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Bâtiment Centre Equation 4, Allé de la Palestine à Gìres
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Preface

We are honored to welcome you to the 1st International Workshop on Advanced
Analytics and Learning on Temporal Data (AALTD), which is held in Porto,
Portugal, on September 11th, 2015, co-located with The European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECML PKDD 2015).

The aim of this workshop is to bring together researchers and experts in
machine learning, data mining, pattern analysis and statistics to share their
challenging issues and advance researches on temporal data analysis. Analysis
and learning from temporal data cover a wide scope of tasks including learning
metrics, learning representations, unsupervised feature extraction, clustering and
classification.

This volume contains the conference program, an abstract of the invited
keynote and the set of regular papers accepted to be presented at the confer-
ence. Each of the submitted papers was reviewed by at least two independent
reviewers, leading to the selection of seventeen papers accepted for presentation
and inclusion into the program and these proceedings. The contributions are
given by the alphabetical order, by surname. An index of authors can be also
found at the end of this book.

The keynote given by Gustavo Camps-Valls on “Capturing Time-Structures
in Earth Observation Data with Gaussian Processes” focuses on machine learn-
ing models based on Gaussian processes which help to monitor land, oceans, and
atmosphere through the estimation of climate and biophysical variables.

The accepted papers spanned from innovative ideas on analytic of temporal
data, including promising new approaches and covering both practical and the-
oretical issues. Classification of time series, estimation of graphical models for
temporal data, extraction of patterns from audio streams, searching causal mod-
els from longitudinal data and symbolic representation of time series are only a
sample of the analyzed topics. To introduce the reader, a brief presentation of
the problems addressed at each of papers is given below.

A novel approach to analyze the evolution of a disease incidence is presented
by Andrade-Pacheco et al. The method is based on Gaussian processes and al-
lows to study the effect of the time series components individually and hence
to isolate the relevant components and explore short term variations of the dis-
ease. Bailly et al introduce a series classification procedure based on extracting
local features using the Scale-Invariant Feature Transform (SIFT) framework
and then building a global representation of the series using the Bag-of-Words
(BoW) approach. Billard et al propose to highlight the main structure of multi-
ple sets of multivariate time series by using principal component analysis where
the standard correlation structure is replaced by lagged cross-autocorrelation.
The symbolic representation of time series SAXO is formalized as a hierarchical
coclustering approach by Bondu et al, evaluating also its compactness in terms
of coding length. A framework to learn an efficient temporal metric by combining
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several basic metrics for a robust kNN is introduced by Do et al. Dupont and
Marteau introduce a sparse version of Dynamic Time Warping (DTW), called
coarse-DTW, and develop an efficient algorithm (Bubble) to sparse regular time
series. By coupling both mechanisms, the nearest-neighbor classification of time
series can be performed much faster.

Gallicchio et al study the balance assessment of elderly people with time
series acquired with a Wii Balance Board. A novel technique to estimate the
well-known Berg Balance Scale is proposed by using a Reservoir Computing
network. Gibberd and Nelson address the estimation of graphical models when
data change over time. Specifically, two extensions of the Gaussian graphical
model (GGM) are introduced and empirically examined. Extraction of patterns
from audio data streams is investigated by Hardy et al considering a symboliza-
tion procedure combined with the use of different pattern mining methods. Jain
and Spiegel propose a strategy to classify time series consisting of transforming
the series into a dissimilarity representation and then applying PCA followed
by an SVM. Krempl addresses the problem of forecasting the density at spatio-
temporal coordinates in the future from a sample of pre-fixed instances observed
at different positions in the feature space and at different times in the past. Two
different approaches using spatio-temporal kernel density estimation are pro-
posed. A fuzzy C-medoids algorithm to cluster time series based on comparing
estimated quantile autocovariance functions is presented by Lafuente-Rego and
Vilar.

A new algorithm for discovering causal models from longitudinal data is
developed by Rahmadi et al. The method performs structure search over Struc-
tural Equation Models (SEMs) by maximizing model scores in terms of data fit
and complexity, showing robustness for finite samples. Salperwyck et al intro-
duce a clustering technique for time series based on maximizing an inter-inertia
criterion inside parallelized decision trees. An anomaly detection approach for
temporal graph data based on an iterative tensor decomposition and masking
procedure is presented by Sapienza et al. Soheily-Khah et al perform an exper-
imental comparison of several progressive and iterative methods for averaging
time series under dynamic time warping. Finally, Sorokin extends the factored
gated restricted Boltzmann machine model by adding discriminative component,
thus enabling it to be used as a classifier and specifically to extract translational
motion from two related images.

In sum, we think that all these contributions will provide valuable feedback
and motivation to advance research on analysis and learning from temporal data.
It is planned that extended versions of the accepted papers will be published in
a special volume of Lecture Notes of Artificial Intelligence (LNAI).

We wish to thank the ECML PKDD council members for giving us the op-
portunity to hold the AALTD workshop within the framework of the ECML
PKDD Conference and the members of the local organizing committee for their
support. Also our gratitude to several colleagues that helped us with the organi-
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zation of the workshop, particularly Saeid Soheily (Université Grenoble Alpes,
France).

The organizers of the AALTD conference gratefully thank the financial sup-
port of the “Programme d’Investissements d’Avenir” of the French government
through the IKATS Project as well as the support received from LIG-AMA,
IRISA, MODES, Université Joseph Fourier and Universidade da Coruña.

Last but not least, we wish to thank the contributing authors for the high
quality works and all members of the Reviewing Committee for their invaluable
assistance in the selection process. All of them have significantly contributed to
the success of AALTD 2105.

We sincerely hope that the workshop participants have a great and fruitful
time at the conference.

September, 2015 Ahlame Douzal-Chouakria
José A. Vilar

Pierre-François Marteau
Ann E. Maharaj

Andrés M. Alonso
Edoardo Otranto

Irina Nicolae
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Conference programme schedule

Conference venue and some instructions

Within the framework of the ECML PKDD 2015 Conference, the AALTD Work-
shop will take place from 15:00 to 18:00 on Friday, September 11, at the Alfândega
Congress Centre, Rua Nova de Alfândega, 4050-430 Porto. The invited talk and
the oral communications will take place at the room Porto, on the second floor
of the Congress Centre (see partial site plan below).

The lecture room Porto will be equipped with a PC and a computer projector,
which will be used for presentations. Before the session starts, presenters must
provide to the session chair with the files for the presentation in PDF (Acrobat)
or PPT (Powerpoint) format on a USB memory stick. Alternatively, the talks
can be submitted by e-mail to José A. Vilar (jose.vilarf@udc.es) prior to the
start of the conference. Time planned for each presentation is fifteen minutes
with five additional minutes for discussion.

With regard to the poster session, the authors will be responsible for placing
the posters in the poster panel, which should be carried out well in advance. The
maximum size of the poster is A0.
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Capturing Time-structures in Earth Observation
Data with Gaussian Processes

Gustavo Camps-Valls
Department of Electrical Engineering, Universitat de València, Spain

Abstract. In this talk I will summarize our experience in the last years
on developing algorithms in the interplay between Physics and Statisti-
cal Inference to analyze Earth Observation satellite data. Some of them
are currently adopted by ESA and EUMETSAT. I will pay attention
to machine learning models that help to monitor land, oceans, and at-
mosphere through the estimation of climate and biophysical variables. In
particular, I will focus on Gaussian Processes, which provide an adequate
framework to design models with high prediction accuracy and able to
cope with uncertainties, deal with heteroscedastic noise and particular
time-structures, to encode physical knowledge about the problem, and
to attain self-explanatory models. The theoretical developments will be
guided by the challenging problems of estimating biophysical parameters
at both local and global planetary scales.

Copyright c⃝2015 for this paper by its authors. Copying permitted for private and academic
purposes.
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AALTD 2015

Monitoring Short Term Changes of Malaria

Incidence in Uganda with Gaussian Processes

Ricardo Andrade-Pacheco1, Martin Mubangizi2, John Quinn2,3, and Neil
Lawrence1

1 University of Sheffield, Department of Computer Science, UK
2 Makerere University, College of Computing and Information Science, Uganda

3 UN Global Pulse, Pulse Lab Kampala, Uganda

Abstract. Amethod to monitor communicable diseases based on health
records is proposed. The method is applied to health facility records of
malaria incidence in Uganda. This disease represents a threat for approx-
imately 3.3 billion people around the globe. We use Gaussian processes
with vector-valued kernels to analyze time series components individu-
ally. This method allows not only removing the effect of specific com-
ponents, but studying the components of interest with more detail. The
short term variations of an infection are divided into four cyclical phases.
Under this novel approach, the evolution of a disease incidence can be
easily analyzed and compared between different districts. The graphical
tool provided can help quick response planning and resources allocation.

Keywords: Gaussian processes, malaria, kernel functions, time series.

1 Introduction

More than a century after discovering its transmission mechanism, malaria has
been successfully eradicated from different regions of world [15]. However, it
is still endemic in 100 countries and represents a threat for 3.3 billion people
approximately [20]. In Uganda, malaria is among the leading causes of morbidity
and mortality [19]. Different types of interventions can be carried on to prevent
and treat malaria [20]. Their success depend on how well the disease can be
anticipated and how fast the population reacts to it. In this regard, mathematical
modelling can be a strong ally for decision-making and health services planning.
Spatiotemporal modelling for mapping and prediction of infection dynamics is a
challenging problem. First of all, because of the costs and difficulties of gathering
data. Second, because of the challenges of developing a sound theoretical model
that agrees with the data observed.

The Health Management Information System (HMIS) operated by the Uganda
Ministry of Health provides weekly records of the number of patients treated for
malaria in different hospitals across the country. Unfortunately, the number of
reporting hospitals is not consistent across time. This variation is prone to create
artificial trends in the observed data. Hence, the underreporting effect has to be
estimated to be removed.

A common approach for time series analysis is to decompose the observed
variation into specific patterns such as trends, cyclic effects or irregular fluctua-

tions [4, 3, 7]. Gaussian process (GP) models are a natural approach for analyzing

Copyright c©2015 for this paper by its authors. Copying permitted for private and academic
purposes.
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R. Andrade-Pacheco, M. Mubangizi, J. Quinn, N. Lawrence

functions that represent time series. GPs provide a robust framework for non-
parametric probabilistic modelling [18]. The use of covariance kernels enable to
analyse non-linear patterns by embedding an inference problem into an abstract
space with a convenient structure[14]. By combining different covariance kernels
(via additions, multiplications or convolutions) into a single one, a GP is able to
describe more complex functions. Each of the individual kernels contributes by
encoding a specific set of properties or pattern of the resulting function [5].

We propose a monitoring system for communicable diseases based on Gaus-
sian processes. This methodology is able to isolate the relevant components of
the time series and study the short term variations of the disease. The output
of this system is a graphical tool that discretizes the disease progress into four
phases of simple interpretation.

2 Background

Say we are interested in learning the functional relation, between inputs and
output, based on a set of observations {(xi, yi)}

n
i=1. GP models introduce an

additional latent variable fx, whose covariance kernel K is a function of the
input values. Usually, yi is considered a distorted version of the latent variable.

To deal with multiple outputs, GP models resort to generalizations of kernel
functions to the vector-valued case [1]. In time series literature, vector-valued
functions are commonly treated in the family of VAR models [12], while in geo-
statistics literature co-Kriging generalizations are used [8, 11]. These approaches
are equivalent. Let hx = (f1

x
, . . . , fd

x
)⊤ be a vector-valued GP, its corresponding

covariance matrix is given by

[

cov(hx, hz)ij
]

=
[

cov(f i
x
, f j

z
)
]

. (1)

The diagonal elements of the correlation matrix
[

cov(hx, hz)ii
]

are just the
covariance functions of the real-valued GP elements. The non-diagonal elements
represent the cross-covariance functions between components [9, 10, 2].

3 Method Used

Suppose we have data generated from the combination of two independent sig-
nals (see Figure 1a). Usually, not only we are not able to observe the signals
separately, but the combined signal they yield is corrupted by noise in the data
collected (see Figure 1b). For the sake of this example, suppose that the two
signals of the example represent a long term trend (the smooth signal) and a
seasonal component (the sinusoidal signal). For an observer, the oscillations of
the seasonal component masks the behaviour of the long term trend. At some
point, however, the observer might want to know whether the trend is increasing
or decreasing. Similarly, there might be interest in studying only the seasonal
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Alarm System for Malaria

component isolated from the trend. For example, in economics and finance, busi-
ness recession and expansion periods are determined by studying the cyclic com-
ponent of a set of indicators [16]. The cyclic component tells if an indicator is
above or below the trend, and its differences tell if it is increasing or decreasing.

We propose a similar approach for monitoring disease incidence time series,
but in our case, we will use a non-parametric approach. To extract the original
signals, the observed data can be modelled using a GP with a combination of
kernels, say exponentiated quadratics, one having a shorter lengthscale than the
other. Figures 1c and 1d shows a model of the combined and independent signals.
We also use a vector-valued GP to model directly the derivative of the time series,
rather than using simple differences of the observed trend. As a result, we are
able to provide uncertainty estimates about the speed of the changes around the
trend. Our approach is based on modelling linear functionals of an underlying
GP [13]. If hx = (fx, ∂fx/∂xi)

⊤, its corresponding kernel is defined as

Γ (xi,xj) =

[

K(xi,xj)
∂

∂xj
K(xi,xj)

∂
∂xi

K(xi,xj)
∂2

∂xixj
K(xi,xj)

]

. (2)

In most multi-output problems, observations of the different outputs are
needed to learn their relation. Here, the relation between fx and its derivative is
known beforehand through the derivative of K. Thus ∂fx/∂xi can be learnt by
relying entirely on fx. For the signals described above, Figures 1e and 1f show
the corresponding derivatives computed using a kernel of the form of (2). The
derivatives of the long term trend are computed with high confidence, while the
derivatives of the seasonal component have more uncertainty. The last is due to
the magnitude of the seasonal component relative to the noise magnitude.

4 Uganda Case

In this exposition we focus on Kabarole district, but provide a snapshot of the
monitoring system for all the country. Our base assumption about the infection
process of malaria is that it evolves with some degree of smoothness across
time. Smooth functions can be represented by a kernel such that the closer the
observations in the input space, the more similar values of the output. The
Matérn kernel family satisfies this condition, as it defines dependence through
the distance between points with some exponential decay [18]. Different members
of this family encode different degrees of smoothness, being the limit case the
exponentiated quadratic kernel or RBF, which is infinitely differentiable. To
illustrate our method we will use an RBF kernel. Results with (rougher) Matérn
kernels do not differ much when used instead.

Despite malaria is a disease influenced by environmental factors like temper-
ature or water availability, we could not observe a seasonal effect in HMIS data
[6]. If that was the case, the model could be improved incorporating a periodic
kernel in the covariance structure. Yet, the model fit can be improved if a sec-
ond RBF kernel is added. In this case, one kernel has a short lengthscale and

5



6



Alarm System for Malaria

which take time as input, the linear kernel takes the number of health facilities as
input. In Table 1, we present a comparison of the model predictive performance,
when using different kernels, based on the leave-one-out predictive probabilities
[17]. The best predictive performance is achieved when considering short and
long term changes and a correction for misreporting facilities.

Table 1: Comparison of LOO-CV log predictive probabilities, when using differ-
ent kernels. The subindex ℓ refers to the lengthscale of the kernel (measured in
years).

Kernel LOO-CV (log)

RBFℓ=0.64 -40.54
RBFℓ=0.14 +RBFℓ=10 -16.26
RBFℓ=0.12 +RBFℓ=10 + Linear 41.21

Figure 2c shows the trend and short term component of the number of
malaria cases. Variations of a disease incidence around its trend represent short
term changes in the population health. Outbreak detection and control of non-
endemic diseases take place in this time frame. For some endemic diseases, this
variation can be associated to seasonal factors [6]. Quick response actions, such
as distribution of medicine and allocation of patients to health centres, have to
take place in this time regime to be effective. The short term variations can be
classified in four phases as shown in Figure 2d (values are standardized). The
upper left quadrant represents an incidence below the trend, but increasing; the
upper right quadrant represents an incidence above the trend and expanding;
the bottom right quadrant represents an incidence above the trend, but decreas-
ing; and the bottom left quadrant represents an incidence below the trend and
decreasing.

This tracking system of short term variations is independent of the order of
the disease counts, and can be used to monitor the infection progress in different
districts. It is easy to identify districts where the disease is being controlled
or where the infection is progressing at an unusual rate. Figure 2b shows the
monitoring system on the whole country. Those districts where the variation
coefficient of both the process and its derivative are less than 1 (meaning a weak
signal vs noise) were left in gray color.

5 Final Remarks

We have proposed a disease monitor based on vector-valued Gaussian processes.
Our approach is able to account for uncertainty in both the level of each com-
ponent and the direction of change. The simplicity for doing inference with this

7
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Abstract. Time series classification is an application of particular in-
terest with the increase of data to monitor. Classical techniques for time
series classification rely on point-to-point distances. Recently, Bag-of-
Words approaches have been used in this context. Words are quantized
versions of simple features extracted from sliding windows. The SIFT
framework has proved efficient for image classification. In this paper, we
design a time series classification scheme that builds on the SIFT frame-
work adapted to time series to feed a Bag-of-Words. Experimental results
show competitive performance with respect to classical techniques.

Keywords: time series classification, Bag-of-Words, SIFT, BoTSW

1 Introduction

Classification of time series has received an important amount of interest over
the past years due to many real-life applications, such as environmental mod-
eling, speech recognition. A wide range of algorithms have been proposed to
solve this problem. One simple classifier is the k-nearest-neighbor (kNN), which
is usually combined with Euclidean Distance (ED) or Dynamic Time Warping
(DTW) [11]. Such techniques compute similarity between time series based on
point-to-point comparisons, which is often not appropriate. Classification tech-
niques based on higher level structures are most of the time faster, while being
at least as accurate as DTW-based classifiers. Hence, various works have inves-
tigated the extraction of local and global features in time series. Among these
works, the Bag-of-Words (BoW) approach (also called bag-of-features) has been
considered for time series classification. BoW is a very common technique in
text mining, information retrieval and content-based image retrieval because of
its simplicity and performance. For these reasons, it has been adapted to time
series data in some recent works [1, 2, 9, 12, 14]. Different kinds of features based
on simple statistics have been used to create the words.

In the context of image retrieval and classification, scale-invariant descriptors
have proved their efficiency. Particularly, the Scale-Invariant Feature Transform
(SIFT) framework has led to widely used descriptors [10]. These descriptors
are scale and rotation invariant while being robust to noise. We build on this
framework to design a BoW approach for time series classification where the

Copyright c©2015 for this paper by its authors. Copying permitted for private and academic
purposes.
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words correspond to the description of local gradients around keypoints, that are
first extracted from the time series. This approach can be seen as an adaptation
of the SIFT framework to time series.

This paper is organized as follows. Section 2 summarizes related work, Sec-
tion 3 describes the proposed Bag-of-Temporal-SIFT-Words (BoTSW) method,
and Section 4 reports experimental results. Finally, Section 5 concludes and
discusses future work.

2 Related work

Our approach for time series classification builds on two well-known methods
in computer vision: local features are extracted from time series using a SIFT-
based approach and a global representation of time series is built using Bag-
of-Words. This section first introduces state-of-the-art methods in time series
classification, then presents standard approaches for extracting features in the
image classification context and finally lists previous works that make use of
such approaches for time series classification.

Data mining community has, for long, investigated the field of time series
classification. Early works focus on the use of dedicated metrics to assess sim-
ilarity between time series. In [11], Ratanamahatana and Keogh compare Dy-
namic Time Warping to Euclidean Distance when used with a simple kNN clas-
sifier. While the former benefits from its robustness to temporal distortions to
achieve high efficiency, ED is known to have much lower computational cost.
Cuturi [4] shows that DTW fails at precisely quantifying dissimilarity between
non-matching sequences. He introduces Global Alignment Kernel that takes into
account all possible alignments to produce a reliable dissimilarity metric to be
used with kernel methods such as Support Vector Machines (SVM). Douzal and
Amblard [5] investigate the use of time series metrics for classification trees.

