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Abstract

This paper presents a goal programming model for
problems where resources are defined by the opin-
ion of multiple experts. Through the use of Type-2
fuzzy sets, we propose a model that includes human
being like information in order to define the pa-
rameters of a goal programming problem, and then
solve it using a constructive approach that uses LP
models due to its efficiency. An application exam-
ple is provided and explained, and some concluding
remarks are provided.

1 Introduction
Decision making in practical applications has to face human
being interaction and social aspects. Some situations have
to solve multiple goals involving multiple people that try to
solve the same problem with different objectives. To solve
those problems, goal programming offers an efficient tool to
find a solution.

A common situation in applied goal programming includes
multiple experts and uncertainty around the exact value of
a desired goal, where fuzzy sets appear as a useful tool for
handling uncertainty coming from different people. Classical
fuzzy goal programming has been proposed by Narasimhan
[Narasimhan, 1980], and later developed by Yang[Yang et
al., 1991], Turgay & Taşkın[Safiye and Harun, 2014], Li
& Gang [Li, 2012],Hu, Zhang & Wang[Hu et al., 2014],
Khalili-Damghani & Sadi-Nezhad[Khalili-Damghaniet al.,
2013], in both theoretical and practical situations.

Using the results of Narasimhan[Narasimhan, 1980], Yang
[Yanget al., 1991] has designed a smaller model (in terms of
amount of variables) that leads to the same solution. In this
paper we propose to extend the classical goal programming
problem to a case where multiple experts deal with multiple
goals by using Type-2 fuzzy sets andα-cuts to handle lin-
guistic/numerical uncertainty coming from experts and Lin-
ear Programming (LP) methods for handling goal program-
ming.

The paper is organized as follows: Section 1 introduces
the main problem. Section 2 presents some basics on fuzzy
sets. In Section 3, goal programming LP model is referred.
Section 4 presents the Yang[Yanget al., 1991] proposal for
fuzzy goal programming. Section 5 contains the proposal;

Section 6 shows an application example; and finally Section
7 presents the concluding remarks of the study.

2 Basic on Fuzzy sets
According to Klir and Yuan[Klir and Yuan, 1995], a fuzzy set
is a functionA : X → [0, 1]. The notationµA is equivalent
to describe the membership functionµ that describesA, this
is µA : X → [0, 1] wherex ∈ X is the universe of discourse
overA is defined, as follows:

A : X → [0, 1]

A = (x, µA (x)) : x ∈ X (1)

2.1 Type-2 Fuzzy Sets
A Type-2 Fuzzy set, Mendel[Mendel, 2001] is an ordered
pair {(x, µÃ(x)) : x ∈ X}, whereA is a linguistic labelÃ
represents the uncertainty about the wordA. And its mathe-
matical definition is:

Ã : X → F [0, 1]

Ã = (x, µÃ (x)) : x ∈ X (2)

Ã =

∫

x∈X

∫

u∈Jx

fx (u) /(x, u), Jx ⊆ [0, 1]

wherefx (u) /u is a secondary membership function ofÃ on
x ∈ X andu is the domain of uncertainty.

Why Fuzzy Sets? Fuzzy sets has the property of handling
uncertainty coming from human knowledge, which com-
monly appear in decision making. In the case of numerical
uncertainty, fuzzy sets handle imprecision aboutX that ap-
pears in cease where no historical/statistical data is available,
so the only way to estimate parameters and/or variables is by
using approximate information coming from the experts of
the problem that can be represented through fuzzy numbers.

