

Definition III.5 (Interpretation in model DSetS(Q)) An in-
terpretation ‖ψ‖ = ‖ψ‖D,SetS(Q),X of ψ with free variables
in a set X in the category SetS(Q) is an f-cut (|ψ|α)α in
(A, δ)X in the category SetS(Q), defined as follows (instead
of ‖t‖D,SetS(Q) we write ‖t‖ for any term t).

1) Let ψ ≡ P (t1, . . . , tn). Then

|ψ|α = {(a, β) ∈ AX ×Q :∨
x∈An

n∧
i=1

‖ti‖(a, xi)⊗
∨

{γ:(x,β)∈Pγ}

γ ≥ α}.

2) Let ψ ≡ t1 = t2. Then

|ψ|α = {(a, β) ∈ AX ×Q :∨
(x,y)∈A2

(‖t1‖(a, x) ∧ ‖t2‖(a, y))⊗

∆SetS(Q),D((x, y), β) ≥ α},
where ∆SetS(Q),D is a morphism in SetS(Q), which
interprets equality in a model DSetS(Q).

3) Let ψ ≡ σ∇τ , where ∇ represents logical con-
nectives ∧,∨, =⇒ ,⊗, respectively. Let ‖σ‖ =
(|σ|β)β , ‖τ‖ = (|τ |γ)γ be f-cuts in (A, δ)X in
SetS(Q). Then

|ψ|α = {(a, ϕ) ∈ AX ×Q :∨
ρ,ε

(
∨

{(γ,ω):(a,ρ)∈|σ|γ ,(a,ε)∈|τ |ω}

γ ∧ ω)⊗

�SetS(Q),D((ρ, ε), ϕ) ≥ α},
where �SetS(Q),D is a morphism (Q,↔)2 → (Q,↔
) in SetS(Q), which interprets logical operations
∧,∨,→,⊗, respectively, in a model DSetS(Q).

4) Let ψ ≡ ¬σ. Let ‖σ‖ = (|σ|β)β be an f-cut. Then

|ψ|α = {(a, ρ) ∈ AX ×Q :∨
{(β,γ):(a,β)∈|σ|γ}

γ ⊗ ¬SetS(Q),D(β, ρ) ≥ α},

where ¬SetS(Q),D is a morphism (Q,↔)→ (Q,↔) in
SetS(Q), which interprets logical negation in a model
DSetS(Q).

5) Let ψ ≡ (∀x)σ. Then ‖σ‖D,SetS(Q),X∪{x} is already
defined as an f-cut (|σ|β)β in (A, δ)X∪{x} × (Q,↔)
and we set

|ψ|α = {(a, ρ) ∈ AX ×Q :∧
{(x,β):x∈A,β∈Q,((a,x),ρ)∈|σ|β}

β ≥ α}.



Proposition III.3 ‖ψ‖D,SetS(Q),X = (|ψ|α)α is an f-cut in
(A, δ)X in the category SetS(Q).

IV. RELATIONS BETWEEN INTERPRETATIONS

As we know from Section II, there are some relations
between categories Set(Q) and SetS(Q) and between fuzzy
sets and f-cuts in these categories. Roughly speaking, fuzzy
sets and f-cuts in one of these categories represent the same
objects. It is then natural to ask a question, if some rela-
tions exist also between interpretations of formulas in models
ESet(Q), ESetS(Q),DSet(Q) and DSetS(Q). In that section we show
some principal relations between these interpretations in the
case, that corresponding models are derived from one generic
model. In the following definition we use a notation from
Lemma II.1 and Theorem II.1.

Definition IV.1 We say that models ESetS(Q),DSet(Q) or
DSetS(Q) are associated with a model ESet(Q), if the following
hold:

1) Model ESetS(Q) is associated with ESet(Q), if
a) PE,SetS(Q) = F (PE,Set(Q)), for any P ∈ P ,
b) fE,SetS(Q) = F (fE,Set(Q)), for any f ∈ R,
c) ∆SetS(Q),E = F (∆Set(Q),E),
d) �SetS(Q),E = F (�Set(Q),E),
e) ¬SetS(Q),E = F (¬Set(Q),E).

2) Model DSet(Q) is associated with ESet(Q), if
a) PD,Set(Q) = Ψ(A,δ)n(PE,Set(Q)), for any P ∈

P ,
b) fD,Set(Q) = fE,Set(Q), for all f ∈ R,
c) ∆Set(Q),D = ∆Set(Q),E ,
d) �Set(Q),D = �Set(Q),E ,
e) ¬Set(Q),D = ¬Set(Q),E .

3) Model DSetS(Q) is associated with ESet(Q), if
a) PD,SetS(Q) = Ψ(A,δ)n(F (PE,Set(Q)),
b) fD,SetS(Q) = F (fE,Set(Q)),
c) ∆SetS(Q),D = F (∆Set(Q),E),
d) �SetS(Q),D = F (�Set(Q),E),
e) ¬SetS(Q),D = F (¬Set(Q),E).

Proposition IV.1 Let t be a term and let ESetS(Q), DSet(Q) and
DSetS(Q) be associated with model ESet(Q). Then we have

‖t‖E,Set(Q) = ‖t‖D,Set(Q),

‖t‖E,SetS(Q) = ‖t‖D,SetS(Q) = F (‖t‖E,Set(Q)).

Theorem IV.1 Let ψ be a formula and let model ESetS(Q) be
associated with model ESet(Q).

(i) Let ψ does not contain quantifier ∀. Then

‖ψ‖E,SetS(Q) = F (‖ψ‖E,Set(Q)).

(ii) Let ψ = (∀x)σ. Then

‖ψ‖E,SetS(Q) ≤ F (‖ψ‖E,Set(Q)).

Theorem IV.2 Let a model DSet(Q) be associated with a model
ESet(Q). Let for a formula ψ with free variables contained in
a set X , ‖ψ‖D,Set(Q) be an f-cut (|ψ|α)α∈Q in the category
Set(Q). Then

(∀α ∈ Q) |ψ|α = {a ∈ AX : ‖ψ‖E,Set(Q)(a) ≥ α}.

An analogical theorem holds for interpretations in the
category SetS(Q).

Theorem IV.3 Let models DSetS(Q) and ESetS(Q) be associated
with a model ESet(Q). Let for a formula ψ with free variables
contained in a set X , ‖ψ‖D,SetS(Q) be an f-cut (|ψ|α)α∈Q in
the category SetS(Q). Then

|ψ|α = {(a, β) ∈ AX ×Q : ‖ψ‖E,SetS(Q)(a, β) ≥ α},

for all α ∈ Q,a ∈ AX .
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[7] Močkoř, J., Fuzzy sets and cut systems in a category of sets with
similarity relations, Soft Computing16(2012),101–107.
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