So as to efficiently classify images, those first have to be described accurately.
Both local and global descriptions have been proposed by the computer vision
community. For long, the most powerful local feature for images was SIFT [10]
that describes detected keypoints in the image using the gradients in the regions
surrounding those points. Building on this, Sivic and Zisserman [13] suggested
to compare video frames using standard text mining approaches in which docu-
ments are represented by word histograms, known as Bag-of-Words (BoW). To
do so, authors map the 128-dimensional space of SIFT features to a codebook
of few thousand words using vector quantization. VLAD (Vector of Locally Ag-
gregated Descriptors) [6] are global features that build upon local ones in the
same spirit as BoW. Instead of storing counts for each word in the dictionary,
VLAD preserves residuals to build a fine-grain global representation.

Inspired by text mining, information retrieval and computer vision commu-
nities, recent works have investigated the use of Bag-of-Words for time series
classification [1, 2, 9, 12, 14]. These works are based on two main operations: con-
verting time series into Bag-of-Words (a histogram representing the occurrence
of words), and building a classifier upon this BoW representation. Usually, clas-
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sical techniques are used for the classification step: random forests, SVM, neural
networks, kNN. In the following, we focus on explaining how the conversion of
time series into BoW is performed in the literature. In [2], local features such as
mean, variance, extremum values are computed on sliding windows. These fea-
tures are then quantized into words using a codebook learned by a class proba-
bility estimate distribution. In [14], discrete wavelet coefficients are extracted on
sliding windows and then quantized into words using k-means. In [9, 12], words
are constructed using the SAX representation [8] of time series. SAX symbols
are extracted from time series and histograms of n-grams of these symbols are
computed. In [1], multivariate time series are transformed into a feature matrix,
whose rows are feature vectors containing a time index, the values and the gradi-
ent of time series at this time index (on all dimensions). Random samples of this
matrix are given to decision trees whose leaves are seen as words. A histogram
of words is output when the different trees are learned. Rather than computing
features on sliding windows, authors of [15] first extract keypoints from time
series. These keypoints are selected using the Differences-of-Gaussians (DoG)
framework, well-known in the image community, that can be adapted to one-
dimensional signals. Keypoints are then described by scale-invariant features
that describe the shapes of the extremum surrounding keypoints. In [3], extrac-
tion and description of time series keypoints in a SIFT-like framework is used
to reduce the complexity of Dynamic Time Warping: features are used to match
anchor points from two different time series and prune the search space when
finding the optimal path in the DTW computation.

In this paper, we design a time series classification technique based on the
extraction and the description of keypoints using a SIFT framework adapted to
time series. The description of keypoints is quantized using a k-means algorithm
to create a codebook of words and classification of time series is performed with
a linear SVM fed with normalized histograms of words.

3 Bag-of-Temporal-SIFT-Words (BoTSW) method

The proposed method is adapted from the SIFT framework [10] widely used for
image classification. It is based on three main steps : (i) detection of keypoints
(scale-space extrema) in time series, (ii) description of these keypoints by gra-
dient magnitude at a specific scale, and (iii) representation of time series by a
BoW, words corresponding to quantized version of the description of keypoints.
These steps are depicted in Fig. 1 and detailed below.

Following the SIFT framework, keypoints in time series correspond to local
extrema both in terms of scale and location. These scale-space extrema are iden-
tified using a DoG function, which establishes a list of scale-invariant keypoints.
Let L(t, σ) be the convolution (∗) of a Gaussian function G(t, σ) of width σ with
a time series S(t):

L(t, σ) = G(t, σ) ∗ S(t).

DoG is obtained by subtracting two time series filtered at consecutive scales:

D(t, σ) = L(t, kscσ)− L(t, σ),
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Dataset
BoTSW +
linear SVM

BoTSW +
1NN

ED +
1NN

DTW +
1NN

k nb ER k nb ER ER ER

50words 512 16 0.363 1024 16 0.400 0.369 0.310

Adiac 512 16 0.614 128 16 0.642 0.389 0.396
Beef 128 10 0.400 128 16 0.300 0.467 0.500
CBF 64 6 0.058 64 14 0.049 0.148 0.003

Coffee 256 4 0.000 64 12 0.000 0.250 0.179
ECG200 256 16 0.110 64 12 0.160 0.120 0.230
Face (all) 1024 8 0.218 512 16 0.239 0.286 0.192

Face (four) 128 12 0.000 128 6 0.046 0.216 0.170
Fish 512 16 0.069 512 14 0.149 0.217 0.167

Gun-Point 256 4 0.080 256 10 0.067 0.087 0.093
Lightning-2 16 16 0.361 512 16 0.410 0.246 0.131

Lightning-7 512 14 0.384 512 14 0.480 0.425 0.274

Olive Oil 256 4 0.100 512 2 0.100 0.133 0.133
OSU Leaf 1024 10 0.182 1024 16 0.248 0.483 0.409

Swedish Leaf 1024 16 0.152 512 10 0.229 0.213 0.210
Synthetic Control 512 14 0.043 64 8 0.093 0.120 0.007

Trace 128 10 0.010 64 12 0.000 0.240 0.000

Two Patterns 1024 16 0.002 1024 16 0.009 0.090 0.000

Wafer 512 12 0.001 512 12 0.001 0.005 0.020
Yoga 1024 16 0.150 512 6 0.230 0.170 0.164

Table 1: Classification error rates (best performance is written as bold text).

frequency vector) of word occurrences. These histograms are then passed to a
classifier to learn how to discriminate classes from this BoTSW description.

4 Experiments and results

In this section, we investigate the impact of both the number of blocks nb and the
number of words k in the codebook (defined in Section 3) on classification error
rates. Experiments are conducted on 20 datasets from the UCR repository [7].
We set all parameters of BoTSW but nb and k as follows : σ = 1.6, ksc = 21/3,
a = 8. These values have shown to produce stable results. Parameters nb and
k vary inside the following sets : {2, 4, 6, 8, 10, 12, 14, 16} and

{

2i, ∀ i ∈ {2..10}
}

respectively. Codebooks are obtained via k-means quantization. Two classifiers
are used to classify times series represented as BoTSW : a linear SVM or a 1NN
classifier. Each dataset is composed of a train and a test set. For our approach,
the best set of (k, nb) parameters is selected by performing a leave-one-out cross-
validation on the train set. This best set of parameters is then used to build the
classifier on the train set and evaluate it on the test set. Experimental error rates
(ER) are reported in Table 1, together with baseline scores publicly available
at [7].
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Fig. 2: Classification accuracy on dataset Yoga as a function of k and nb.

ED+
1NN

DTW+
1NN

TSBF[2]
SAX-

VSM[12]
SMTS[1] BoP[9]

W T L W T L W T L W T L W T L W T L

BoTSW+lin. SVM 18 0 2 11 0 9 8 0 12 9 2 9 7 0 13 14 0 6

BoTSW + 1NN 13 0 7 9 1 10 5 0 15 4 3 13 4 1 15 7 1 12

Table 2: Win-Tie-Lose (WTL) scores comparing BoTSW to state-of-the-art
methods. For instance, BoTSW+linear SVM reaches better performance than
ED+1NN on 18 datasets, and worse performance on 2 datasets.

BoTSW coupled with a linear SVM is better than both ED and DTW on
11 datasets. It is also better than BoTSW coupled with a 1NN classifier on
13 datasets. We also compared our approach with classical techniques for time
series classification. We varied number of codewords k between 4 and 1024. Not
surprisingly, cross-validation tends to select large codebooks that lead to more
precise representation of time series by BoTSW. Fig. 2 shows undoubtedly that,
for Yoga dataset, (left) the larger the codebook, the better the results and (right)
the choice of the number nb of blocks is less crucial as a wide range of values
yield competitive classification performance.

Win-Tie-Lose scores (see Table 2) show that coupling BoTSW with a linear
SVM reaches competitive performance with respect to the literature.

As it can be seen in Table 1, BoTSW is (by far) less efficient than both ED
and DTW for dataset Adiac. As BoW representation maps keypoint descriptions
into words, details are lost during this quantization step. Knowing that only very
few keypoints are detected for these Adiac time series, we believe a more precise
representation would help.

5 Conclusion

BoTSW transforms time series into histograms of quantized local features. Dis-
tinctiveness of the SIFT keypoints used with Bag-of-Words enables to efficiently
and accurately classify time series, despite the fact that BoW representation
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ignores temporal order. We believe classification performance could be further
improved by taking time information into account and/or reducing the impact
of quantization losses in our representation.
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Abstract. Our aim is to extend standard principal component analysis

for non-time series data to explore and highlight the main structure of

multiple sets of multivariate time series. To this end, standard variance-

covariance matrices are generalized to lagged cross-autocorrelation ma-

trices. The methodology produces principal component time series, which

can be analysed in the usual way on a principal component plot, except

that the plot also includes time as an additional dimension.

1 Introduction

Time series data are ubiquitous, arising throughout economics, meteorology,

medicine, the basic sciences, even in some genetic microarrays, to name a few of

the myriad fields of application. Multivariate time series are likewise prevalent.

Our aim is to use principal components methods as an exploratory technique to

find clusters of time series in a set of S multivariate time series. For example,

in a collection of stock market time series, interest may center on whether some

stocks, such as mining stocks, behave alike but differently from other stocks,

such as pharmaceutical stocks.

A seminal paper in univariate time series clustering is that of Košmelj and

Batagelj (1990), based on a dissimilarity measure. Since then several researchers

have proposed other approaches (e.g. Caiado et al (2015), D’Urso and Maharaj

(2009)). A comprehensive summary of clustering for univariate time series is in

Liao (2005). Liao (2007) introduced a two-step procedure for multivariate series

which transformed the observations into a single multivariate series. Most of

these methods use dissimilarity functions or variations thereof. A summary of

Liao (2005, 2007) along with more recent proposed methods is in Billard et al.

(2015). Though a few authors specify a particular model structure, by and large,

the dependence information inherent to time series observations is not used.

Dependencies in time series are measured through the autocorrelation (or,

equivalently, the autocovariance) functions. In this work, we illustrate how these

Copyright c⃝2015 for this paper by its authors. Copying permitted for private and academic
purposes.
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dependencies can be used in a principal component analysis. This produces prin-

cipal component time series, which in turn allows the projection of the original

time series observations onto three dimensional principal component by time

space. The basic methodology is outlined in Section2, and illustrated in Section

3.

2 Methodology

2.1 Cross-Autocorrelation functions for S > 1 series and p > 1

dimensions

Let Xst = {(Xstj), j = 1, . . . , p}, t = 1, . . . , Ns, s = 1, . . . , S, be a p-dimensional

time series of length Ns, for each series s. For notational simplicity, assume

Ns = N for all s. Let us also assume the observations have been suitably differ-

enced/transformed so that the data are stationary.

For a standard single univariate series time series where S = 1 and p = 1, it

is well-known that the sample autocovariance function at lag k is (dropping the

s = S = 1 and j = p = 1 subscripts)

γ̂(k) =
1

N

N−k∑
t=1

(Xt − X̄)(Xt+k − X̄), k = 0, 1, . . . , X̄ =
1

N

N∑
t=1

Xt, (2.1)

and the sample autocorrelation function at lag k is ρ̂(k) = γ̂(k)/γ̂(0), k =

0, 1, . . ..

These autocorrelation functions provide a measure of the time dependence

between observations changes as their distance apart, lag k. They are used to

identify the type of model and also to estimate model parameters. See, many

of the basic texts on time series, e.g., Box et al. (2011); Brockwell and Davis

(1991); Cryer and Chan (2008). Note that the divisor in Eq.(2.1) is N , rather

than N −k. This ensures that the sample autocovariance matrix is non-negative

definite.

For a single multivariate time series where S = 1 and p ≥ 1, the cross-

autocovariance function between variables (j, j′) at lag k is the p × p matrix

Γ (k) with elements estimated by

γ̂jj′(k) =
1

T

T−k∑
t=1

(Xtj − X̄j)(Xt+k,j′ − X̄j′), k = 0, 1,with X̄j =
1

N

N∑
t=1

Xtj ,

(2.2)
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and the cross-autocorrelation function between variables (j, j′) at lag k is the

p× p matrix, ρ(k), with elements {ρjj′(k), j, j′ = 1, . . . , p} estimated by

ρ̂jj′(k) = γ̂jj′(k)/{γ̂jj(0)γ̂j′j′(0)}1/2, k = 0, 1, . . . . (2.3)

Unlike the autocorrelation function obtained from Eq.(2.1) with its single

value at each lag k, Eq.(2.3) produces a p×p matrix at each lag k. The function

Eq.(2.2) was first given by Whittle (1963) and shown to be nonsymmetric by

Jones (1964). In general, ρjj′(k) ̸= ρj′j(k) for variables j ̸= j′, except for k = 0,

but ρ(k) = ρ′(−k); see, e.g., Brockwell and Davis (1991).

When there are S ≥ 1 series and p ≥ 1 variables, the definition of Eqs.(2.2)-

(2.3) can be extended to give a p×p sample cross-autocovariance function matrix

between variables (j, j′) at lag k, Γ̂ (k), with elements given by, for j, j′ =

1, . . . , p,

γ̂jj′(k) =
1

NS

S∑
s=1

N−k∑
t=1

(Xstj − X̄j)(Xs,t+k,j′ − X̄j′), k = 0, 1, (2.4)

with X̄j =
1

NS

S∑
s=1

N∑
t=1

Xstj ;

and the p × p sample cross-autocorrelation matrix at lag k, ρ̂(1)(k), has ele-

ments ρ̂jj′(k), j, j
′ = 1, . . . , p, obtained by substituting Eq.(2.4) into Eq.(2.3).

This cross-autocovariance function in Eq.(2.4) is a measure of time dependence

between observations k units apart for a given variable pair (j, j′), calculated

across all S series. Notice, the sample means X̄j in Eq.(2.4) are calculated across

all NS observations.

An alternative approach is to calculate these sample means by series. In

this case, the cross-autocovariance matrix Γ̂ (k) has elements estimated by, for

j, j′ = 1, . . . , p, s = 1, . . . , S,

γ̂jj′(k) =
1

NS

S∑
s=1

N−k∑
t=1

(Xstj − X̄sj)(Xs,t+k,j − X̄sj′), k = 0, 1, (2.5)

with X̄sj =
1

N

N∑
t=1

Xstj ;

and the corresponding p × p cross-autocorrelation function matrix ρ̂(2)(k) has

elements ρ̂jj′(k) found by substituting Eq.(2.5) into Eq.(2.3).

Other model structures can be considered, which would provide other options

for obtaining the relevant sample means. These include class structures, lag k

structures, weighted series and/or weighted variable structures, and the like; see

Billard et al. (2015).
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2.2 Principal Components for Time Series

In a standard classical principal component analysis on a set of p-dimensional

multivariate observations X = {Xij , i = 1, . . . n, j = 1, . . . , p}, each observation

is projected into a corresponding νth order principal component, PCν(i), through

the linear combination of the observation’s variables,

PCν(i) = wν1Xi1 + · · ·+ wνpXip, ν = 1, . . . , p, (2.6)

where wν = (wν1, . . . , wνp) is the ν
th eigenvector of the correlation matrix ρ (or,

equivalently for non-standardized observations, the variance-covariance matrix

Σ). The eigenvalues satisfy λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0, and
∑p

ν=1 λν = p (or, σ2 for

non-standardized data). A detailed description of this methodology for standard

data can be found in any of the numerous texts on multivariate analysis, e.g.,

Joliffe (1986) and Johnson and Wichern (2007) for an applied approach, and

Anderson (1984) for theoretical details.

For time series data, the correlation matrix ρ is replaced by the cross-

autocorrelation matrix ρ(k), for a specific lag k = 1, 2, . . . , and the νth order

principal component of Eq.(2.6) becomes

PCν(s, t) = wν1Xs1t + · · ·+wνpXspt, ν = 1, . . . , p, t = 1, . . . , N, s = 1, . . . , S.

(2.7)

The elements of ρ(k) can be estimated by ρ̂jj′(k) from Eq.(2.4) or from Eq.(2.5)

(or from other choices of model structure). The problem of non-positive defi-

niteness, for lag k > 0, for the cross-autocorrelation matrix has been studied by

Rousseeuw and Molenberghs (1993) and Jäckel (2002), with the recommendation

that negative eigenvalues be re-set at zero.

3 Illustration

To illustrate, take a data set (<http://dss.ucar.edu/datasets/ds578.5>) where

the observations are time series of monthly temperatures at S = 14 cities

(weather stations) in China over the years 1923-88. In the present analysis,

each month is taken to be a single variable corresponding to the twelve months

(January, . . . , December, respectively); hence, p = 12. Clearly, these variables

are dependent as reflected in the cross-autocovariances when j ̸= j′.

Let us limit the discussion to using the cross-autocorrelation functions at lag

k = 1, evaluated from Eq.(2.4) and Eq.(2.3), and shown in Table 1. We obtain the

corresponding eigenvalues and eigenvectors, and hence we calculate the principal

components PCν , ν = 1, . . . , p, from Eq.(2.6). A plot of PC1 × PC2× time is
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displayed in Figure 1, and that for PC1 × PC3× time is given in Figure 2. An

interesting feature of these data highlighted by the methodology is that it is

the PC1 × PC3 pair that distinguishes more readily the city groupings. Figure

3 displays the PC1 × PC3 values for all series and all times without tracking

time (i.e., the 3-dimensional PC1 × PC3 × time values are projected onto the

PC1 × PC3 plane). Hence, we are able to discriminate between cities.

Thus, we observe that cities 1-4 (Hailaer, HaErBin, MuDanJiang and ChangChun,

respectively), color coded in black (and indicated by the symbol black ◦ and full

lines (‘lty=1’)) have similar temperatures and are located in the north-eastern

region of China. Cities 5-7 (TaiYuan, BeiJing, TianJin), identified by red (△ and

lines − · − (‘lty=4’)), are in the north, and have similar but different tempera-

ture trends than do those in the north-eastern region. Two (BeiJing and TianJin)

are located close to sea-level, while the third (TaiYuan) is further south (and so

might be expected to have higher temperatures) but its elevation is very high so

decreasing its temperature patterns to be more in line with BeiJing and TianJin.

Cities 8-11 (ChengDu, WuHan, ChangSha, HangZhou), green (∗) with lines · · ·
(‘lty=3’), are located in central regions with ChengDu further west but elevated.

Finally, cities 12-14 (FuZhou, XiaMen, GuangZhou), blue (�) with lines −−−
(‘lty=8’), are in the southeast part of the country.

Pearson correlations between the variables Xj , j = 1, . . . , 12, and the prin-

cipal components PCν , ν = 1, . . . , 12, sand correlation circles (not shown) show

that all months have an impact on PC1 with the months of June, July and Au-

gust having a slightly negative influence on PC2. Plots for other k ̸= 1 values

give comparable results. Likewise, analyses using the cross-autocorrelations of

Eq.(2.5) also produce similar conclusions.

4 Conclusion

The methodology has successfully identified cities with similar temperature trends,

which trends a priori could not have been foreshadowed, but which do conform

with other geophysical information thus confirming the usefulness of the method-

ology. The cross-autocorrelation functions for a p-dimensional multivariate time

series have been extended to the case where there are S ≥ 1 multivariate time

series. These replaced the standard variance-covariance matrices for use in a

principal component analysis, thus retaining measures of the time dependencies

inherent to time series data. The methodology produces principal component

time series, which can be compared in the usual way on a principal component

plot, except that the plot also includes time as an additional plot dimension.
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Table 1 - Sample Cross-Autocorrelations - ρ̂(k), k = 1

Sample Cross-Autocorrelations ρ̂jj′(1)

Xj X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

X1 0.965 0.963 0.947 0.938 0.924 0.883 0.851 0.888 0.942 0.959 0.961 0.964

X2 0.960 0.959 0.954 0.942 0.926 0.882 0.850 0.887 0.935 0.950 0.958 0.957

X3 0.952 0.952 0.948 0.937 0.925 0.876 0.840 0.882 0.929 0.940 0.947 0.948

X4 0.943 0.945 0.941 0.936 0.929 0.883 0.846 0.877 0.923 0.932 0.935 0.940

X5 0.921 0.923 0.922 0.924 0.926 0.894 0.841 0.870 0.916 0.918 0.915 0.915

X6 0.886 0.888 0.890 0.891 0.897 0.882 0.852 0.871 0.895 0.889 0.877 0.878

X7 0.849 0.845 0.849 0.847 0.850 0.855 0.894 0.912 0.887 0.865 0.857 0.848

X8 0.890 0.883 0.877 0.879 0.877 0.870 0.906 0.927 0.922 0.904 0.899 0.891

X9 0.943 0.938 0.922 0.921 0.915 0.895 0.892 0.923 0.960 0.958 0.950 0.946

X10 0.960 0.953 0.938 0.931 0.921 0.891 0.869 0.906 0.956 0.964 0.963 0.958

X11 0.970 0.960 0.947 0.936 0.921 0.879 0.862 0.897 0.952 0.961 0.962 0.963

X12 0.969 0.960 0.948 0.933 0.920 0.878 0.849 0.889 0.946 0.959 0.962 0.961
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Abstract. The choice of an appropriate representation remains crucial
for mining time series, particularly to reach a good trade-o� between the
dimensionality reduction and the stored information. Symbolic represen-
tations constitute a simple way of reducing the dimensionality by turning
time series into sequences of symbols. SAXO is a data-driven symbolic
representation of time series which encodes typical distributions of data
points. This approach was �rst introduced as a heuristic algorithm based
on a regularized coclustering approach. The main contribution of this ar-
ticle is to formalize SAXO as a hierarchical coclustering approach. The
search for the best symbolic representation given the data is turned into
a model selection problem. Comparative experiments demonstrate the
bene�t of the new formalization, which results in representations that
drastically improve the compression of data.