2.2 α-cuts
One of the most used ways to decomposeA is throughα-cuts.
Theα-cut of aA, namelyαA, is defined as:

αA = {x ∈ X : µA(x) > α}, (3)

Thus, a fuzzy setA is the union of itsα-cuts,
⋃

α∈[0,1] α ·
αA, where∪ denotes union[Klir and Yuan, 1995]. Now, the



extension ofα-cut of A to theα-cut of Ã (see[Figueroa-
Garcı́aet al., 2015]) allows us to say that the primaryα-cut
of an Interval Type-2 fuzzy setαÃ is the union of allx ∈ X
whose primary membershipsJx are greater thanα, Jx > α,
this is:

αÃ = {x ∈ X : µÃ(x, u) > α; u ∈ Jx ⊆ [0, 1]}, (4)

3 Goal programming

Charnes, Cooper & Wagner[Charnes and Cooper, 1961;
1977] has proposed an LP model that tries to minimize devi-
ations from different goals (desired objectives) through min-
imizing the absolute deviationsdk of the constraints of the
problemAkx regarding its desired valueBk e g.mink{D =
∑n

k=1 |Akx − Bk|}. This model is equivalent to the follow-
ing LP model (see Charnes, Cooper & Wagner[Charnes and
Cooper, 1961; 1977]):

min
k

n
∑

k=1

dk1 + dk2

s.t.

Akx+ dk1 − dk2 = Bk, (5)

A′

kx ≤ B′

k

x, dk1, dk2 ≥ 0; ∀ k,

whereBk ∈ R is the aspiration level,dk1, dk2 ∈ R are nega-
tive and positive deviations from the goalBk, Ak is the set of
n constraints related to goals,A′

k is a set of crisp constraints
of the problem,B′

k is its set of boundaries, andx ∈ R
m is the

set of decision variables of the problem. A negative deviation
quantifies a lack of satisfaction of the desired aspiration level,
and a positive deviation quantifies an excess over the desired
aspiration level.

4 Fuzzy Goal Programming

Fuzzy goal programming has been proposed by Narasimhan
[Narasimhan, 1980], Narasimhan & Hanna[Hannan, 1981],
and Yang[Yang et al., 1991] has proposed a smaller model
that obtains an equivalent solution that the presented by
[Narasimhan, 1980; Hannan, 1981]. Yang’s proposal defines
the membership function of thekth fuzzy goalBk namely
µBk

, as follows:

µBk
=







































0 if Gk(x) ≤ bk + bk2,

1−
Gk(x) − bk

bk2
, if bk ≤ Gk(x) ≤ bk + bk2,

1 if Gk(x) = bk,

1−
bk −Gk(x)

bk1
, if bk − bk1 ≤ Gk(x) ≤ bk,

0 otherwise,
(6)

wherek ∈ n denotes thekth goal,Gk(x) is thekth constraint
to be fulfilled,bk ∈ R is the aspiration level of thekth goal,
anddk1 anddk2 are the maximum negative and positive de-
viations frombk, respectively. Then the resulting LP model

is

min
k

n
∑

k=1

dk1 + dk2

s.t.

Akx+ dk1 − dk2 ∼= B̃k, (7)

A′

kx ≤ B′

k

x, dk1, dk2 ≥ 0; ∀ k,

whereB̃k ∈ F1 the fuzzy aspiration level,dk1, dk2 ∈ R are
negative and positive deviations from the goalbk, Ak is the
set ofn constraints related to fuzzy goals,A′

k is a set of crisp
constraints of the problem,B′

k is its set of boundaries, and
x ∈ R

m is the set of decision variables of the problem.

Every Type-2 fuzzy goal is defined by its LMF and UMF,
as shown as follows:

µb̃k
=


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
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0 if Gk(x) ≤ bk + bk2,

1−
Gk(x)− bk

bk2
, if bk ≤ Gk(x) ≤ bk + bk2,

1 if Gk(x) = bk,

1−
bk −Gk(x)

bk1
, if bk − bk1 ≤ Gk(x) ≤ bk,

0 otherwise,
(8)

µ
b̃k

=


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0 if Gk(x) ≤ bk + bk2,

1−
Gk(x)− bk

bk2
, if bk ≤ Gk(x) ≤ bk + bk2,

1 if Gk(x) = bk,

1−
bk −Gk(x)

bk1
, if bk − bk1 ≤ Gk(x) ≤ bk,

0 otherwise,
(9)

whereµ defines the LMF of thekth goal, andµ defines the
UMF of thekth goal. A graphical display of a Type-2 fuzzy
goal is shown in Figure 1.