Keywords: Time series, symbolic representation, coclustering

1 Introduction

The choice of the representation of time series remains crucial since it impacts
the quality of supervised and unsupervised analysis [1]. Time series are partic-
ularly di�cult to deal with due to their inherently high dimensionality when
they are represented in the time-domain [2] [3]. Virtually all data mining and
machine learning algorithms scale poorly with the dimensionality. During the
last two decades, numerous high level representations of time series have been
proposed to overcome this di�culty. The most commonly used approaches are:
the Discrete Fourier Transform [4], the Discrete Wavelet Transform [5] [6], the
Discrete Cosine Transform [7], the Piecewise Aggregate Approximation (PAA)
[8]. Each representation of time series encodes some information derived from
the raw data4. According to [1], mining time series heavily relies on the choice of
a representation and a similarity measure. Our objective is to �nd a compact

and informative representation which is driven by the data. The symbolic rep-
resentations constitute a simple way of reducing the dimensionality of the data
by turning time series into sequences of symbols [9]. In such representations, each
symbol corresponds to a time interval and encodes information which summarize

4 �Raw data� designates a time series represented in the time-domain by a vector of
real values.

Copyright c⃝2015 for this paper by its authors. Copying permitted for private and academic
purposes.
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the related sub-series. Without making hypothesis on the data, such a represen-
tation does not allow one to quantify the loss of information. This article focuses
on a less prevalent symbolic representation which is called SAXO5. This approach
optimally discretizes the time dimension and encodes typical distributions6 of
data points with the symbols [10]. SAXO o�ers interesting properties. Since this
representation is based on a regularized Bayesian coclustering7 approach called
MODL8 [11], a good trade-o� is naturally reached between the dimensionality
reduction and the information loss. SAXO is a parameter-free and data-driven
representation of time series. In practice, this symbolic representation proves to
be highly informative for training classi�ers. In [10], SAXO was evaluated on
public datasets and favorably compared with the SAX representation.

Originally, SAXO was de�ned as a heuristic algorithm. The two main con-
tributions of this article are: i) the formalization of SAXO as a hierarchical
coclustering approach; ii) the evaluation of its compactness in terms of cod-
ing length. This article is organized as follows. Section 2 brie�y introduces the
symbolic representations of time series and presents the original SAXO heuristic
algorithm. Section 3 formalizes the SAXO approach resulting in a new evalu-
ation criterion which is the main contribution of this article. Experiments are
conducted in Section 4 on real datasets in order to compare the SAXO evalua-
tion criterion with that of the MODL coclustering approach. Lastly, perspectives
and future works are discussed in Section 5.

2 Related work

Numerous compact representations of time series deal with the curse of dimen-
sionality by discretizing the time and by summarizing the sub-series within each
time interval. For instance, the Piecewise Aggregate Approximation (PAA) en-
codes the mean values of data points within each time interval. The Piecewise
Linear Approximation (PLA) [12] is an other example of compact representa-
tion which encodes the gradient and the y-intercept of a linear approximation of
sub-series. In both cases, the representation consist of numerical values which de-
scribe each time interval. In contrast, the symbolic representations characterize
the time intervals by categorical variables [9]. For instance, the Shape De�ni-
tion Language (SDL) [13] encodes the shape of sub-series by symbols. The most
commonly used symbolic representation is the SAX9 approach [9]. In this case,
the time dimension is discretized into regular intervals, the symbols encode the
mean values per interval.

5 SAXO Symbolic Aggregate approXimation Optimized by data.
6 The SAXO approach produces clusters of time series within each time interval which
correspond to the symbols.

7 The coclustering problem consist in reordering rows and columns of a matrix in order
to satisfy a homogeneity criterion.

8 Minimum Optimized Description Length
9 Symbolic Aggregate approXimation.
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The symbolic representations appear to be really helpful for processing large
datasets of time series owing to dimensionality reduction. However, these ap-
proaches su�er several limitations.

� Most of these representations are lossy compression approaches unable to
quantify the loss of information without strong hypothesis on the data.

� The discretization of the time dimension into regular intervals is not data
driven.

� The symbols have the same meaning over time irrespectively of their rank
(i.e. the ranks of the symbols may be used to improve the compression).

� Most of these representations involve user parameters which a�ect the stored
information (ex: for the SAX representation, the number of time intervals
and the size of the alphabet must be speci�ed).

The SAXO approach overcomes these limitations by optimizing the time
discretization, and by encoding typical distributions of data points within each
time interval [10]. SAXO was �rst de�ned as a heuristic which exploits the MODL
coclustering approach.

Fig. 1. Main steps of the SAXO learning algorithm.

Figure 1 provides an overview of this approach by illustrating the main steps
of the learning algorithm. The joint distribution of the identi�ers of the time
series C, the values X, and the timestamp T is estimated by a trivariate coclus-
tering model. The time discretization resulting from the �rst step is retained,
and the joint distribution of X and C is estimated within each time interval by
using a bivariate coclustering model. The resulting clusters of time series are
characterized by piecewise constant distributions of values and correspond to
the symbols. A speci�c representation allows one to re-encode the time series as
a sequence of symbols. Then, the typical distribution that best represents the
data points of the time series is selected within each time interval. Figure 2(a)
plots an example of recoded time series. The original time series (represented by
the blue curve) is recoded by the �abba� SAXO word. The time is discretized
into four intervals (the vertical red lines) corresponding to each symbol. Within
time intervals, the values are discretized (the horizontal green lines): the number
of intervals of values and their locations are not necessary the same. The sym-
bols correspond to typical distributions of values: conditional probabilities of X
are associated with each cell of the grid (represented by the gray levels); Figure
2(b) gives an example of the alphabet associated with the second time interval.
The four available symbols correspond to typical distributions which are both
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represented by gray levels and by histograms. By considering Figures 2(a) and
2(b), b appears to be the closest typical distribution of the second sub-series.

(a) (b)

Fig. 2. Example of a SAXO representation (a) and the alphabet of the second time
interval (b).

As in any heuristic approach, the original algorithm �nds a suboptimal solu-
tion for selecting the most suitable SAXO representation given the data. Solving
this problem in an exact way appears to be intractable, since it is comparable
to the coclustering problem which is NP-hard. The main contribution of this
paper is to formalize the SAXO approach within the MODL framework. We
claim this formalization is a �rst step to improving the quality of the SAXO
representations learned from data. In this article, we de�ne a new evaluation
criterion denoted by Csaxo (see Section 3). The most probable SAXO represen-
tation given the data is de�ned by minimizing Csaxo. We expect to reach better
representations by optimizing Csaxo, instead of exploiting the original heuristic
algorithm.

3 Formalization of the SAXO approach

This section presents the main contribution of this article: the SAXO ap-
proach is formalized as a hierarchical coclustering approach. As illustrated in
Figure 3, the originality of the SAXO approach is that the groups of identi�ers
(variable C) and the intervals of values (variable X) are allowed to change over
time. By contrast, the MODL coclustering approach forces the discretization of
C and X to be the same within time intervals. Our objective is to reach better
models by removing this constraint.

A SAXO model is hierarchically instantiated by following two successive
steps. First, the discretization of time is determined. The bivariate discretiza-
tion C × X is then de�ned within each time interval. Additional notations are
required to describe the sequence of bivariate data grids.
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X

C

T

MODL coclustering
X

C

T

SAXO

Fig. 3. Examples of a MODL coclustering model (left part) and a SAXO model (right
part).

Notations for time series: In this article, the input dataset D is consid-
ered to be a collection of N time series denoted Si (with i ∈ [1, N ]). Each
time series consists of mi data points, which are couples of values X and
timestamps T . The total number of data points is denoted by m =

∑N
i=1 mi.

Notations for the t-th time interval of a SAXO model:

� kT : number of time intervals;
� ktC : number of clusters of time series;
� ktX : number of intervals of value;
� kC(i, t): index of the cluster that contains the sub-series of Si;
� {nt

iC
}: number of time series in each cluster itC ;

� mt: number of data point;
� mt

i: number of data points of each time series Si;
� mt

iC
: number of data points in each cluster itC ;

� {mt
jX

}: number of data points in the intervals jX ;
� {mt

iCjX
}: number of data points belonging to each cell (iC , jX).

Eventually, a SAXO model M ′ is �rst de�ned by a number of time intervals
and the location of their bounds. The bivariate data grids C × X within each
time interval are de�ned by: i) the partition of the time series into clusters; ii)
the number of intervals of values; iii) the distribution of the data points on the
cells of the data grid; iv) for each cluster, the distribution of the data points
on the time series belonging to the same cluster. Section 3.1 presents the prior
distribution of the SAXO models. The likelihood of a SAXO model given the
data is described in Section 3.2. A new evaluation criterion which de�nes the
most probable model given the data is proposed in Section 3.3.

3.1 Prior distribution of the SAXO models

The proposed prior distribution P (M ′) exploits the hierarchy of the parameters
of the SAXO models and is uniform at each level. The prior distribution of the
number of time intervals kT is given by Equation 1. The parameter kT belongs to
[1,m], with m representing the total number of data points. All possible values
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of kT are considered as equiprobable. By using combinatorics, the number of
possible locations of the bounds can be enumerated given a �xed value of kT .
Once again, all possible locations are considered as equiprobable. Equation 2
represents the prior distribution of the parameter {mt} given kT . Within each
time interval t, the number of intervals of values ktX is uniformly distributed
(see Equation 3). The value of ktX belongs to [1,mt], with mt representing the
number of data points within the t-th time interval. All possible values of ktX are
equiprobable. The same approach is applied to de�ne the prior distribution of the
number of clusters within each time interval (see Equation 4). The value of ktC
belongs to [1, N ], with N denoting the total number of time series. Once again,
all possible values of ktC are equiprobable. The possible ways of partitioning
the N time series into ktC clusters can be enumerated, given a �xed number of
clusters in the t-th time interval. The term B(N, ktC) in Equation 5 represents the
number of possible partitions of N elements into ktC possibly empty clusters10.
Within each time interval, all distributions of the mt data points on the cells
of the bivariate data grid C × X are considered as equiprobable. Equation 6
enumerates the possible ways of distributing {mt} data points on ktX .ktC cells.
Given a time interval t and a cluster itC , all distributions of the data points
on the time series belonging to the same cluster are equiprobable. Equation 7
enumerates the possible ways of distributing mt

i data points on nt
iC

time series.

P (kT ) =
1

m
(1) P ({mt}|kT ) =

1(
m+kT−1

kT−1

)
(2)

P ({kt
X}|kT , {mt}) =

kT∏
t=1

1

mt
(3)

P ({kt
C}|kT ) =

kT∏
t=1

1

N
(4) P

(
kC(i, t)|kT , {kt

C}
)
=

kT∏
t=1

1

B(N, kt
C)

(5)

P
(
{mt

jC ,jX}|kT , {mt}, {kt
X}, {kt

C}
)
=

kT∏
t=1

1(mt+kt
C
.kt

X
−1

kt
C
.kt

X
−1

) (6)

P
(
{mt

i}|kT , {kt
C}, kC(i, t), {mt

jC ,jX}
)
=

kT∏
t=1

kt
C∏

i=1

1(mt
iC

+nt
iC

−1

nt
iC

−1

) (7)

In the end, the prior distribution of the SAXO models M ′ is given by Equa-
tion 8.

P (M ′) =
1

m
× 1(

m+kT−1
kT−1

) ×
kT∏
t=1

[
1

mt
× 1

N
× 1

B(N, kt
C)

× 1(mt+kt
C
.kt

X
−1

kt
C
.kt

X
−1

) ×
kt
C∏

i=1

1(mt
iC

+nt
iC

−1

nt
iC

−1

)


(8)

10 The second kind of Stirling numbers S
{
v
k

}
enumerates the possible partitions of v

elements into k clusters and B(N, kt
C) =

∑kt
C

i=1 S
{
N
i

}
.
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3.2 Likelihood of data given a SAXO model

A SAXO model matches with several possible datasets. Intuitively, the likelihood
P (D|M ′) enumerates all the datasets which are compatible with the parameters
of the model M ′. The �rst term of the likelihood represents the distribution of
the ranks of the values of T . In other words, Equation 9 codes all the possi-
ble permutations of the data points within each time interval. The second term
enumerates all the possible distributions of the m data points on the kT time
intervals, which are compatible with the parameter {mt} (see Equation 10). In
the same way, Equation 11 enumerates the distributions of the mt data points
on the ktX .ktC cells of the bivariate data grids C ×X within each time interval.
The considered distributions are compatible with the parameter {mt

iC ,jX
}. For

each time interval and for each cluster, Equation 12 enumerates all the possible
distributions of the data points on the time series belonging to the same cluster.
Equation 13 enumerates all the possible permutations of the data points in the
intervals of X, within each time interval. This information must also be coded
over all the time intervals, which is equivalent to enumerating all the possible
fusions of kT stored lists in order to constitute a global stored list (see Equa-
tion 14). In the end, the likelihood of the data given a SAXO models M ′ is
characterized by Equation 15.

1∏kT
t=1 m

t!
(9)

1
m!∏kT

t=1 mt!

(10)
kT∏
t=1

1
mt!∏kt

C
iC=1

∏kt
X

jX=1 mt
iC,jX

!

(11)

kT∏
t=1

1∏kt
C

iC=1 mt
iC

!∏N
i=1 mt

i !

(12)

kT∏
t=1

1∏kt
X

jX=1 m
t
jX

!
(13)

1
m!∏kT

t=1 mt!

(14)

P (D|M ′)=
1

m!2
×

kT∏
t=1

∏kt
C

iC=1

∏kt
X

jX=1 m
t
iC ,jX

!×
∏N

i=1 m
t
i!∏kt

X
jX=1 m

t
jX

!×
∏kt

C
iC=1 m

t
iC
!

 (15)

3.3 Evaluation criterion

The SAXO evaluation criterion is the negative logarithm of P (M ′)× P (D|M ′)
(see Equation 16). The �rst three lines correspond to the prior term−log(P (M ′))
and the last two lines represent the likelihood term −log(P (M ′|D)). The most
probable model given the data is found by minimizing Csaxo(M

′) over the set of
all possible SAXO models denoted by M′.
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Csaxo(M
′) = log(m) + log

(
m+ kT − 1

kT − 1

)
+

kT∑
t=1

log(mt)

+kT .log(N)+

kT∑
t=1

log
(
B(N, kt

C)
)
+

kT∑
t=1

log

(
mt+kt

C .k
t
X−1

kt
C .k

t
X − 1

)

+

kT∑
t=1

kt
C∑

iC=1

log

(
mt
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(16)

Key ideas to retain: Rather than having a heuristic decomposition of the
SAXO approach in a two-step algorithm, we propose a single evaluation cri-
terion based on the MODL framework. Once optimized, this criterion should
yield better representations of time series. We compare the ability of both
criterion to compress data. We aim at evaluating the interest of optimizing
Csaxo rather than the original trivariate coclustering criterion [14] (denoted
by Cmodl).

4 Comparative experiments on real datasets

According to the information theory and since both criteria are a negative loga-
rithm of a probability, Csaxo and Cmodl represent the coding length of the models.
In this section, both approaches are compared in terms of coding length. The
20 processed datasets come from the UCR Time Series Classi�cation and Clus-
tering repository [15]. Some datasets are relatively small, we have selected the
ones which include at least 800 learning examples. Originally, these datasets are
divided into training and test sets which have been merged in our experiments.
The objective of this section is to compare Csaxo and Cmodl for each dataset.
On the one hand, the criterion Cmodl is optimized by using the greedy heuristic
and a neighborhood exploration mentioned described in [11]. The coding length
of the most probable MODL model (denoted by MAPmodl) is then calculated by
using Cmodl. On the other hand, the criterion Csaxo is optimized by exploiting
the original heuristic algorithm illustrated in Figure 1 [10]. The coding length
of best SAXO model (denoted by MAPsaxo) is given by the criterion Csaxo. No-
tice that both algorithms have a O(m

√
m logm) time complexity. The order of

magnitude of the coding length depends on the size of the data set and can not
be easily compared over all datasets. We choose to exploit the compression gain
[16] which consists in comparing the coding length of a model M with the coding
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length of the simplest model Msim. This key performance indicator varies in the
interval [0, 1]. The compression gain is similarly de�ned for the MODL and the
SAXO approaches such that:

Gainmodl(M) = 1− Cmodl(M)/Cmodl(Msim)

Gainsaxo(M
′) = 1− Csaxo(M

′)/Csaxo(Msim)

Our experiments evaluate the variation of the compression gain between the
SAXO and the MODL approaches. This indicator is denoted by ∆G and rep-
resents the relative improvement of the compression gain provided by SAXO.
The value of ∆G can be negative, which means that SAXO provides a worse
compression gain than the MODL approach.

∆G =
Gainsaxo(MAPsaxo)− Gainmodl(MAPmodl)

Gainmodl(MAPmodl)

Dataset ∆G Dataset ∆G

Starlight curves 63.86% CBF −1.43%
uWaveGestureX 191.41% AllFace 383.24%
uWaveGestureY 157.79% Symbols 23.16%
uWaveGestureZ 185.13% 50 Words 400.68%
ECG Five Days −1.80% Wafer 37.03%
MoteStrain 627.84% Yoga 63.40%

CincEGCtorso 32.93% FacesUCR −18.39%
MedicalImages 191.32% Cricket Z 290.22%
WordSynonym 264.93% Cricket X 285.87%
TwoPatterns missing Cricket Y 296.40%

Table 1. Coding length evaluation.

Table 1 presents the results of our experiments and includes a particular
case with a missing value for the dataset �TwoPatterns�. In this case, the �rst
step of the heuristic algorithm which optimizes Csaxo (see Figure 1) leads to the
simplest trivariate coclustering model that includes a single cell. This is a side
e�ect due to the fact that the MODL approach is regularized. A possible expla-
nation is that the temporal representation of time series is not informative for
this dataset. Other representations such as the Fourier or the wavelet transforms
could be tried. In most cases, ∆G has a positive value which means SAXO pro-
vides a better compression than the MODL approach. This trend emerges clearly,
the average compression improvement reaches 183%. We exploit the Wilcoxon
signed-ranks test to reliably comparing both approaches over all datasets [17]. If
the output value (denoted by z) is smaller than −1.96, the gap in performance
is considered as signi�cant. Our experiments give z = −3.37 which is highly
signi�cant. In the end, the compression of data provided by SAXO appears to
be intrinsically better than the MODL approach. The prior term of Csaxo in-
duces an additional cost in terms of coding length. This additional cost is far
outweighed by a better encoding of the likelihood.
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5 Conclusion and perspectives

SAXO is a data-driven symbolic representation of time series which extends
SAX in three ways: i) the discretization of time is optimized by a Bayesian
approach rather than considering regular intervals; ii) the symbols within each
time interval represents typical distributions of data points rather than average
values; iii) the number of symbols may di�er per time interval. The parameter
settings is automatically optimized given the data. SAXO was �rst introduced as
an heuristic algorithm. This article formalizes this approach within the MODL
framework as a hierarchical coclustering approach (see Section 3). A Bayesian
approach is applied leading to an analytical evaluation criterion. This criterion
must be minimized in order to de�ne the most probable representation given the
data. This new criterion is evaluated on real datasets in Section 4. Our experi-
ments compare the SAXO representation with the original MODL coclustering
approach. The SAXO representation appears to be signi�cantly better in terms
of data compression. In future work, we plan to use the SAXO criterion in order
to de�ne a similarity measure. Numerous learning algorithms, such as K-means
and K-NN, could use such an improved similarity measure de�ned over time
series. We plan to explore potential gains in areas such as: i) the detection of
atypical time series; ii) the query of a database by similarity; iii) the clustering
of time series.
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Abstract. This work proposes a temporal and frequential metric learn-
ing framework for a time series nearest neighbor classification. For that,
time series are embedded into a pairwise space where a combination
function is learned based on a maximum margin optimization process.
A wide range of experiments are conducted to evaluate the ability of the
learned metric on time series kNN classification.