Figure 1: Interval Type-2 fuzzy goal̃Bk



4.1 The Proposal
Our proposal extends the classical fuzzy goal programming
model to a Type-2 fuzzy environment, as follows:

min
k

n
∑

k=1

dk1 + dk2

s.t.

Akx+ dk1 − dk2 ≈ B̃k, (10)

A′

kx ≤ B′

k

x, dk1, dk2 ≥ 0; ∀ k,

whereB̃k ∈ R is a Type-2 fuzzy aspiration level,dk1, dk2 ∈
R are negative and positive deviations from the goalB̃k, Ak

is the set ofn constraints related to goals,A′

k is a set of crisp
constraints of the problem,B′

k is its set of boundaries, and
x ∈ R

m is the set of decision variables of the problem.
The proposed approach to find a solution of the problem

is by using a constructive method based onα-cuts which ba-
sically decomposes̃Bk into α-cuts and find a crisp solution
for every of the 4 boundaries of everyα-cut. The method is
described as follows.

5 α-cuts and deviations in Fuzzy Goal
Programming

There is a relationship between satisfaction levels,α-cuts,
and the goal value. It is clear that there exists a setX that
satisfies everyα-cut which leads to two intervals, one for the
left side[αB̂k,l,

αB̌k,l] and one for the right side[αB̌k,r,
αB̂k,r]

which are computed using Eq. (4) and shown as follows:

Figure 2: FGP

whereαB̂k,l,
αB̌k,l are the left values of the cut for its UMF

and LMF respectively, andαB̌k,r,
αB̂k,r are the right values

of the cut for its LMF and UMF respectively. To do so, all
crisp boundaries of̃Bk,r are computed as follows:

αB̂k,l = (bk − bk1) + α(bk − (bk − bk1)), (11)
αB̌k,l = (bk − bk1) + α(bk − (bk − bk1)), (12)
αB̂k,r = (bk + bk2)− α((bk + bk2)− bk), (13)
αB̌k,r = (bk + bk2)− α((bk + bk2)− bk), (14)

Then from thek goal values the value of the deviations in
the linear goal programming problem (7) are computed, as
a four-step LP method which finds the following crisp solu-
tions:

αB̌k,l →
αžl (15)

αB̂k,l →
αẑl (16)

αB̌k,r → αžr (17)
αB̂k,r → αẑr (18)

Now, every set of goalsαB̌k,l,
αB̂k,l,

αB̌k,r,
αB̂k,r has to be

solved using (7). This way, the set of Type-2 fuzzy goalsB̃
leads to a set of optimal solutionsž, as follows:

B̃
f

−−→ z̃ (19)

wheref is a function, in this case an LP method.

6 Experimentation and results
As application example we use the proposed by[Narasimhan,
1980] and extended by[Chen and Tsai, 2001] which is com-
posed by three fuzzy goals, as shown as follows:

G1 : 80x1 + 40x2
∼= 630,

G2 : x1
∼= 7, (20)

G3 : x2
∼= 4,

wherex1 and x2 are the manufacturing quantities of two
products which regard to three goals:G1 is a profit goal, and
G2 −G3 are the expected selling quantities per product. The
maximum deviations fromGk = {630, 7, 4} and modifying
them to get a Type-2 fuzzy goal programming which can be
symmetrically handled wherebk1 = bk2 = {10, 2, 2} and
bk1 = bk2 = {15, 3, 3}.

Using Eq. (7) we can obtain the values of the goalsG1, G2
andG3 for everyα-cut. The idea is then to minimize the
deviations from the goals through Eqs. (7), so we obtain four
crisp points that composeαz̃ and thereforẽz as stated in Eq.
(19).