Keywords: Metric learning, Time series, kNN, Classification, Spectral metrics.

1 Introduction

Due to their temporal and frequential nature, time series constitute complex
data to analyze by standard machine learning approaches [1]. In order to clas-
sify such challenging data, distance features must be used to bring closer time
series of identical classes and separate those of different classes. Temporal data
may be compared on their values. The most frequently used value-based met-
rics are the Euclidean distance and the Dynamic Time Warping dtw to cope
with delays [2,3]. They can also be compared on their dynamics and frequential
characteristics [4, 5]. Promising approaches aims to learn the Mahalanobis dis-
tance or kernel function for a specific classifier [6,7]. Other work investigate the
representation paradigm by representating objects in a dissimilarity space where
are investigated dissimilarity combinations and metric learning [8, 9]. The idea
in this paper is to combine basic metrics into a discriminative one for a kNN
classifier. In the metric learning context for a metric learning approach driven
by nearest neighbors (Weinberger & Saul [6]), we extend the work of Do & al.
in [10] to temporal and frequential characteristics. The main idea is to embed
pairs of time series in a space whose dimensions are basic temporal and frequen-
tial metrics, where a combination function is learned based on a large margin
optimization process.

The main contributions of the paper are a) propose a new temporal and fre-
quential metric learning framework for a time series nearest neighbors classifica-
tion, b) learn a combination metric involving amplitude, behavior and frequen-
tial characteristics and c) conduct large experimentations to study the ability of
learned metric. The rest of the paper is organized as follows. Section 2 recalls
briefly the major metrics for time series. In Section 3, we present the proposed

Copyright c©2015 for this paper by its authors. Copying permitted for private and academic
purposes.
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metric learning approach. Finally, Section 4 presents the experiments conducted
and discusses the results obtained.

2 Time series metrics

Let xi = (xi1, ..., xiT ) and xj = (xj1, ..., xjT ) be two time series of time length
T . Time series metrics fall at least within three main categories. The first one
concerns value-based metrics, where time series are compared according to their
values regardless of their behaviors. Among these metrics are the Euclidean
distance (dE), the Minkowski distance and the Mahalanobis distance [3]. We
recall the formula of dE :

dE(xi,xj) =

√
√
√
√

T∑

t=1

(xit − xjt)2 (1)

The second category relies on metrics in the spectral representations. In some
applications, time series may be similar because they share the same frequency
characteristics. For that, time series xi are first transformed into their Fourier
representation x̃i = [x̃i1, ..., x̃iF ], where x̃if is a complex number (i.e. Fourier

components), with F = 2
T

2
+ 1 [5]. Then, one may use the Euclidean distance

(dFFT ) between the module of the complex numbers x̃if , noted |x̃if |:

dFFT (xi,xj) =

√
√
√
√

F∑

f=1

(|x̃if | − |x̃jf |)2 (2)

Note that times series of similar frequential characteristics may have distinctive
global behavior. Thus, to compare time series based on their behavior, a third
category of metrics is used. Many applications refer to the Pearson correlation
or its generalization, the temporal correlation coefficient [4] defined as:

Cortr(xi,xj) =

∑

t,t′
(xit − xit′)(xjt − xjt′)

√∑

t,t′
(xit − xit′)2

√∑

t,t′
(xjt − xjt′)2

(3)

where |t−t′| ≤ r, r ∈ [1, ..., T −1] being a parameter that can be learned or fixed
a priori. The optimal value of r is noisy dependant. For r = T − 1, Eq. 3 leads
to the Pearson correlation. As Cortr is a similarity measure, it is transformed
into a dissimilarity measure: dCortr (xi,xj) =

1

2
(1− Cortr(xi,xj)).

3 Temporal and frequential metric learning for a large

margin kNN

Let X = {xi, yi}
N
i=1

be a set of N static vector samples, xi ∈ R
p, p being the

number of descriptive features and yi the class labels. Weinberger & Saul pro-
posed in [6] an approach to learn a dissimilarity metric D for a large margin
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kNN. It is based on two intuitions: first, each training sample xi should have the
same label yi as its k nearest neighbors; second, training samples with different
labels should be widely separated. For this, they introduced the concept of target

for each training sample xi. Target neighbors of xi, noted j  i, are the k closest
xj of the same class (yj = yi). The target neighborhood is defined with respect
to an initial metric. The aim is to learn a metric D that pulls the targets and
pushes the ones of different class.

Let d1, ..., dh..., dp be p given dissimilarity metrics that allow to compare sam-
ples. The computation of a metric always takes into account a pair of samples.
Therefore, we used the pairwise representation introduced in Do & al. [10]. In
this space, a vector xij represents a pair of samples (xi,xj) described by the p

basics metrics dh: xij = [d1(xi,xj), ..., dp(xi,xj)]
T . If xij = 0 then xj is identi-

cal to xi according to all metrics dh. A combination function D of the metrics
dh can be seen as a function in this space. We propose in the following to use a
linear combination of dh: Dw(xi,xj) =

∑

h wh.dh(xi,xj). Its pairwise notation
is Dw(xij) = wT .xij . To ensure that Dw is a valid metric, we set wh ≥ 0 for all
h = 1...p. The main steps of the proposed approach to learn the metric, detailed
hereafter, can be summarized as follows:

1. Embed each pair (xi,xj) into the pairwise space R
p.

2. Scale the data within the pairwise space.
3. Define for each xi its targets.
4. Scale the neighborhood of each xi.
5. Learn the combined metric Dw.

Data scaling. This operation is performed to scale the data within the pairwise
space and ensure comparable ranges for the p basic metrics dh. In our experiment,
we use dissimilarity measures with values in [0; +∞[. Therefore, we propose to
Z-normalize their log distributions.

Target set. For each xi, we define its target neighbors as the k nearest neighbors
xj (j  i) of the same class according to an initial metric. In this paper, we

choose a L2-norm of the pairwise space as the initial metric (
√∑

h d
2

h). Other
metrics could be chosen. We emphasize that target neighbors are fixed a priori

(at the first step) and do not change during the learning process.

Neighborhood scaling. In real datasets, local neighborhoods can have very dif-
ferent scales. To make the target neighborhood spreads comparable, we propose
for each xi to scale its neighborhood vectors xij such that the L2-norm of the
farthest target is 1.

Learning the combined metric Dw. Let {xij , yij}
N
i,j=1

be the training set with
yij = −1 if yj = yi and +1 otherwise. Learning Dw for a large margin kNN
classifier can be formalized as the following optimization problem:
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min
w,ξ

∑

i,j i

Dw(xij)

︸ ︷︷ ︸

pull

+C
∑

i,j i,l

1 + yil

2
.ξijl

︸ ︷︷ ︸

push

s.t. ∀j  i, yl 6= yi,

Dw(xil)−Dw(xij) ≥ 1− ξijl

ξijl ≥ 0

wh > 0 ∀h = 1...p

(4)

Note that the "pull" term
∑

j i

Dw(xij) =
∑

j i

wT .xij = N.k.wT .x̄ij is a L1-

Mahalanobis norm weighted by the average target sample. Therefore, it behaves
like a L1-norm in the optimization problem. The problem is very similar to a
C-SVM classification problem. When C is infinite, we have a "strict" problem:
the solver will try to find a direction in the pairwise space for which only targets
are in the close neighborhood of each xi, and a maximum margin 1

||w||2
.

Let xtest be a new sample to classify and xtest,i (i = 1, ..., N) the corresponding
vectors into the pairwise embedding space. After xtest,i normalization according
to the Data Scaling step, xtest is classified based on a standard kNN and Dw.

4 Experiments

In this section, we compare kNN classifier performances for several metrics on
reference time series datasets [11–14] described in Table 1. To compare with the
reference results in [3, 11], the experiments are conducted with the same proto-
cols as in Do &. al. [10]: k is set to 1; train and test set are given a priori. Due to
the current format to store the data, small datasets with short time series were
retained and the experiments are conducted on one runtime.

In this experimentation, we consider basic metrics dE , dFFT and dCortr then,
we learn a combined metric Dw according to the procedure described in Section 3.
First, two basic temporal metrics are considered in D2 (dE and dCortr ) as in Do
& al. [10]. Second, we consider a combination between temporal and frequential
metrics in D3 (dE , dCortr and dFFT ). Cplex library [15] has been used to solve
the optimization problem in Eq. 4. We learn the optimal parameter values of
these metrics by minimizing a leave-one out cross-validation criterion.

As the training dataset sizes are small, we propose a hierarchical error criterion:

1. Minimize the kNN error rate
2. Minimize dintra

dinter

if several parameter values obtain the minimum kNN error.

where dintra and dinter stands respectively to the mean of all intraclass and
interclass distances according to the metric at hand. Table 2 gives the range of
the grid search considered for the parameters. In the following, we consider only
the raw series and don’t align them using a dtw algorithm for example. For
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all reported results (Table 3), the best one is indexed with a star and the ones
significantly similar from the best one (Z-test at 1% risk) are in bold [16].

Dataset Nb. Class Nb. Train Nb. Test TS length

SonyAIBO 2 20 601 70
MoteStrain 2 20 1252 84
GunPoint 2 50 150 150
PowerCons 2 73 292 144
ECG5Days 2 23 861 136
SonyAIBOII 2 27 953 65
Coffee 2 28 28 286
BME 3 48 102 128
UMD 3 46 92 150
ECG200 2 100 100 96
Beef 5 30 30 470
DiatomSizeReduction 4 16 306 345
FaceFour 4 24 88 350
Lighting-2 2 60 61 637
Lighting-7 7 70 73 319
OliveOil 4 30 30 570

Table 1. Dataset description giving the number of classes (Nb. Class), the number of
time series for the training (Nb. Train) and the testing (Nb. Test) sets, and the length
of each time series (TS length).

Method Parameter Parameter range

dCortr r [1, 2, 3, , ..., T ]
D2, D3 C [10−3, 0.5, 1, 5, 10, 20, 30, ..., 150]

Table 2. Parameter ranges

From Table 3, we can see that temporal metrics dE and dCortr alone per-
forms better one from the other depending on the dataset. Using a frequential
metric alone such as dFFT brings significant improvements for some datasets
(SonyAIBO, GunPoint, PowerCons, ECG5Days). It can be observed that one
basic metric is sufficient on some databases (MoteStrain, GunPoint, PowerCons,
ECG5Days). In other cases, learning a combination of these basic metrics reach
the same performances on most datasets or achieve better results (UMD). The
new approach allows to extend combination functions to many metrics with-
out having to cope with additional parameters in grid search and without to
test every basic metrics alone to retained the best one. It also extends the
work done in [6] for single distance to multiple distances. Adding metrics such
as dFFT improves the performances on some datasets (SonyAIBO, GunPoint,
UMD, FaceFour, Lighting-2, Lighting-7) than considering only temporal metrics
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Metrics
Dataset Basic Learned combined

dE dCortr dFFT D2 D3

SonyAIBO 0.305 0.308 0.258* 0.308 0.259

MoteStrain 0.121* 0.264 0.278 0.210 0.277
GunPoint 0.087 0.113 0.027* 0.113 0.073
PowerCons 0.370 0.445 0.315* 0.384 0.410
ECG5Days 0.203 0.153 0.006* 0.153 0.156
SonyAIBOII 0.141 0.142 0.128* 0.142 0.142

Coffee 0.250 0* 0.357 0* 0*

BME 0.128 0.059* 0.412 0.059* 0.078

UMD 0.185* 0.207 0.315 0.207 0.185*

ECG200 0.120 0.070* 0.166 0.070* 0.070*

Beef 0.467 0.300* 0.500 0.300* 0.367

DiatomSizeReduction 0.065* 0.075 0.069 0.075 0.075

FaceFour 0.216 0.216 0.239 0.216 0.205*

Lighting-2 0.246 0.246 0.148* 0.246 0.213

Lighting-7 0.425 0.411 0.315 0.411 0.288*

OliveOil 0.133* 0.133* 0.200 0.133* 0.133*

Table 3. Error rate of 1NN classifier for different metrics. D2 is computed using dE
and dCortr ; D3 uses the 3 basic metrics. The metric with the best performance for
each dataset is indicated by a star (*) and the ones with equivalent performances are
in bold.

(dE , dCortr ). However, it does not always improve the results (GunPoint, Pow-
erCons, ECG5Days). This might be caused by the fact that our framework is
sensitive to the choice of the initial metric (L2-norm) or maybe, some steps in
the algorithm should be improved to make the combination better.

5 Conclusion

For nearest neighbor time series classification, we propose to learn a metric as a
combination of temporal and frequential metrics based on a large margin opti-
mization process. The learned metric shows good performances on the conducted
experimentations. For future work, we are looking for some improvements. First,
the choice of the initial metric is crucial. It has been set here as the L2-norm
of the pairwise space but a different metric could provide better target sets.
Otherwise, using an iterative procedure (reusing Dw to generate new target sets
and learn Dw again) could be another solution. Second, we note that the L1-
norm on the "pull" term leads to sparcity. Changing it into a L2-norm could
allow for non-sparse solutions and also extend the approach to non-linear metric
combination functions thanks to the Kernel trick. Finally, we could extend this
framework to multivariate, regression or clustering problems.
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Abstract. Dynamic Time Warping (DTW) is considered as a robust
measure to compare numerical time series when some time elasticity is
required. Even though its initial formulation can be slow, extensive re-
search has been conducted to speed up the calculations. However, those
optimizations are not always available for multidimensional time series.
In this paper, we focus on time series describing gesture movement, all of
which are multidimensional. Our approch propose to speed up the pro-
cessing by 1. adaptively downsampling the time series into sparse time
series and 2. generalizing DTW into a version exploiting sparsity. Fur-
thermore, the downsampling algorithm doesn’t need to know the whole
timeseries to function, making it a good candidate for streaming appli-
cations such as real-time gesture recognition.

1 Introduction

Among other measures, Dynamic Time Warping (DTW) has been widely popu-
larized during the seventies with the advent of speech recognition systems [18],
[14]. However, one of the main drawbacks of such a time-elastic measure is its
quadratic computational complexity which, as is, prevents processing a very large
amount of lengthy temporal data. Recent research has thus mainly focused on
circumventing this complexity barrier. The original approach proposed in this
paper is to cope directly and explicitly with the potential sparsity of the time
series during their time-elastic alignment.

2 Previous work

DTW has seen speed enhancements in several forms; [14] and [5] reduce the
search space by using a band or parallelogram; [1] introduced the concept of a
sparse alignment matrix to dynamically reduce the search space without opti-
mality loss. The dimensionality of the data can be reduced, such as in [21] and
[7] who propose Piecewise Aggregate Approximation (PAA) to downsample the
time series into segments of constant size, then handled by a DTW modification,
PDTW [9]; further compressing can be obtained with Adaptive Piecewise Con-
stant Approximation (APCA) [2]; or compression via symbolic representation
of scalar points can be obtained with SAX [13]. Early abandoning strategies
avoid useless calculation by computing cheap lower bounds: such as [20], [8]
and [10], but the most powerful [8] is not readily available in a form available

Copyright c©2015 for this paper by its authors. Copying permitted for private and academic
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for multidimensional time series. ID-DTW (Iterative Deepening DTW) [4] and
FastDTW [16] use multi-resolution approximations, possibly with an early aban-
doning strategy; [15] and [17] have also proposed approaches mixing APCA with
a lower bounding strategy. Additionally, some alternative elastic distance vari-
ants have been proposed, such as ERP [3] or TWED [12] with some gain in
classification accuracy, but with no speed-up strategy designed so far.

Our method differs from the previous work as follows: first, it gives a novel
way of producing a piecewise constant time series, especially interesting because
of its simplicity and its potential use in streaming scenarios (the downsampled
time series is produced as fast as the original one arrives); second, DTW is
enhanced with a new weighting strategy to accept such downsampled time series
and achieve the desired speed enhancement.

3 Presentation of Coarse-DTW

3.1 Sparse time series

The usual notion of a time series will be called here a dense time series. It
represents a sequence (vi) of points in R

d, where d is the dimension. Such a time
series is usually sampled at a regular interval.

By contrast, let a sparse time series be a pair of sequences (si) and (vi) with
the same length n:

s : {1, . . . , n} → R+

v : {1, . . . , n} → R
d

(1)

Each vi represents a multidimensional point (of dimension d) and each si is a
number describing how long the value vi lasts. We call this number si the stay of
vi. In the following, we will also denote a sparse time series as {(s1, v1), . . . , (sn, vn)}.

For example, the 2D dense time series {(0.5, 1.2), (0.5, 1.2), (0.3, 1.5)} is equiv-
alent to the 2D sparse time series {(2, (0.5, 1.2)) , (1, (0.3, 1.5))}. As another ex-
ample, a dense time series (vi), is exactly represented by the sparse time series
with the same values vi and all stays si = 1.

3.2 Coarse-DTW

The Coarse-DTW algorithm accepts two sparse time series: (si, vi) of length n,
and (tj , wj) of length m.
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Algorithm 1 Coarse-DTW

1: procedure Coarse-DTW((s, v), (t, w))
2: A = new matrix [0..n, 0..m]
3: A[0, .] = A[., 0] = ∞ and A[0, 0] = 0
4: for i = 1 to n do

5: for j = 1 to m do

6: A[i, j] = min( si.δ(vi, wj) +A[i−1, j],
7: tj .δ(vi, wj) +A[i, j−1],
8: max(si, tj).δ(vi, wj) +A[i−1, j−1] )

9: return A[n,m]

The symbol δ represents any distance on R
d. A common choice is δ(x, y) =

‖x− y‖22 =
∑d

k=1(xk − yk)
2.

Fig. 1. A warping path in Coarse-DTW.We superimposed the sparse timeseries (bigger
points) on top of their equivalent dense timeseries (smaller points). The coarse, thick
grid is the Coarse-DTW matrix, whereas the underlying thin grid is the classical DTW
cost matrix.

Coarse-DTW takes advantage of the sparsity in the time series to calculate
costs efficiently. However, because the points last for different amount of time,
we must adapt the classical DTW formulation in order to account for the stays
si and tj of each point into the aggregate cost calculation.

Obviously, when a point lasts for a long time, it should cost more than a point
which lasts for a brief amount of time. For this reason, the pure cost δ(vi, wj)
is multiplied by some quantity, called weight, linked to how long the points last,
as in lines 6–8 of the algorithm. The goal of this subsection is to explain why we
set those weights to si, tj , and max(si, tj) respectively.

The choice of weights si and tj in lines 6 and 7 is motivated as follows: when
we advance one time series without advancing the other, we want a lengthy point
to cost more than a brief point. In the DTW constant-cost sub-rectangle, advanc-
ing the first time series is like following an horizontal subpath, whose aggregated
cost would be δ(vi, wj) on each of its si cells. This sums up to si.δ(vi, wj), which
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is why the weight is chosen to be si in line 6. An analog interpretation holds for
a vertical subpath of tj cells.

In a constant-cost sub-rectangle (of size si × tj), minimizing the aggregated
cost of a path is equivalent with minimizing its number of cells, because all
cells have the same cost. Furthermore, the minimal number of cells is exactly
max(si, tj). This would be the path followed by classical DTW. Hence, the weight
is set to max(si, tj) in line 8.

4 Downsampling

In this section, we seek to transform a dense time series (ui) into a sparse time
series (si, vi); the goal is to detect when series “move a lot” and “are rather
static”, adjusting the number of emitted points accordingly.

Bubble downsampling can be described in a simple form as follows:

Algorithm 2 Bubble Downsampling

1: procedure bubble(v, ρ) ⊲ ρ ≥ 0
2: icenter = 1 ⊲ initialize bubble center
3: vcenter = v1
4: vmean = v1
5: for i = 2 to n do

6: ∆v = δ(vi, vcenter) ⊲ distance to center
7: ∆i = i− icenter ⊲ find the stay
8: if ∆v ≥ ρ then ⊲ does the bubble “burst”?
9: yield (∆i, vmean) ⊲ emit stay + point
10: icenter = i ⊲ update bubble center
11: vcenter = vi
12: vmean = vi
13: else

14: vmean = (∆i× vmean + vi)/(∆i+ 1) ⊲ update mean

15: ∆i = n− icenter + 1 ⊲ force bursting last bubble
16: yield (∆i, vmean)

The idea behind Bubble downsampling is based on the following approxima-
tion: consecutive values can be considered equal as long as they stay within a
given radius ρ for the distance δ. We can picture a curve which makes bubbles
along its path (see Fig. 3), hence the name. Concretely, the algorithm emits a
sparse time series, where each stay is the number of consecutive points contained
in a given bubble, and each value is the mean of the points in this bubble.

The parameter ρ represents the tradeoff between information loss and den-
sity. A large ρ emits few points, thus yielding a very sparse time series, but
less accurate; a smaller ρ preserves more information at the expense of a lower
downsampling ratio. The degenerate case ρ = 0 will output a clone of the origi-
nal time series with no downsampling (all stays equal to 1). Because speed is a
direct consequence of sparsity in Coarse-DTW, a good middle value for ρ must
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Fig. 2. Bubble downsampling applied on a 1D time series (blue, solid) with
ρ = 0.5. The 1-bubbles are represented by their 1-centers (red crosses)
and their 1-boundaries (red, dashed lines). The sparse time series emitted is
{(9,−0.03), (1, 1.2), (11, 2.96), (1, 1.2), (10,−0.04)}.

be found, so that time series are as sparse as possible while retaining just the
right amount of information.
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Fig. 3. Bubble downsampling progressively applied on a 2D time series (outer blue
line with dots) with ρ = 2.0, along with the sparse time series emitted (inner green
line with squares). Again, the 2-bubbles are represented by their 2-centers and their
2-boundaries (red crosses and dashed circles). Numbers indicate the stays. Notice how
stays take into account the slowness at the beginning of the signal.

5 Optimizations on Coarse-DTW

DTW suffers from a slow computation time if not implemented wisely. For this
reason, several optimizations have been designed [8]. The next optimizations we
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considered are called lower bounds, designed to early-abandon computations in
a k-Nearest Neighbor scenario.

The first lower bound LBKim [20] is transposable to Coarse-DTW: as with
1D time series, the first and last pairs of points will always be matched together
as long as the timeseries have each at least two points. First, the cost of match-
ing the first points is: max(s1, t1).δ(v1, w1) because the first matching is done
diagonally (A[0,1] = A[1,0] = ∞). Then, the cost of matching the last points is
min(sn, tm,max(sn, tm)) . δ(vn, wm). Hence, the lower bound is written:

Coarse-DTW(v, w) ≥ max(s1, t1).δ(v1, w1)+min(sn, tm,max(sn, tm)).δ(vn, wm)
(2)

The second lower bound can be evaluated several times as DTW progresses:
for any row i, the minimum of all cells A[i,.] is a lower bound to the DTW result.
Indeed, this result is the last cell of the last row, and the sequence mapping a row
i to minj A[i,j] is increasing, because the costs are positive. Hence, during each
outer loop iteration (i.e., on index i), we can store the minimum of the current
row and compare it to the best-so-far for possibly early abandoning. This can
be transposed directly to Coarse-DTW without additional modifications.

Finally, probably the most powerful lower bound for unidimensional time-
series, known as LBKeogh [8], is based upon the calculation of an envelope; how-
ever this calculation is not trivially transferable to the case of multidimensional
time series simply by generalizing the uni-dimensional equations. Thus, we will
unfortunately not consider it in our study.

6 Results

6.1 DTW vs. Coarse-DTW in 1-NN classification

We considered the classification accuracy and speed of three multidimensional
labeled time series datasets describing gesture movement. The classifier is 1-NN
and we enabled all optimizations described earlier that apply to multidimensional
time series, namely: LBKim and early abandoning on the minima of rows. We
report only the classification time; learning time is zero because no processing
is required. Each dataset is run once with DTW and several times with Coarse-
DTW, each time with a different value for the downsampling radius ρ.

MSRAction3D [11] time series have 60 dimensions (twenty 3D joints) which
we classified by cross-validating all 252 combinations of 5 actors in training and 5
in test. uWaveGestureLibrary [XYZ] comes from the UCR time series database
[6]; it can be considered as three independent uni-dimensional datasets, but we
rather used it here as a single set of 3-dimensional time series, which makes 1-NN
DTW classification fall from 1D errors of respectively 27.3 %, 36.6 % and 34.2 %
down to only 2.8 % as a 3D time series. Character Trajectories [19] comes from
the UCI database and describes trajectories of character handwriting; they were
first resampled to have all the same size (204 data points, size of the longest
sequence in the dataset).
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Abstract. Evaluation of balance stability in elderly people is of promi-
nent relevance in the field of health monitoring. Recently, the use of Wii
Balance Board has been proposed as valid alternative to clinical balance
tests, such as the widely used Berg Balance Scale (BBS) test, allowing
to measure and analyze static features such as the duration or the speed
of assessment of patients’ center of pressure. In an innovative way, in
this paper we propose to take into consideration the whole temporal
information generated by the balance board, analyzing it by means of
dynamical neural networks. In particular, using Recurrent Neural Net-
works implemented according to the Reservoir Computing paradigm, we
propose to estimate the BBS score from the temporal data generated
by the execution of one simple exercise on the balance board. Prelimi-
nary experimental assessments of the proposed approach on a real-world
dataset show promising results.

Keywords: Reservoir Computing, Learning with Temporal Data, Bal-
ance Assessment

1 Introduction

A sedentary lifestyle is a risk factor for the development of many chronic illnesses.
The common physiological aging causes a decrease of global functional abilities:
one of the most important is balance disorder [16]. The control of balance is
complex, with a strong integration and coordination of multiple body elements
including visual, auditor and motor systems [9]. A comprehensive clinical as-
sessment of balance is important for both diagnostic and therapeutic reasons
in clinical practice [4, 17]. The Berg Balance Scale (BBS) test is considered the
gold standard assessment of balance with small intra-inter rater feasibility and
good internal validity. The work in [3] assessed the validity of the BBS by ex-
amining how scale scores are related to clinical judgments, laboratory measures
of postural sway and external criteria reflecting balancing ability. Furthermore,
scores could predict falls in the elderly, and how they are related to motor and
functional performance in stroke patients. The Berg’s utility includes grading
different patients’ balance abilities, monitoring functional balance over time and
evaluating patients responses to different protocols of treatment [18]. Based on
a test of 14 exercises/items, BBS is performance-based and has a scale of 0-4

Copyright c©2015 for this paper by its authors. Copying permitted for private and academic
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(clinician assigned) score for each item, with a maximum overall score of 56.
Within the scopes of the DOREMI European project (GA 611650), a technolog-
ical platform to support and motivate older people to perform physical activity
is under development, aiming at reducing sedentariness, cognitive decline and
malnutrition, promoting an improvement of quality of life and social inclusion.
One of the element of DOREMI platform is a smart carpet, based on the use of
Nintendo Wii Balance Board (WBB), able to gather information pertaining to
users’ weight distribution at the four corners of the board. Such tool allows to
design an automatic system for balance assessment through the daily repetition
of one simple BBS exercise. This type of analysis, done by users at medical fa-
cilities or, remotely, at their own houses, can help clinicians in the evaluation of
older people equilibrium and in control of its evolution.
The use of the WBB is motivated by the fact that it represents a low-cost and
portable tool, recently successfully adopted for problems related to standing
posture correction [14] and for training standing balance in the elderly [19]. In-
terestingly, the WBB has been validated in comparison with gold standard force
platforms [13] in its reliability to track users’ balance parameters, such as the cen-
ter of pressure path length and velocity [5]. However, it is worth to observe that
the whole signal time-series generated by the WBB potentially contains a richer
information than such static parameters. Thereby, in this paper we propose to
analyze the data generated by WBB using Recurrent Neural Networks (RNNs),
which are learning models suitable for catching and processing dynamic knowl-
edge from noisy temporal information. In particular, we considered the problem
of estimating the BSS score of a patient using in input the temporal informa-
tion generated by the execution of one simple BBS exercise on the WBB. This
approach potentially allows to avoid the need to repeat all the 14 BBS exercises
for new patients. An alternative approach in [15] tries to estimate the BBS score
of a patient using information extracted from a tri-axial accelerometer placed on
the lower back during the execution of some items of the BBS. Such approach,
however, adopts a solution which is more intrusive for the patient. At the best
of our knowledge, our work represents the first attempt at estimating the BBS
score directly from the temporal data generated while the patient performs a
simple balance exercise in an non-intrusive way using an external device.

2 Balance Assessment with RC

A measurement campaign has been conducted on 21 volunteers, aged between
65 and 80 years. We measured the weight signal produced by the WBB at the 4
corners of the board sampled at 5 Hz during the execution of the exercise # 10
in the BBS test, i.e. turn to look behind, selected for its simple execution and
short duration (≈ 10 seconds). To take into account for possible variations in the
exercise executions, for each patient we recorded data from a number of maxi-
mum 10 repetitions of the exercise. We therefore obtained a Balance dataset for
a regression task on sequences, containing couples of the type (s, ytg), where s is
the 4-dimensional input sequence of users’ weight values recorded by the WBB
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during the exercise and ytg is the target BBS score (over all the 14 exercises)
of the corresponding patient, representing the ground-truth evaluated by a clin-
ician during the campaign. For performance assessment we adopted the Mean
Absolute Error (MAE) of the BBS score estimation provided by the learning
models. It is worth noticing that the Balance dataset contains an outlier patient
with BBS score of 24, which has been discarded for performance evaluation.
We model the dynamics of the temporal data involved by the balance evaluation
task by dynamical neural networks models within the class of RNNs. In partic-
ular, we adopt the Reservoir Computing (RC) approach [12] for RNN modeling,
and take into consideration the Leaky Integration Echo State Network (LI-ESN)
[11, 10], a state-of-the-art model for efficient learning in sequential/temporal do-
mains, which has proved to be particularly suitable in dealing with the nature of
the input data originated from sensors [1, 2]. LI-ESNs implement discrete time
dynamical systems, and consist of two main components, a dynamical reservoir,
which realizes a recurrent encoding of the input history and provides the system
with a memory of the past [6], and a static readout which computes the output. A
LI-ESN is composed of an input layer withNU units, a recurrent non-linear reser-
voir layer with NR sparsely connected units, and a linear readout layer with NY

units. At each time step t, the reservoir computes a state x(t) ∈ R
NR according

to a state transition function x(t) = (1−a)x(t−1)+a tanh(Winu(t)+Ŵx(t−1)),
where u(t) ∈ R

NU is the input at time step t, Win ∈ R
NR×NU is the input-to-

reservoir weight matrix, Ŵ ∈ R
NR×NR is the recurrent reservoir weight matrix,

and a ∈ [0, 1] is the leaking rate parameter that controls the speed of the reservoir
dynamics [11, 12]. For sequence-to-element regression tasks in which an output
value is required in correspondence of an entire input sequence, the use of a mean
state mapping function has proved to be effective [7, 8]. Accordingly, given an
input sequence of length n, s = [u(1), . . . ,u(n)], we average the state activation
over the steps of the input sequence, i.e. χ(s) = 1

n

∑n

t=1 x(t). Then, the readout
is applied to compute the output of the model y(s) ∈ R

NY by a linear combina-
tion of the elements in χ(s), i.e. y(s) = Woutχ(s), where Wout ∈ R

NY ×NR is the
readout-to-reservoir weight matrix. The readout is the only LI-ESN component
that is trained, typically by efficient linear methods, e.g. pseudo-inversion and
ridge regression [12]. The reservoir is left untrained after initialization under the
constraints of the echo state property (ESP) [10, 12, 6]. A reservoir initialization

condition related to the spectral radius of Ŵ is often used in literature and is
adopted in this paper, i.e. ρ((1− a)I+ aŴ)) < 1 (see e.g. [12, 6] for details).

3 Experimental Results

The experimental analysis presented in this paper aimed at preliminarily assess-
ing the generalization performance of the proposed RC approach. At the same
time, in order to reduce the patients’ effort for future data gathering campaigns,
we were also interested in empirically analyzing the trade-off between the number
of exercise repetitions for each patient required for training and the predictive
performance that can be achieved. Accordingly, we took into consideration two
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experimental settings. In the first experimental setting, the Balance dataset was
split in a training set, containing data from 17 patients (≈ 80% of the total), and
an external test set for performance assessment, containing data from 4 patients
(≈ 20% of the total, chosen in order to represent a uniform sampling in the range
of possible BBS target values). We considered LI-ESNs with reservoir dimension
in NR ∈ {100, 200, 500}, 10% of reservoir units connectivity, leaky parameter
a ∈ {0.1, 0.3, 0.5, 0.7, 1} and spectral radius ρ = 0.99. For each reservoir hyper-
parametrization, we independently generated 5 reservoir guesses, averaging the
results over such guesses. For readout training we used pseudo-inversion and
ridge regression with regularization λr ∈ {10, 1, 0.7, 0.5, 0.3, 0.1, 0.01, 0.001}. The
values of the reservoir hyper-parameters and readout regularization were chosen
by model selection, adopting a 4-fold cross validation scheme over the training
set. The selected LI-ESN resulted in a very good predictive performance, with a
test MAE of 4.25±0.39, which outperforms the results in [15] for patients within
a corresponding age range. Such results appear promising, also considering the
tolerance in the ground-truth data due to human observations. Moreover, we
observed that the test error is higher for patients with lower BBS target scores,
which correspond to a less sampled region in the input space.
We also conducted a preliminary empirical investigation in order to evaluate
how the performance of the proposed LI-ESN approach scales with the number
of available training data for each patient. Accordingly, we uniformly split the
Balance dataset into groups containing sequences pertaining to 3 patients each,
according to a 7-fold cross validation scheme, progressively reducing the number
of training sequences for each patient. For this second experimental setting, we
restricted to the case of LI-ESNs with NR = 100 reservoir units, whereas all
the others reservoir hyper-parameters and readout regularization values were se-
lected (for each fold) on the validation set, considering the same range of values
as in the case of the first experimental setting. Fig. 1 shows the MAE achieved
by LI-ESNs on the validation set, for decreasing number of available training se-
quences. Results show that the validation performance is approximately stable
for a number of training sequences per patient in the range of 10-4, while it gets
rapidly worse as less than 4 training sequences per patient are used.

4 Conclusions

We have proposed an approach for assessing the balance abilities of elderly peo-
ple based on RC networks, used for temporal processing of data recorded by a
WBB during the execution of a simple BBS exercise, with the major advantage
of automatically evaluating the BBS score using only 1 of the 14 exercises. The
preliminary experimental analysis on a real-world dataset showed that our ap-
proach is able to achieve a very good predictive performance, up to ≈ 4 points
of discrepancy in the BBS score with respect to the gold standard, which is good
also considering both the use of a single BBS item and the tolerance typical of
any subjective assessment scale. Overall, the possibility to infer the BBS scores
with a good performance starting from the signal of a single BBS exercise shows
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Abstract. We consider the problem of estimating dynamic graphical

models that describe the time-evolving conditional dependency struc-

ture between a set of data-streams. The bulk of work in such graphical

structure learning problems has focused in the stationary i.i.d setting.

However, when one introduces dynamics to such models we are forced to

make additional assumptions about how the estimated distributions may

vary over time. In order to examine the effect of such assumptions we

introduce two regularisation schemes that encourage piecewise constant

structure within Gaussian graphical models. This article reviews previ-

ous work in the field and gives an introduction to our current research.

1 Introduction

As the current data explosion continues, governments, business, and academia
are now not only harvesting more data points but also measuring an ever-
increasing number of variables. The complex systems represented by such data-
sets arise in many socio-scientific domains, such as: cyber-security, neurology,
genetics and economics. In order to understand such systems, we must focus our
analytic and experimental resources on investigating the most important rela-
tionships. However, searching for significant relationships between variables is a
complex task. The number of possible graphs that encode such dependencies be-
tween variables becomes exponentially large as the number of variables increase.
Such computational issues are only compounded when such graphs vary over
time.

From a statistical estimation viewpoint, the significance of a model com-
ponent can often be viewed in terms of a model selection problem. Generally,
one may construct an estimate of model fit (a lower score implies better fit)
L(M,θ,Y ), relating a given model M ∈ M and parameters θ ∈ Θ(M) to some
observed data Y ∈ Ω. Additionally, to account for differences in perceived model
complexity one should penalise this by a measure of complexity R(M,θ) (larger
is more complex ). An optimal model and identification of parameters can be
found through balancing the two terms, i.e:

(M̂, θ̂) = argmin
M∈M,θ∈Θ(M)

[

L(M,θ,Y ) +R(M,θ)
]

. (1)

In statistics such a formulation is referred to as an M-estimator [15], however such
frameworks are popular across all walks of science [2], for example, maximum-
likelihood (ML), least-squares, robust (Huber loss), penalised ML estimators can

Copyright c©2015 for this paper by its authors. Copying permitted for private and academic
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all be discussed in this context. The principle idea is to suggest a mathemati-
cal (and therefore can be communicated objectively) statement to the effect of
Occam’s Razor, whereby given similar model-fit, one should prefer the simpler
model. Depending on the specification of the functions L(·) and R(·) and asso-
ciated model/parameter spaces, the problem in (1) can be either very easy or
difficult (for example, are the functions smooth, convex, etc).

In the next section we introduce the canonical Gaussian graphical model
(GGM), and study the estimation of such models within the M-estimation frame-
work. This lays the foundations for our proposed dynamical extensions. We con-
clude with an example of an estimated dynamic GGM, some recovery properties
of our estimators and discuss future research directions.

2 Gaussian graphical models

A Gaussian graphical model is a generative model which encodes the conditional
dependency structure between a set of P variables (Y1,...YP ) ∼ N (0,Σ) as a
graph G(V,E). For now we will discuss the traditional i.i.d setting, in Section
(4) we will demonstrate ways in which we may relax the assumption of the
distribution being identical over time.

In the standard case, the vertex set V = {1, . . . , P} identifies variables and
the edge set E = {(i, j), . . . (l,m)} contains an edge if variables are condition-
ally dependent, specifically if (i, j) 6∈ E we can decompose a joint distribution
as P (Yi, Yj |YV \{i,j}) = P (Yi|YV \{i,j})P (Yj |YV \{i,j}). The aim of our work is to
estimate an edge-set that appropriately represents a given data-set. Within the
GGM setting, learning such representations does not only provide insight by sug-
gesting key dependencies, but also specifies a robust probabilistic model which
we can use for tasks such as anomaly detection.

It is well known that the edges in a GGM are encoded by non-zero off-
diagonal entries within the precision matrix Θ := Σ−1, specifically (i, j) ∈
E ⇐⇒ Θi,j 6= 0 (see [12] for details). Learning the structure within the GGM
can then be linked with the general framework of (1) through a ML or Maximum
a-posteriori (MAP) paradigm. Assuming T observations Y ∈ R

P×T drawn as
i.i.d samples the model fit function L(·) can be related to the likelihood specified
by the multivariate normal. Typically, one prefers to work with the log-likelihood,
which if we assume µ = 0 (we assume this throughout) is given by:

log(P (Y |Θ))/T =
1

2
log det(Θ)−

1

2
trace(ŜΘ)−

P

2
ln(π) ,

where Ŝ = Y Y ⊤/T . Taking L(·) = − log det(Θ) + trace(ŜΘ) gives (in the
setting where T > P ) a well-behaved smooth, convex function describing how
well a given parameterisation Σ represents the data Y .
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3 Penalising complexity

If one considers Eq. (1) with the function R(·) = 0, i.e. no complexity penalty,

then the precision matrix estimator Θ̂ := argmin{Θ�0}∈RP×P

[

− log det(Θ) +

trace(ŜΘ)
]

demonstrates some undesirable properties indicative of over-fitting:

– The estimator exhibits large variance when T ≈ P and is very sensitive to
changes in observations leading to poor generalisation performance.