α-cut d11 d12 d21 d22 d31 d32

0.1 0 0 0 1.46 0 0
0.2 0 0 0 1.18 0 0
0.3 0 0 0 0 0 1.78
0.4 0 0 0 0 0 1.20
0.5 0 0 0 1.00 1.38 0
0.6 2.00 0 0 0 0 0
0.7 0 0 1.00 0 0 1.48
0.8 0 0 0 0 1.10 0
0.9 0 0 0 0 1.68 0
1 0 0 1.13 0 0 0

Table 1: Optimal deviations for the left side UMF, LMF

As seen in Table 6, goalG2 was the only goal which ob-
tained its desired value on its left side while its right sidehas
a linear behavior (see Table 6). There is a nonlinear behavior
on all deviations from goals even when all goals were accom-
plished, this is, there is no direct relationship between the



α-cut X1 X2 OF

0.1 6.66 2.20 1.46
0.2 6.58 2.40 1.18
0.3 5.60 4.38 1.78
0.4 5.80 4.00 1.20
0.5 7.00 1.63 2.38
0.6 6.20 3.20 2.00
0.7 5.40 4.88 2.48
0.8 6.60 2.50 1.10
0.9 6.80 2.13 1.68
1 5.88 4.00 1.13

Table 2: Optimal variablesX1, X2 for the left side UMF,
LMF

α-cut d11 d12 d21 d22 d31 d32

0.1 0 0 3.71 0 0 0
0.2 0 0 3.43 0 0 0
0.3 0 0 3.14 0 0 0
0.4 0 0 2.85 0 0 0
0.5 0 0 2.56 0 0 0
0.6 0 0 2.28 0 0 0
0.7 0 0 1.99 0 0 0
0.8 0 0 1.70 0 0 0
0.9 0 0 1.41 0 0 0
1 0 0 1.13 0 0 0

Table 3: Optimal deviations for the right side UMF, LMF

objective function of the LP and theα-cuts, although the re-
sults of the right side (for both UMF and LMF) as a function
of theα-cuts fit the shape of the goal. Roughly speaking, the
behavior of the deviations is not a function ofα.

Even when all goals were defined by linear UMFs and
LMFs, the results of everyα-cut have shown that the optimal
solution (in terms of deviations from goals) are not linear,so
GP problems seem to be nonlinearly shaped which confirms
that fuzzy sets can efficiently represent nonlinear systems.

Also note that every goal is fulfilled for everyα-cut with
some deviations, so the real behavior of the problem is given
by their deviations. In our example those deviations have
shown a nonlinear behavior (chaotic in some sense) which
provides some information to us: it seems that GP problems
has no a predictable behavior. This happens because everyα-
cut operates as a single GP problem whose optimal deviations
has no a linear relationship betweenα-cuts.

7 Conclusions and recommendation
There is not a direct relationship amongα and the objective
value given by the LP (7), this is because no matter what is
the value ofα is, the model tries to minimize their deviations,
turning out decision variables in a nonlinear way.

The example shows an interesting behavior: when devia-
tions d21 always are zero, the expected shapes of the goals
are accomplished, in this case its right shape. For the left
side, the expected shape is not reached due to the deviations
have a nonlinear behavior.

Our recommendation is to analyze everyα-cut as a single
problem. We can see anα-cut as a fuzzy aspiration level

α-cut X1 X2 OF

0.1 5.09 5.80 3.71
0.2 5.18 5.60 3.43
0.3 5.26 5.40 3.14
0.4 5.35 5.20 2.85
0.5 5.44 5.00 2.56
0.6 5.53 4.80 2.28
0.7 5.61 4.60 1.99
0.8 5.70 4.40 1.70
0.9 5.79 4.20 1.41
1 5.88 4.00 1.13

Table 4: Optimal variablesX1, X2 for the left side UMF,
LMF

of every goalB̃k that comes from the opinion of multiple
experts, so its optimal solution should be interpreted apart
from otherα-cuts. A practical way to find a crisp solution is
by selecting anα-cut and then solve the problem keeping in
mind its results.
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