– In the high-dimensional setting (P > T ), the sample estimator is rank defi-
cient (rank(Ŝ) < P ) and there is no unique estimator Θ̂.

In order to avoid estimating a complete GGM graph (where all vertices’s are
connected to each other), one must actively select edges according to some cri-
teria. In the asymptotic setting where T ≫ P we can test for the significance of
edges by considering the asymptotic distribution of the empirical partial corre-

lation coefficients (ρij = −Θij/Θ
1/2
ii Θ

1/2
jj ) [4]. However, such a procedure cannot

be performed in the high-dimensional setting (this is important for the dynam-
ical extensions, see Sec. 4) as we require that the empirical estimate be positive
semi-definite.

An alternative approach to testing is to consider prior knowledge about the
number of edges in the graph. If we assume a flat prior on the model M and
parameters Θ(M), maximising the approximate posterior probability over mod-
els P (M|Y ), then leads to the Bayesian information criterion for GGM [5]:

BIC(Θ̂ML) = N(− log det(Θ̂ML) + trace(ŜΘ̂ML)) + p̂ log(N), where p̂ is given
by the number of unique non-zeros within the ML estimated precision matrix
Θ̂ML. Unfortunately, interpreting BIC under the framework in Eq. (1), we find
the complexity penalty R() = p̂ log(N) is non-convex (p̂ ∝ ‖Θ‖0 it basically
counts the number of estimated edges). In order to arrive at a global minima an

exhaustive search over the model space (all possible graphs O(2P
2

)) is required.

Alternatively, one can place an informative prior on the parameterisation and
model (i.e. the GGM sparsity pattern) to encourage a parsimonious representa-
tion. One popular approach [6,11,17,20] is to place a Laplace type prior on the
precision matrix in an effort to directly shrink off-diagonal values. Whilst one
could choose to perform full Bayesian inference for the posterior P (Θ|Y , γ) (as
demonstrated in [17]), a computationally less demanding approach is to perform
MAP estimation resulting in the graphical lasso problem [6]:

Θ̂GL := argmin
Θ≻0

[

− log det(Θ) + trace(ŜΘ) + (γ/N)‖Θ‖1
]

, (2)

where ‖Θ‖1 =
∑

1≤i,j≤P |Θi,j | is the ℓ1 norm of Θ. The graphical lasso problem
can yet again be interpreted within the general framework, except this time with
R(·) = (γ/N)‖Θ‖1. Unlike BIC this complexity penalty is convex thus we can
quickly find a global minima.
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4 Introducing dynamics

In this section we extend the basic GGM model to a dynamic setting whereby
the estimated graph is permitted to change as a function of time. Consider the
P -variate time-series data Y ∈ R

P×T as before, however, we now permit the
generative distribution to be a function of time, i.e:

(Y t
1 , . . . Y

t
P ) ∼ N (0,Σt) , (3)

the challenge is now to learn a GGM via (Σt)−1 for each time point t = 1, . . . , T .
Clearly such a model is far more flexible than the identically distributed version,
instead of O(P 2) parameters we now have O(P 2T ). In such a semi-parametric
model the potential complexity can scale with the amount of data we have
available. Our aim is to harness this additional flexibility to identify potential
changes within the graphical models which may shed insight onto dynamics of
the data-generating system.

Local kernel/window estimation

Zhou et. al. [20] consider the dynamic GGM model in a continuous setting
such that the underlying graphs are assumed to vary smoothly as a function
of time. To provide a local estimate of the covariance they suggest the estima-
tor Ŝ(t) =

∑

s wstysy
⊤
s /

∑

s wst, where wst = K(|s− t|/hT ) are weights derived
from a symmetric non-negative kernel (typically one may use a box-car/Gaussian
function) with bandwidth hT . The idea is that by replacing Ŝ with Ŝ(t) in the
graphical lasso problem (Eq. 2) it is possible to obtain a temporally localized
estimate of the graph Θ̂(t)GL. Given some smoothness conditions on the true
covariance matrices one can demonstrate [20] that the estimator is consistent

(estimator risk converges in probability R(Σ̂(t)) − R(Σ∗(t))
P
→ 0) even in the

dynamic (non-identically distributed) case.

Piecewise constant GGM

The seminal work by Zhou et al. [20] focused in the setting where graphs contin-
uously and smoothly evolve over time. However, there are many situations where
we might expect the smoothness assumptions to be broken. Our research [7,8,9]
focuses on how we can incorporate different smoothness assumptions when esti-
mating dynamic GGM. In particular we wish to study piecewise constant GGM
where the generative distribution is strictly stationary within regions separated
by a set of changepoints T = {τ1, . . . , τK}, τi ∈ {1, . . . , T}, such that:

P (Y t) = P (Y t+i) ∀ t, (t+ i) ∈ {τk, . . . τk+1} for k = 0, . . . ,K − 1 .

If we keep the Gaussian assumption of Eq. (3), then estimation relates to
finding a set of K − 1 GGM describing the distribution between changepoints.
Such a definition extends the usual definition of a changepoint [13] to multivari-
ate distributions, it is expected that the number of changepoints should be small
relative to the total period of measurement, i.e. K ≪ T and that such points
may lead to insight about changes within observed systems.
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5 Structure learning with dynamic GGM

Our approach to searching for changepoints falls naturally into the M-estimation
framework of Eq. (1). As has already been discussed, appropriate complexity
penalties R(·) may act to induce sparsity in a given set of parameters. We propose
two sparsity aware estimators that use such properties not only to estimate the
graphical model, but also jointly extract a sparse set of changepoints.

Independent Fusing

Our first approach (see [7,9], also related to [14,3,18]) constructs a model fit

function L(Θ,Y ) =
∑T

t=1

(

− logdet(Θt) + tr(Ŝ
t
Θt)

)

, where Ŝ
t
= yt(yt)⊤/2 is

an estimate of the covariance for a specific time t. Clearly, there is not enough

information within Ŝ
t
to recover a graph, as we are effectively trying to estimate

with only one data point. To solve this problem we introduce an explicit prior
on the smoothness of the graph via a complexity function

RIFGL(Θ) = λ1

T
∑

t=1

‖Θt‖1 + λ2

T
∑

t=2

‖Θt −Θt−1‖1 , (4)

where λ1, λ2 control the level of sparsity and number of changepoints in the
model. Unlike in the work of Zhou et al. our prior encodes an assumption
that the model has a piecewise constant parameterisation (this is similar to the
fused lasso, see [16,10]). We refer to the problem {Θ̂}Tt=1 = argminΘ�0

[

L(·) +

RIFGL(·)
]

as defined above, as the independently fused graphical lasso (IFGL),
it estimates changepoints at an individual edge level such that changepoints do
not necessarily coincide between edges.

Group Fusing

Sometimes we have a-priori knowledge that particular variables may change in a
grouped manner, that is changepoints across the edges which connect variables
may coincide. Examples, might include genes associated with a specific biological
function (see the example in Fig. 1), or stocks within a given asset class. In order
to encode such prior structure for changepoints one can adapt the smoothing
prior to act over a group of edges, for such cases we suggest the group-fused
graphical lasso (GFGL) penalty[9]:

RGFGL(Θ) = λ1

T
∑

t=1

‖Θt‖1 + λ2

T
∑

t=2

‖Θt −Θt−1‖2 . (5)

Optimisation

Both IFGL and GFGL form non-smooth convex optimisation problems which
can be tackled within a variety of optimisation schemes. We have developed
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Abstract. Analyzing multimedia data is a challenging problem due to
the quantity and complexity of such data. Mining for frequently recurring
patterns is a task often ran to help discovering the underlying structure
hidden in the data. In this article, we propose audio data symbolization
and sequential pattern mining methods to extract patterns from audio
streams. Experiments show that this task is hard and that the symbol-
ization is a critical step for extracting relevant audio patterns.

1 Introduction

The amount of multimedia data grows from day to day with ever increasing
acquisition and storage capabilities. In turn, analyzing such complex data to
extract knowledge is a challenging problem. For instance, analysts are looking
for methods that could help to discover the underlying structure of multimedia
documents such as video or audio streams. Unsupervised extraction of recurrent
patterns and �nding their occurrences in the data could provide such a seg-
mentation and could achieve a �rst step towards the automatic understanding
of multimedia data. In an audio stream, a word, a jingle, or an advertisement
could typically represent a pattern. However, the variability of audio motifs
makes pattern mining di�cult, especially audio motifs related to words, since
the variability due to di�erent speakers and channels is high.

Overall, the extraction of repeated motifs in time series is a very active
domain. Two kinds of approaches have been proposed: the �rst one consists in
working directly with the time series and in �nding close sub-sequences based
on a distance measure such as the Euclidean or the Dynamic Time Warping
(DTW) [1] distances. The second one consists in transforming the time series
into sequences of symbols to then use sequential motif discovery algorithms [2].
Very few works have investigated the second approach; this preliminary work
thus explores how to use sequential pattern mining algorithms on audio data.

This paper is organized as follows. In Section 2, we review the related work
about motif discovery in audio data. In Section 3, we explain our proposed
approach. Section 4 presents preliminary results and section 5 concludes and
discusses future issues for this work.

2 Related work

Motif discovery relies either on raw time series processing or on mining a symbolic
version [3,4,5]. In the �rst kind of approaches, algorithms are mostly built on

Copyright c⃝2015 for this paper by its authors. Copying permitted for private and academic
purposes.
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the DTW distance which can deal with temporal distortions that often occurs
in audio signals [6]. Muscariello et al. [7] have proposed an extended version of
the DTW for �nding the best occurrence of a seed in a longer subsequence. This
kind of approaches is e�cient in terms of accuracy as the signal is completely
exploited but the computational cost of the DTW distance prevents its use on
very large databases.

Other approaches working with a symbolized version of the audio signal
mostly use algorithms from bioinformatics to extract motifs. In [8], the MEME
algorithm [9] is used to estimate a statistical model for each discovered motif.
In [10], the SNAP algorithm [11] is used to search by query near-duplicate video
sequences.

Some algorithms coming from bioinformatics are very e�cient, but have been
optimized to work with alphabets of very small size (from 4 to 20). In this paper,
we consider the use of sequential pattern mining algorithms for discovering motifs
in audio data.

3 Pattern mining on audio data

In this section, we explain how we used sequential pattern mining algorithms
to discover repeating patterns in audio data. As pattern mining algorithms deal
with symbolic sequences, we present �rst how to transform time series related to
audio data into symbolic sequences. Then we show how to use sequential pattern
algorithms on symbolic sequences.

MFCC (Mel-frequency cepstral coe�cients) is a popular method for repre-
senting audio signals. First, MFCC coe�cients are extracted from the raw audio
signal (with a sliding window) yielding a 13-dimensional time series. Then, this
multivariate time series is transformed into a sequence of symbols. Many meth-
ods have been proposed for transforming time series into a sequence of symbols.
Here, we have chosen to use a method proposed by Wang et al. [12]. We have
also tried the very popular SAX approach [2]. SAX symbols contain very few
information about the original signal (only the average value on a window). This
symbolisation technique is less adapted to our problem and produced worse re-
sults.

To this end, each dimension of the 13-dimensional time series is divided into
consecutive non-overlapping windows of length λ. The 13 sub-series related to the
same window are then concatenated (respecting the order of the MFCC data).
The resulting vectors of size 13 × λ are then clustered by a k-means algorithm
for building a codebook, each word in the codebook corresponding to a cluster.
Finally, the original multivariate time series is coded into a sequence of symbols
by assigning to each window the symbol in the codebook corresponding to the
closest cluster centroid. This symbolization process is sketched in Figures 1a
and 1b.

The representation above could be too imprecise as it mixes coe�cients of
very di�erent order. To cope with this problem we propose to divide the 13
dimensions into 2 or more sub-bands of consecutive dimensions that represent
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(a) K-means clustering is performed on
the set of windows to build a codebook
(of size 6, here).

(b) Every window is labeled by the sym-
bol associated with the closest cluster
centroid.

(c) Conversion of a 2 sub-band times series into a sequence of itemsets using 2 codebook
of size 5.

Fig. 1: Time series symbolization into a sequence of items (�gures 1a and 1b)
and a sequence of itemsets (�gure 1c).

more closely related dimensions. The same transformation described above op-
erates on sub-bands and yields one codebook per sub-band. There are thus as
many symbolic sequences as there are sub-bands. Finally, the sub-band symbols
related to the same windows are grouped into itemsets in the Figure 1c.

Once the raw signal is transformed into a symbolic sequence of items or
itemsets, classical sequential motif discovery algorithms can be applied. Two
kinds of sequential pattern discovery algorithms have been proposed: algorithms
that process sequences of items and algorithms that process sequences of itemsets
(an itemset is a set of items that occur in a short time period). We have chosen
to evaluate one algorithm of each kind in this paper: MaxMotif [13] and CMP-
Miner [14] that process respectively sequences of items and sequences of itemsets.

Note that, in the classical setting of sequential pattern mining, a pattern oc-
currence may skip symbols in the sequence. For instance, acccb is an occurrence
of pattern ab in sequence dacccbe. Generally, algorithms provide means to put
constraints on extracted motifs, such as minimum and maximal motif length
and the allowed gaps; gaps are symbols that can be skipped when looking for a
pattern occurrence. In our application, it is crucial to allow gaps in motifs since
temporal distortions often occurs in audio signals.

MaxMotif enumerates all frequent (with respect to a given minimal support)
closed patterns in a database of item sequences. MaxMotif allows gaps in the
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temporal domain (represented by the wildcard symbol −). For instance, pattern
(f − a) occurs in sequence (efcaefbaab) at positions 2 and 6.

CMP-Miner extracts all frequent closed patterns in a database of itemset
sequences. It uses the Pre�xSpan projection principle [15] and the BIDE bidi-
rectional checking [16]. CMP-Miner allows gaps both in the temporal domain

and inside an itemset. For instance, pattern

(
b − c −
f − g j

)
occurs in sequence(

e b a c e b d c c a
i f f g j f h g j h

)
at positions 2 and 6.

The parameters of the two methods are described in Table 1.

Table 1: List of parameters
Methods Symbolization Parameters for mining

MaxMotif α, size of codebook. minSupport, minimal support.
λ, length of windows. maxGap, maximal gap between

2 consecutive items in a pattern.
maxLength, maximal pattern length.
minLength, minimal pattern length.

CMP-Miner α, size of codebook. minSupport, minimal support.
λ, length of windows. maxGap, maximal gap between

2 consecutive itemsets in a pattern.
β, number of bands. minItem, minimal number of items in itemsets.

maxLength, maximal pattern length.
minLength, minimal pattern length.

4 Experiments

We present in this section some results from two experiments, one on a synthetic
dataset and the other on a real dataset.

4.1 Experiment on a synthetic dataset

In this �rst experiment, we have created a dataset composed of 30 audio sig-
nals corresponding to 10 utterances of the 3 words �a�aires�, �mondiale� and
�cinquante� pronounced by several French speakers. Our goal is to evaluate the
impact of the codebook size on the extracted motifs. The two algorithms pre-
sented above have been applied on this dataset with the following parameters:
λ = 5, minSupport = 4, maxGap = 1, minLength = 4, maxLength = 20. For
CMP-Miner we set β = 3 and minItem = 2. These parameter settings were
chosen after extensive tests on possible value ranges.

First, sequential patterns are extracted. Then, we associate with each pattern
the word in the utterances of which this pattern most often occurs. For each
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extracted pattern, a precision/recall score is computed. Figure 2a and 2b depict
the precision/recall score versus the codebook size for MaxMotif and CMP-
Miner. As can be seen, MaxMotif obtains the best e�ciency. This �gure also
shows that when the codebook size increases, the precision improves slightly but
not the recall.

Figure 2c shows the pattern length distribution for di�erent codebook sizes
for MaxMotif. For small codebooks, many long patterns are extracted. How-
ever, they are not very accurate because, being general, they can occur in many
di�erent sequences. For big codebooks, many pattern candidates can be found,
re�ecting sequence variability. However, many candidates have a low support,
often under the minimal threshold, and, so, less patterns are extracted.

The symbolization step is crucial. Figure 2d shows �ve symbolic representa-
tions of the word �cinquante� for a codebook of size 15. These strings highlight
the two kinds of variability (spectral and temporal) that makes the task hard for
mining algorithms in this example. The same experiment was performed using
the SAX symbolization method [2] on each dimension of the multidimensional
times series. This representation revealed to be less accurate. Indeed, the results
obtained by CMP-Miner using the SAX representation were worse. There is no
space to detail these results here.

4.2 Experiment on a larger database

Now, we consider a dataset containing 7 hours of audio content. The dataset is
divided into 21 audio tracks coming from various radio stations. This experience
is closer to a real setting.

Only MaxMotif has been tested on this dataset. The parameters were: λ = 4,
α = 80, minSupport = 40, maxGap = 1, minLength = 5, maxLength = 20.
The codebook size is greater than in the previous experiment to deal with more
di�erent sounds. Pattern extraction is very fast: less than 4 minutes for more
than one million of patterns. Some of them are interesting and correspond, for
instance, to crowd noises, jingle and music patterns or short silence. However,
similarly to the experiment on the synthetic dataset, only very few patterns
corresponding to repeated words could be extracted.

5 Conclusion

In this paper, we have presented a preliminary work investigating how to use
sequential pattern mining algorithms for audio data. The aim of this work was
to evaluate whether these algorithms could be relevant for this problem. The
experiments pointed out the di�culty to mine audio signals, because of temporal
and spectral distortion. Same words pronounced in di�erent contexts and by
di�erent speakers can be very di�erent and yield very di�erent patterns. The
results are promising but both symbolization and motif extraction should be
improved. For instance, to account for spectral variability, considering distances
between symbols should improve the overall performance of pattern extraction.
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(a) Precision/Recall curves for MaxMotif. (b) Precision/Recall curves for CMP-Miner
with 3 sub-bands.

(c) Pattern size distribution for di�erent
size of codebook.

(d) Example of representation for
a codebook of size 15.

Fig. 2: Results of experience on synthetic data.

We have also noticed that all the dimensions of the MFCC times series are
not as important for the discovery. Selecting or weighting the dimensions of
multidimensional time series could improve the performance too.
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Abstract. Time series classification in the dissimilarity space combines
the advantages of the dynamic time warping and the rich mathematical
structure of Euclidean spaces. We applied dimension reduction using
PCA followed by support vector learning on dissimilarity representations
to 43 UCR datasets. Results indicate that time series classification in
dissimilarity space has potential to complement the state-of-the-art.

1 Introduction

Time series classification finds many applications in diverse domains such as
speech recognition, medical signal analysis, and recognition of gestures [2–4].
Surprisingly, the simple nearest-neighbor method together with the dynamic
time warping (DTW) distance still belongs to the state-of-the-art and is reported
to be exceptionally difficult to beat [1, 5, 10]. This finding is in stark contrast to
classification in Euclidean spaces, where nearest neighbor methods often merely
serve as baseline. One reason for this situation is that nearest neighbor methods
in Euclidean spaces compete against a plethora of powerful statistical learning
methods. The majority of these statistical learning methods are based on the
concept of derivative not available for warping-invariant functions on time series.

The dissimilarity space approach proposed by [7] offers to combine the advan-
tages of the DTW distance with the rich mathematical structure of Euclidean
spaces. The basic idea is to first select a set of k reference time series, called
prototypes. Then the dissimilarity representation of a time series consists of k
features, each of which represents its DTW distance from one of the k proto-
types. Since dissimilarity representations are vectors from R

k, we can resort to
the whole arsenal of mathematical tools for statistical data analysis. The dis-
similarity space approach has been systematically applied to the graph domain
using graph matching [6, 9]. A similar systematic study of the dissimilarity space
approach for time series endowed with the DTW distance is still missing.

This paper is a first step towards exploring the dissimilarity space approach
for time series under DTW. We hypothesize that combining the advantages of
both, the DTW distance and statistical pattern recognition methods, can result
in powerful classifiers that may complement the state-of-the-art. The proposed
approach applies principal component analysis (PCA) for dimension reduction of
the dissimilarity representations followed by training a support vector machine
(SVM). Experimental results provide support for our hypothesis.

Copyright c©2015 for this paper by its authors. Copying permitted for private and academic
purposes.
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2 Dissimilarity Representations of Time Series

2.1 Dynamic Time Warping Distance

A time series of length n is an ordered sequence x = (x1, . . . , xn) with features
xi ∈ R sampled at discrete points of time i ∈ [n] = {1, . . . , n}. To define the
DTW distance between time series x and y of length n and m, resp., we construct
a grid G = [n] × [m]. A warping path in grid G is a sequence φ = (t1, . . . , tp)
consisting of points tk = (ik, jk) ∈ G such that

1. t1 = (1, 1) and tp = (n,m) (boundary conditions)
2. tk+1 − tk ∈ {(1, 0), (0, 1), (1, 1)} (warping conditions)

for all 1 ≤ k < p. The cost of warping x = (x1, . . . , xn) and y = (y1, . . . , ym)
along φ is defined by

dφ(x,y) =
∑

(i,j)∈φ

(xi − yj)
2
,

where (xi − yj)
2

is the local transformation cost of assigning features xi to yj .
Then the distance function

d(x,y) = min
φ

dφ(x,y),

is the dynamic time warping (DTW) distance between x and y, where the min-
imum is taken over all warping paths in G.

2.2 Dissimilarity Representations

Let (T , d) be a time series space T endowed with the DTW distance d. Suppose
that we are given a subset

P = {p1, . . . ,pk} ⊆ T

of k reference time series pi ∈ T , called prototypes henceforth. The set P of
prototypes gives rise to a function of the form

φ : T → R
k, x 7→ (d(x,p1), . . . , d(x,pk)),

where Rk is the dissimilarity space of (T , d) with respect to P. The k-dimensional
vector φ(x) is the dissimilarity representation of x. The i-th feature of φ(x)
represents the dissimilarity d(x,pi) between x and the i-th prototype pi.

2.3 Learning Classifiers in Dissimilarity Space

Suppose that
X = {(x1, y1), . . . , (xn, yn)} ⊆ T × Y.

is a training set consisting of n time series xi with corresponding class labels
yi ∈ Y. Learning in dissimilarity space proceeds in three steps: (1) select a
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suitable set of prototypes P on the basis of the training set D, (2) embed time
series into the dissimilarity space by means of their dissimilarity representations,
and (3) learn a classifier in the dissimilarity space according to the empirical risk
minimization principle.

The performance of a classifier learned in dissimilarity spaces crucially de-
pends on a proper dissimilarity representation of the time series. We distinguish
between two common approaches:

1. Prototype selection: construct a set of prototypes P from the training set X .
2. Dimension reduction: perform dimension reduction in the dissimilarity space.

There are numerous strategies for prototype selection. Naive examples in-
clude all elements of the training set X and sampling a random subset of X . For
more sophisticated selection methods, we refer to [8]. Dimension reduction of
the dissimilarity representation includes methods such as, for example, principal
component analysis (PCA).

3 Experiments

The goal of this experiment is to assess the performance of the following classifiers
in dissimilarity space: (1) nearest neighbor using the Euclidean distance (ED-
DS), (2) support vector machine (SVM), and (3) principal component analysis on
dissimilarity representations followed by support vector machine (PCA+SVM).

3.1 Experimental Protocol

We considered 43 datasets from the UCR time series datasets [4], each of which
comes with a pre-defined training and test set. For each dataset we used the
whole training set as prototype set. To embed the training and test examples
into a dissimilarity space, we computed their DTW distances to the prototypes.

We trained all SVMs with RBF-kernel using the embedded training examples.
We selected the parameters γ and C of the RBF-kernel over a two-dimensional
grid with points (γi, Cj) = (2i, 2j), where i, j are 30 equidistant values from
[−10, 10]. For each parameter configuration (γi, Cj) we performed 10-fold cross-
validation and selected the parameters (γ∗, C∗) with the lowest average classi-
fication error. Then we trained the SVM on the whole embedded training set
using the selected parameters (γ∗, C∗). Finally, we applied the learned model to
the embedded test examples for estimating the generalization performance.

For PCA+SVM we performed dimension reduction using PCA prior training
of the SVM. We considered the q first dimensions with highest variance, where
q ∈ {1, 1 + a, 1 + 2a, . . . . , 1 + 19a} with a being the closest integer of k/20 and
k is the dimension of the dissimilarity space. For each q, we performed hyper-
parameter selection for the SVM as described above. We selected the parameter
configuration (q∗, γ∗, C∗) that gave the lowest classification error. Then we ap-
plied PCA on the whole embedded training set, retained the first q∗ dimensions
and trained the SVM on the embedded training set after dimension reduction.
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Data DTW ED-DS SVM PCA+SVM

50words 31.0 42.9 33.4 31.0 (+0.0)
Adiac 39.6 40.2 34.0 37.6 (+5.1)
Beef 50.0 56.7 60.0 40.0 (+20.0)
CBF 0.3 0.2 1.4 0.2 (+32.7)
ChlorineConcentration 35.2 48.3 28.9 30.2 (+14.3)
CinC ECG Torso 34.9 44.0 41.4 39.8 (-14.0)
Coffee 17.9 39.3 32.1 17.9 (+0.0)
Cricket X 22.3 38.5 24.1 23.6 (-5.8)
Cricket Y 20.8 37.9 20.0 19.7 (+5.1)
Cricket Z 20.8 34.9 20.8 18.2 (+12.5)
DiatomSizeReduction 3.3 4.2 10.8 13.7 (-315.9)
ECG 23.0 20.0 16.0 18.0 (+21.7)
ECGFiveDays 23.2 22.4 24.9 14.1 (+39.4)
Face (all) 19.2 28.9 23.8 10.9 (+43.0)
Face (four) 17.1 19.3 13.6 17.0 (+0.0)
FacesUCR 9.5 17.1 13.4 9.0 (+5.6)
Fish 16.7 32.6 17.7 14.3 (+14.5)
Gun-Point 9.3 20.0 6.7 8.7 (+7.1)
Haptics 62.3 58.4 54.9 54.9 (+11.9)
InlineSkate 61.6 61.8 65.5 68.4 (-11.0)
ItalyPowerDemand 5.0 8.4 6.5 6.3 (-26.3)
Lighting 2 13.1 18.0 14.8 16.4 (-25.1)
Lighting 7 27.4 37.0 23.3 20.5 (+25.0)
Mallat 6.6 4.6 5.6 5.5 (+17.3)
Medical Images 26.3 27.9 24.9 21.7 (+17.4)
MoteStrain 16.5 24.8 17.2 14.1 (+14.8)
Olive Oil 13.3 13.3 10.0 13.3 (+0.0)
OSU Leaf 40.9 45.0 36.0 38.0 (+7.1)
SonyAIBORobotSurface 27.5 16.3 22.3 6.7 (+75.8)
SonyAIBORobotSurface II 16.9 19.4 17.4 19.3 (-14.2)
Swedish Leaf 21.0 27.2 14.4 18.7 (+10.9)
Symbols 5.0 5.3 8.7 5.3 (-6.5)
Synthetic Control 0.7 1.7 1.3 2.0 (-185.7)
Trace 0.0 1.0 1.0 0.0 (+0.0)
TwoLeadECG 9.6 18.7 7.7 7.1 (+25.9)
TwoPatterns 0.0 18.7 0.0 0.0 (+0.0
uWaveGestureLibrary X 27.3 28.9 20.8 20.6 (+24.6)
uWaveGestureLibrary Y 36.6 40.5 28.6 28.5 (+22.2)
uWaveGestureLibrary Z 34.2 34.6 27.0 26.9 (+21.4)
Wafer 2.0 1.5 1.1 1.5 (+26.2)
WordsSynonyms 35.1 43.9 39.0 34.3 (+2.2)
yoga 16.4 20.0 14.0 14.8 (+9.6)

Table 1. Error rates in percentages. Numbers in parentheses show percentage improve-
ment of PCA+SVM with respect to DTW.

results, the improvements are only small and could also be occurred by chance
due to the random sampling of the training and test set.

The second observation to be made is that the SVM using all prototypes
complements NN+DTW. Better and worse predictive performance of both clas-
sifiers is balanced. This shows that powerful learning algorithms can partially
compensate for poor representations.
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The third observation to be made is that SVM+PCA outperformed all other
classifiers. Furthermore, SVM+PCA is better than NN+DTW in 28 and worse
in 9 out of 42 cases. By reducing the dimension using PCA, we obtain better
dissimilarity representations for classification. Table 1 highlights relative im-
provements and declines of PCA+SVM compared to NN+DTW with ±10% or
more in blue and red color, respectively. We observe a relative change of at least
±10% in 27 out of 43 cases. This finding supports our hypothesis that learning
on dissimilarity representations complements NN+DTW.

4 Conclusion

This paper is a first step to explore dissimilarity space learning for time series
classification under DTW. Results combining PCA with SVM on dissimilarity
representations are promising and complement nearest neighbor methods us-
ing DTW in time series spaces. Future work aims at exploring further elastic
distances, prototype selection, dimension reduction, and learning methods.

References

1. G.E. Batista, X. Wang, and E.J. Keogh. A Complexity-Invariant Distance Measure
for Time Series. SIAM International Conference on Data Mining, 11:699–710, 2011.

2. T. Fu. A review on time series data mining. Engineering Applications of Artificial

Intelligence, 24(1):164–181, 2011.
3. P. Geurts. Pattern extraction for time series classification. Principles of Data Mining

and Knowledge Discovery, pp. 115–127, 2001.
4. E. Keogh, Q. Zhu, B. Hu, Y. Hao., X. Xi, L. Wei, and C. A. Ratanamahatana. The

UCR Time Series Classification/Clustering Homepage: www.cs.ucr.edu/~eamonn/

time_series_data/, 2011.
5. J. Lines and A. Bagnall. Time series classification with ensembles of elastic distance

measures. Data Mining and Knowledge Discovery, 2014.
6. L. Livi, A. Rizzi, and A. Sadeghian. Optimized dissimilarity space embedding for

labeled graphs. Information Sciences, 266:47–64, 2014.
7. E. Pekalska and R.P.W. Duin The Dissimilarity Representation for Pattern Recog-

nition. World Scientific Publishing Co., Inc., 2005.
8. E. Pekalska, R.P.W. Duin, and P. Paclik. Prototype selection for dissimilarity-based

classifiers. Pattern Recognition, 39(2): 189–208, 2006.
9. K. Riesen and H. Bunke. Graph classification based on vector space embedding.

International Journal of Pattern Recognition and Artificial Intelligence, 23(6):1053–
1081, 2009.

10. X. Xi, E. Keogh, C. Shelton, L. Wei, and C.A. Ratanamahatana. Fast time se-
ries classification using numerosity reduction. International Conference on Machine

Learning, pp. 1033–1040, 2006.

84



Proceedings 1st International Workshop on Advanced Analytics and Learning on Temporal Data
AALTD 2015

Temporal Density Extrapolation

Georg Krempl
Knowledge Management & Discovery

Otto-von-Guericke University Magdeburg
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Abstract. Mining evolving datastreams raises the question how to ex-
trapolate trends in the evolution of densities over time. While approaches
for change diagnosis work well for interpolating spatio-temporal den-
sities, they are not designed for extrapolation tasks. This work stud-
ies the temporal density extrapolation problem and sketches two ap-
proaches that addresses it. Both use a set of pseudo-points in combina-
tion with spatio-temporal kernel density estimation. The first, weight-
extrapolating approach, uses regression on the weights of stationary-
located pseudo-points. The second, location-extrapolating approach, ex-
trapolates the trajectory of uniformly-weighted pseudo-points within the
feature space.

Keywords: kernel density estimation, density extrapolation, density
forecasting, spatio-temporal density, evolving datastreams, nonstation-
ary environments, concept drift, drift mining

1 Introduction

Density estimation methods, like kernel density estimation [14, 13], allow to learn
a model from instances observed at different positions in feature space, and
to use this model to estimate the density at any position within this feature
space. While the original work in [14, 13] is limited to spatial densities of a
stationary distribution, the approach was extended for spatio-temporal density
estimation of non-stationary distributions in [1, 2]. This so-called velocity density
estimation allows to estimate and visualise trends in densities. However, these
existing approaches are not directly applicable for predicting the density at future
time points, for example to extrapolate trends in the evolution of densities and
for building classifiers that work with delayed label information [10, 5]. Such
temporal density extrapolation should predict the densities at spatio-temporal
coordinates in the future, given a sample of (historic) instances observed at
different positions in feature space and at different times in the past.

We propose and study two approaches to address this problem. Both use
extrapolation of pseudo-points in combination with spatio-temporal kernel den-
sity estimation. The first approach extrapolates the weights of stationary located
pseudo-points, while the second extrapolates the path of moving pseudo-points of
fixed weight. Subsequently, these weight- or position-extrapolated pseudo-points
are used in a spatio-temporal kernel density estimation.

Copyright©2015 for this paper by its authors. Copying permitted for private and academic
purposes.

85



G. Krempl

In the following Section 2, we review the related work, before sketching the
two approaches in Section 3 and concluding in Section 4.

2 Related Work

The task of estimating the probability density based on a sample of indepen-
dently and identically distributed (iid) observations has been intensively studied.
Density estimation methods, like kernel density estimation [14, 13], allow to learn
a model from instances observed at different positions in feature space, and to
use this model to estimate the density at any position within this feature space.
The difficulties of the early kernel and near-neighbour density estimation tech-
niques when extended to multivariate settings was addressed by approaches like
projection pursuit density estimation, proposed in [4]. All these density estima-
tion approaches, as well as related curve regression approaches, require an iid
sample from a stationary distribution [11].

In the case of a nonstationary distribution, one might be interested in esti-
mating the density at different points in time and space. In [1, 2], this problem
of spatio-temporal density estimation is addressed by combining spatial kernel
density estimation with a temporal weighting of instances. A framework for so-
called change diagnosis in evolving datastreams is proposed, which estimates
the rate of change at each region by using a user-specified temporal window to
calculate forward and reverse time slice density estimates. This velocity den-
sity estimation technique is applicable for spatio-temporal density interpolation,
for monitoring and visualising the change of densities in a (past) time window.
However, it is not designed for extrapolating the density to (future) time points
outside the window of observed historical data.

Related to change diagnosis is change mining [3], which aims to understand
the changes in data distributions themselves. Within this paradigm, the idea
of so-called drift-mining approaches [8, 9, 5] is to model the evolution of distri-
butions in order to extrapolate them to future time points, thereby addressing
problems of verification latency or label delay. The algorithm APT proposed in
[8] uses matching between labelled old and unlabelled new instances to infer the
labels of the later, thus indirectly estimating the class-conditional distributions
of the new instances. Likewise, an expectation-maximisation approach is used in
[9] to track components of a Gaussian mixture model over time. In [5], a mix-
ture model is learned on old labelled data and compared to density estimates
on current unlabelled data, thereby inferring changes such as of the class prior.
However, these approaches are again not designed for directly extrapolating den-
sities.

Density forecasting approaches [15, 16, 7], on the other hand, focus on the
prediction of a single variable’s (mostly unimodal) density at a particular future
timepoint, based on an observed time series of this variable’s values. In the sim-
plest case, as discussed for example in [16], this is done by providing a confidence
interval for a point estimate, obtained by assuming a particular distribution of
this variable. More sophisticated approaches return (potentially multi-modal)
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density estimates by combining several predictions, which are obtained for ex-
ample by different macroeconomic models, experts, or simulation outcomes, into
a distribution estimation by kernel methods. Nevertheless, their multi-modal
character originates from the different modes in the combined unimodal mod-
els. In addition, most works consider only a single variable. One exception is
[7], where univariate forecasts of two explanatory variables are converted using
conditional kernel density estimation into forecasts of the dependent variable.

In contrast to density forecasting above, we are concerned with temporal
density extrapolation of a potentially multi-modal density distribution. Further-
more, instead of having a time series of single observations at any one time,
our input data consists of multiple observations at any one time. This temporal

density extrapolation is related to spatial density extrapolation [17, 6], which ad-
dresses the extrapolation of densities for feature values that have not been seen
yet in historical instances. In [17], the authors suggest a Taylor series expansion
about the point of interest to estimate the density, while in [6] a statistical test
is provided to examine whether the data distribution is distinct from a uniform
distribution at the extrapolation position. While modelling time as a feature is
possible, there is an important difference in extrapolation between time and fea-
ture space: one expects the density to diminish towards unpopulated (and thus
unseen) positions in feature space. However, there is no a priori reason to assume
densities to decrease towards yet unseen moments in time. On the contrary, it
is reasonable to assume that at each point in time (whether future, current, or
past) the density integrates to one over the feature space.

3 Temporal Density Extrapolation

To address the problem of extrapolating the observed, potentially multi-modal
density-distribution of instances to future time points, we propose an approach
based on pseudo-points. These pseudo-points are used in the spatio-temporal ker-
nel density estimation in lieu of the originally observed instances. The resulting
kernel density estimation model can be interpreted as a mixture model, where
each pseudo-point constitutes itself a component. The pseudo-points evolve over
time, either by changing their weight (their component’s mixing proportion), or
by changing their position (their component’s location). Therefore, the learning
task is to fit a trend function to the evolution of each pseudo-point. We present
each of the two variants in the next Subsections 3.1 and 3.2, before discussing
their potential difficulties and limitations in Section 3.3.

3.1 Weight-Extrapolated, Stationary Pseudo-Points

Given a set of stationary pseudo-points, the first approach models their weights
as functions of time. These functions are then fit on a window with historical
data, such that the distribution therein is modelled with maximum likelihood.

The approach is illustrated for a one-dimensional feature space in Figure 1.
At the first time point in the past (time = 0), a density estimate is calculated
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using historical data collected at that time (solid blue line). Then, a set of
pseudo-points (here 1, 2, · · · 4) is generated, either by placing them equidistant
on a grid or by drawing them at random. Next, the weights (w1, w2, · · ·w4) of all
pseudo-points are calculated such that the divergence is minimised between the
kernel density estimate over the weighted pseudo-points and the kernel-density
estimate over the original data instances at that time point. The pseudo-point’s
weights are estimated in the same way for subsequent time points (e.g. t = 1), as
soon as instances become available for them. This results for each pseudo-point
in a time series of weight values, for which a polynomial trend function (red
curves) is learned by regression. Finally, for a future time point (e.g. time = 2),
the trend functions’ values are predicted (w1, w2, · · ·w4 in red at time = 2).
Using these weighted pseudo-points in a kernel density estimate at time = 2,
one obtains the extrapolated density (red dotted line), which is later evaluated
against the observed density (solid blue-gray line).

3.2 Position-Extrapolated, Uniformly-Weighted Pseudo-Points

The second approach to address this problem is to use uniformly-weighted, but
flexibly located pseudo-points. Thus, the pseudo-point’s weights are uniform and
constant, but their positions are functions of time, fitted such that the divergence
on the available historical data is minimised.

In analogy to the previous figure, this approach is illustrated for a one-
dimensional feature space in Figure 2. Given a set of historical instances and
a specified number of pseudo-points, density estimates (solid blue lines) are
made for historical time points (time = 0 and time = 1). Then, a mixture
model with each pseudo-point as a single Gaussian component is formulated.
Assuming polynomial trajectories (red solid lines) for the pseudo-points, the
parameters of this model are the coefficients of the pseudo-points polynomial
trajectories, which are learned using Expectation-Maximisation. Finally, for a
future time point (time = 2), the pseudo-point’s positions are predicted using
the polynomial function, and the density (red dotted line) at this time point is
estimated using kernel density estimation over the pseudo-points placed at their
extrapolated positions.

3.3 Discussion

Both approaches above rely on a regression over time for extrapolating trends in
the development of either weights or positions. In order to make this extrapola-
tion more robust, we recommend using regularised trend functions that consider
penalties for the models’ complexities. The choice of the type of regression func-
tion depends on the type of drift, as for example polynomial functions require
gradual drift, while trigonometric functions seem to be interesting candidates
for modelling recurring context.

The weight-extrapolation in the first approach requires a normalisation, such
that the extrapolated weights are all non-negative and sum up to one. An impor-
tant question concerns the choice of the pseudo-point’s location in this approach,
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Fig. 1. Temporal Density Extrapolation Using Weight-Extrapolated Pseudopoints
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Fig. 2. Temporal Density Extrapolation Using Position-Extrapolated Pseudopoints
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as it influences the precision of the extrapolated values: in regions with sparse
pseudo-point populations, the model is less flexible than in densely populated
ones. Therefore, this approach seems better suited for constricted (bounded)
feature spaces. A simple equidistant placement of pseudo-points distributes the
precision over the whole feature space. Alternatively, the pseudo-points might be
placed at the coordinates of a subsample of the observed instances, thus concen-
trating the precision on areas with previously high density. However, if densities
change largely over time, these areas might become less relevant.

In contrast, the second, position-extrapolating approach determines the po-
sitions of each pseudo-point automatically. It aims to adjust the future location
of the pseudo-points such that they are densely placed in regions with a high
expected density. However, in the case polynomial regression functions are used,
a potential drawback is that their trajectories diverge in the long run. Thus,
in contrast to the first approach, the second one seems to be better suited for
infinite (unbounded) feature spaces.

Related to the choice of the pseudo-points’ placements is the question of
optimal bandwidth selection, which for kernel density estimation has already
been reviewed in [18]. In short, we expect that with an increasing number of
pseudo-points the optimal bandwidth decreases, while the extrapolation’s preci-
sion increases. Furthermore, the number of pseudo-points is also an upper bound
on the number of modes that both approaches are able to model.

4 Conclusion

In this paper, we have addressed the problem of temporal density extrapolation,
where the objective is the prediction of a (potentially multi-modal) density dis-
tribution at future time points, given a sample of historical instances observed
at different positions in feature space and at different times in the past. Two ap-
proaches based on pseudo-points were sketched: the first uses an extrapolation of
time-varying weights of stationary located pseudo-points, while the second uses
an extrapolation of the trajectory of the time-varying location of pseudo-points
with uniform weights. Subsequently, these extrapolated pseudo-points are used
in a kernel density estimation at future time points.

Having sketched the idea of the two temporal density extrapolation ap-
proaches, a more detailed specification and evaluation of these methods needs
to be done in future work. Furthermore, the conjectures in the discussion above,
in particular the usability of each approach for bounded and unbounded fea-
ture spaces, need to be verified. Finally, a known challenge for kernel-based
approaches is the curse of dimensionality on multi-dimensional data. A naive
approach is to combine multiple univariate temporal density extrapolations.
However, an optimisation for multi-variate problems by using either projection
pursuit [4] or copula [12] techniques seems worth investigating.
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91



92



Proceedings 1st International Workshop on Advanced Analytics and Learning on Temporal Data
AALTD 2015

Fuzzy Clustering of Series Using Quantile

Autocovariances

Borja Lafuente-Rego and Jose A. Vilar
Research Group on Modeling, Optimization and Statistical Inference (MODES),
Department of Mathematics, Computer Science Faculty, University of A Coruña

Abstract. Unlike conventional clustering, fuzzy cluster analysis allows
data elements to belong to more than one cluster by assigning member-
ship degrees of each data to clusters. This work proposes a fuzzy C–
medoids algorithm to cluster time series based on comparing their esti-
mated quantile autocovariance functions. The behaviour of the proposed
algorithm is studied on different simulated scenarios and its effectiveness
is concluded by comparison with alternative approaches.

1 Introduction

In classical cluster analysis each datum is assigned to exactly one cluster, thus
producing a “hard” partition of the data set into several disjoint subsets. This
approach can be inadequate in the presence of data objects that are equally dis-
tant to two ore more clusters. Fuzzy cluster analysis allows gradual memberships
of data objects to clusters, thus providing versatility to reflect the certainty with
which each data is assigned to the different clusters. An interesting overview of
present fuzzy clustering methods is provided by [3]. Interest in this approach
has increased in recent years. Proof of this is the large amount of publications
in this field (e.g. [6] and [5]).

In this paper, a fuzzy C–medoids algorithm to cluster time series using the
quantile autocovariance functions is proposed. Motivation behind this approach
is twofold. First, quantile autocovariances have shown a high capability to clus-
ter time series generated from a broad range of dependence models [10]. On the
other hand, the use of a fuzzy approach for clustering time series is justified in
order to gain adaptivity for constructing the centroids and to obtain a better
characterization of the temporal pattern of the series (see discussion in [7]). To
illustrate the merits of the proposed algorithm, an extensive simulation study
comparing our fuzzy approach with other fuzzy procedures has been carried
out. Specifically, we have focused on the classification of heteroskedastic models,
which are of great importance in many applications (e.g. to model many finan-
cial time series) and have received relatively little attention in the clustering
literature.

2 A dissimilarity based on quantile autocovariances

Consider a set of p series S =
{
XXX(1), . . . ,XXX(p)

}
, with XXX(j) = (X

(j)
1 , . . . , X

(j)
T )

being a T -length partial realization from a real valued process {X
(j)
t , t ∈ Z}.

Copyright c©2015 for this paper by its authors. Copying permitted for private and academic
purposes.
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We wish to perform cluster analysis on S in such a way that series with similar
generating processes are grouped together. To achieve this goal, we propose to
measure dissimilarity between two series by comparing the estimators of their
quantile autocovariance functions (QAF), which are formally defined below.

Let X1, . . . , XT an observed stretch of a strictly stationary process {Xt; t ∈
Z}. Denote by F the marginal distribution of Xt and by qτ = F−1(τ), τ ∈ [0, 1],
the corresponding quantile function. Fixed l ∈ Z and an arbitrary couple of
quantile levels (τ, τ ′) ∈ [0, 1]2, consider the cross-covariance of the indicator
functions I (Xt ≤ qτ ) and I (Xt+l ≤ qτ ′) given by

γl(τ, τ
′) = cov {I (Xt ≤ qτ ) , I (Xt+l ≤ qτ ′)} = P (Xt ≤ qτ , Xt+l ≤ qτ ′)− τ τ ′.

(1)
Function γl(τ, τ

′), with (τ, τ ′) ∈ [0, 1]2, is called quantile autocovariance func-

tion of lag l. Replacing in (1) the theoretical quantiles of the marginal distribu-
tion F , qτ and qτ ′ , by the corresponding empirical quantiles based onX1, . . . , XT ,
q̂τ and q̂τ ′ , we obtain the estimated quantile autocovariance function given by

γ̂l(τ, τ
′) =

1

T − l

T−l∑

t=1

I (Xt ≤ q̂τ ) I (Xt+l ≤ q̂τ ′)− τ τ ′. (2)

As the quantile autocovariances are able to account for high level dynamic

features, a simple dissimilarity criterion between two series X
(1)
t and X

(2)
t con-

sists in comparing their estimated quantile autocovariances on a common range
of selected quantiles. Thus, for L prefixed lags, l1, . . . , lL, and r quantile levels,
0 < τ1 < . . . < τr < 1, we construct the vectors ΓΓΓ (u), u = 1, 2, given by

ΓΓΓ (u) =
(
ΓΓΓ

(u)
l1

, . . . ,ΓΓΓ
(u)
lL

)
, with ΓΓΓ

(u)
li

=
(
γ̂
(u)
li

(τj , τk); j, k = 1 . . . , r
)
, (3)

for i = 1, . . . , L, and γ̂ given in (2). Then, the distance between X
(1)
t and X

(2)
t

is defined as the squared Euclidean distance between their representations ΓΓΓ (1)

and ΓΓΓ (2), i.e.

dQAF

(
X

(1)
t , X

(2)
t

)
= ||ΓΓΓ (1) −ΓΓΓ (2)||22 (4)

Computing dQAF for all pairs of series in S allows us to set a pairwise dissim-
ilarity matrix, which can be taken as starting point of a conventional hierarchical
clustering algorithm. Alternatively, a partitioning clustering, such as the k-means
algorithm, can be performed averaging the ΓΓΓ representations to determine the
centroids. Then, dQAF is also used to calculate the distances between series and
centroids involved in the iterative refinement of the cluster solution.

3 Fuzzy clustering based on quantile autocovariances

Time series are dynamic objects and therefore different temporal patterns may
be necessary to characterize the serial behaviour in different periods of time. In
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other words, the series are not distributed accurately within a given number of
clusters, but they can belong to two or even more clusters. This problem can be
adequately treated using a fuzzy clustering procedure, which associates a fuzzy
label vector to each element stating its memberships to the set of clusters. In
this section we propose a fuzzy C-medoids clustering algorithm for time series
by plugging the QAF-dissimilarity introduced in Section 2.

Let S =
{
XXX(1), . . . ,XXX(p)

}
be a set of p time series and ΓΓΓ =

{
ΓΓΓ (1), . . . ,ΓΓΓ (p)

}

a set of quantile autocovariances selected to perform clustering. The fuzzy C-

medoids clustering finds the subset of ΓΓΓ , Γ̃̃Γ̃Γ =
{
Γ̃̃Γ̃Γ (1), . . . , Γ̃̃Γ̃Γ (C)

}
, and the p ×

C matrix of fuzzy coefficients Ω = (ui,c) that lead to solve the minimization
problem:

min
Γ̃ ,Ω

p∑

i=1

C∑

c=1

um
ic

∥∥∥ΓΓΓ (i) −ΓΓΓ (c)
∥∥∥
2

2
, subject to

C∑

c=1

uic = 1 and uic ≥ 0. (5)

Each uic ∈ [0, 1] represents the membership degree of the i-th series to the c-th
cluster and the parameter m > 1 controls the fuzziness of the partition. As the
value ofm increases, the boundaries between clusters become softer and therefore
the classification is fuzzier. If m = 1, the hard version of the clustering procedure
is obtained, i.e. uic ∈ {0, 1}, that leads to a classical K-means partition of S.

The constraints
∑C

c=1 uic = 1 and uic ≥ 0 ensure that no cluster is empty and
that all series are included in the cluster partition.

The objective function (5) cannot be minimized directly, and an iterative
algorithm that alternately optimizes the membership degrees and the medoids
must be used. The update formula for the membership degrees is given by

uic =




C∑

c′=1

( ∥∥ΓΓΓ (i) −ΓΓΓ (c)
∥∥2
2∥∥ΓΓΓ (i) −ΓΓΓ (c′)
∥∥2
2

) 1

m−1



−1

, for i = 1, . . . , p. (6)

Then, the QAF-based fuzzy C–medoids clustering algorithm is implemented
as follows.

i. Pick an initial set of medoids Γ̃̃Γ̃Γ =
{
Γ̃̃Γ̃Γ (1), . . . , Γ̃̃Γ̃Γ (C)

}
and the fuzzifier m.

ii. Set Γ̃̃Γ̃ΓOLD = Γ̃̃Γ̃Γ .
iii. Compute uic using (6).

iv. Update the medoids, let’s say Γ̂̂Γ̂Γ =
{
Γ̂̂Γ̂Γ (1), . . . , Γ̂̂Γ̂Γ (C)

}
, by minimizing the

objective function with the new uic. Denote by

q = argmin1≤i′<p

p∑

i′′=1

um
i′′c

∥∥∥ΓΓΓ (i′′) −ΓΓΓ (i′)
∥∥∥
2

2

If the value of q is lower than the one obtained with Γ̃̃Γ̃Γ , then Γ̃̃Γ̃Γ = Γ̂̂Γ̂Γ .
v. If Γ̃̃Γ̃ΓOLD = Γ̃̃Γ̃Γ or a maximum number of iterations is achieved then end

algorithm. Otherwise, return to step ii.

The total number of clusters C has to be preset. For this task classical indexes
such as silhouette width or Krazanowski-Lai index can be used.
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4 Simulation Study

The proposed fuzzy algorithm was tested against two other fuzzy clustering
algorithms via simulation. In particular, the classification of heteroskedastic
time series was considered by simulating two different scenarios formed by (i)
GARCH(1,1) models and (ii) different structures of conditional heteroskedastic-
ity. The selected generating models at each case are detailed below.

– Scenario 1: Consider Xt = µt + at, with µt ∼ AR(1) and at = σtǫt,
ǫt ∼ N (0, 1). Then, the following GARCH(1,1) structures for the varying
conditional variance are considered:

M1: σ2
t = 0.1 + 0.01a2t−1 + 0.9σ2

t−1 M3: σ2
t = 0.1 + 0.1a2t−1 + 0.1σ2

t−1

M2: σ2
t = 0.1 + 0.9a2t−1 + 0.01σ2

t−1 M4: σ2
t = 0.1 + 0.4a2t−1 + 0.5σ2

t−1

– Scenario 2: Consider Xt = µt + at, with µt ∼ MA(1) and at = σtǫt,
ǫt ∼ N (0, 1). Then, the following ARCH(1), GARCH(1,1), GJR-GARCH
and EGARCH structures are considered for the varying conditional variance:

M1: σ2
t = 0.1 + 0.8a2t−1

M2: σ2
t = 0.1 + 0.1a2t−1 + 0.8σ2

t−1

M3: σ2
t = 0.1 + (0.25 + 0.3Nt−1)a

2
t−1 + 0.5σ2

t−1; Nt−1 = I(at−1 < 0)
M4: ln(σ2

t ) = 0.1 + ǫt−1 + 0.3 [|ǫt−1| − E(|ǫt−1|)] + 0.4ln(σ2
t−1)

In all cases ǫt consisted of independent zero-mean Gaussian variables with
unit variance. For each scenario, five series of length T = 200 were generated
from each model over N = 100 trials.

Two fuzzy clustering algorithms specifically designed to deal with GARCH
models were used and compared with our proposal. Both algorithms rely on
different dissimilarity measures constructed using the AR representation of a
GARCH(p,q) process given by

σ2
t = γ +

p∑

i=1

αia
2
t−i +

q∑

j=1

βjσ
2
t−j (7)

with γ > 0, 0 ≤ αi < 1 and 0 ≤ βj < 1, for i = 1, . . . , p and j = 1, . . . , q, and
(
∑p

i=1 αi +
∑q

j=1 βj) < 1. Then, the dissimilarities are defined as follows.

1. Dissimilarity based on the autoregressive representation of the GARCHmod-
els [12, 11]. Given XXX(k) and XXX(k′) in S, we define

d2AR(XXX
(k),XXX(k′)) =

R∑

r=1

(π̂rk − π̂rk′)
2
,

with π̂rz an estimator of the r-th coefficient πr = (αr+βr)+
∑min(q,r)

j=1 βjπr−j ,
for the series z, z = k, k′. Parameter R determines the maximum number of
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autoregressive coefficients πr. A GARCH–based fuzzy C-medoids clustering
is proposed in [4] by considering the optimization problem:

min
Π̂,Ω

p∑

i=1

C∑

c=1

um
ic

R∑

r=1

(π̂ri − π̂rc)
2
, subject to

C∑

c=1

uic = 1 and uic ≥ 0. (8)

2. GARCH-based distance measure [1] given by

dGARCH(XXX
(k),XXX(k′)) = (Lk −Lk′)

′
(Vk + Vk′)

−1
(Lk −Lk′) (9)

with Lj =

(
α̂j, β̂j

)
the vector of estimated parameters and Vj the esti-

mated covariance matrix for Lj , for j = k, k′. An alternative GARCH-based
fuzzy C-medoids clustering is proposed in [4] by minimizing:

p∑

i=1

C∑

c=1

um
ic

[
(Li −Lc)

′
(Vi + Vc)

−1
(Li −Lc)

]
, (10)

subject to
∑C

c=1 uic = 1 and uic ≥ 0.

The three fuzzy clustering algorithms were performed using a fuzziness pa-
rameter m = 1.5 on N = 100 trials for each scenario. At each trial, the quality
of the clustering procedure was evaluated comparing the experimental cluster
solution with the true cluster partition. Two different agreement measures were
used, namely the Gavrilov index [8] and the adjusted Rand index [9]. The mean
values and standard deviations of these indexes based on the 100 trials using
both hard and fuzzy cluster analysis are provided in Table 1.

Table 1. Averages and standard deviations (in brackets) of two cluster similarity
indexes obtained from 100 trials.

Scenario 1 Scenario 2
Gavrilov Adj. Rand Gavrilov Adj. Rand

Hard cluster dAR 0.859 (.109) 0.685 (.198) 0.712 (.146) 0.469 (.215)
dGARCH 0.574 (.059) 0.286 (.072) 0.504 (.078) 0.137 (.116)
dQAF 0.843 (.109) 0.726 (.152) 0.918 (.081) 0.825 (.135)

Fuzzy cluster dAR 0.541 (.056) 0.271 (.080) 0.486 (.076) 0.128 (.100)
dGARCH 0.553 (.088) 0.241 (.132) 0.535 (.076) 0.188 (.107)
dQAF 0.842 (.116) 0.704 (.181) 0.925 (.072) 0.833 (.125)

Results from Table 1 show that the metrics based on quantile autocovariances
and on the AR representation led to the best scores in Scenario 1 when the hard
cluster is carried out. When the fuzzy approaches were considered, the behaviour
of the dAR substantially worsened, while the very similar (even somewhat higher)
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results were obtained with dQAF . The worst results were obtained with the
GARCH-based dissimilarity both for the hard and the fuzzy versions.

The metric based on quantile autocovariances also obtained the best results
in Scenario 2, with indexes of agreement above 0.8 and a slight improvement by
using the fuzzy clustering. The GARCH-based metrics, dAR and dGARCH where
strongly affected by the model misspecification and produced the worst results
for both the hard and the fuzzy versions of the cluster analysis.

To assess the effect of the fuzziness parameter in the partitions the algorithm
was implemented for several values of m. However this results were here omitted
due to the limitation of space.

5 A case study

In this section, the proposed fuzzy C–medoids clustering algorithm is used to per-
form clustering on a set of series of electricity demand. Specifically, our database
consists of hourly electricity demand in the Spanish market from 1st January
2011 to 31th December 2012. All data are sourced from the official website of
Operador del Mercado Iberico de Energia1. Records corresponding to Saturdays
and Sundays have been removed from the database because electricity demand
is lower in the weekends. Thus we have 24 time series (one for each hour of the
day) of length T = 731. Since all series are non–stationary in mean, the original
series are transformed taking one regular difference.

Table 2 presents the membership degrees for the case with two and three
clusters. The results obtained for the two–cluster partition formed by C1 =
{H24, H1, H2, H3, H4, H5, H6, H7} and C2 grouping the remaining series. The
cluster C1 corresponds with the hours of the day where the electricity demand
is low, while the C2 identifies the time of the day when the power consumption
is greater. In the case of the three–cluster partition, the cluster C1 is divided in
two subclusters. One formed with the hours of the day with the lowest demand
of electricity, and a second cluster with an intermediate electricity consumption.

6 Concluding remarks

In this paper, we focus on the classification of time series featuring a fuzzy
clustering algorithm in the framework of a partitioning around medoids. A
dissimilarity–based approach is considered. In particular, we propose a C–medoids
fuzzy clustering algorithm using an innovative dissimilarity measure based on the
quantile autocovariances (dQAF ).

The simulation study shows that the proposed dissimilarity produces satisfac-
tory results by performing fuzzy cluster analysis. The proposed clustering algo-
rithm was tested against two GARCH–based fuzzy clustering algorithm present
in the literature in two different heteroskedastic scenarios. The fuzzy clustering
algorithm based on dQAF led to the best results. In fact, apart from dQAF , none

1 http://http://www.omel.es/files/flash/ResultadosMercado.swf
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Table 2. Membership degrees obtained with QAF–based FCM with m = 1.5 consid-
ering 2 and 3 clusters.

2 Clusters 3 Clusters

Membership degrees Crisp Membership degrees Crisp

C1 C2 C1 C2 C3

H1 0.63044 0.36956 1 1.00000 0.00000 0.00000 1
H2 1.00000 0.00000 1 0.99878 0.00098 0.00024 1
H3 0.98282 0.01718 1 0.99484 0.00395 0.00121 1
H4 0.94118 0.05882 1 0.99229 0.00574 0.00197 1
H5 1.00000 0.00000 1 0.92388 0.06811 0.00801 1
H6 0.99923 0.00077 1 0.30793 0.66185 0.03021 2
H7 0.98282 0.01718 1 0.00000 1.00000 0.00000 2
H8 0.00003 0.99997 2 0.05793 0.09475 0.84733 3
H9 0.00003 0.99997 2 0.00097 0.00294 0.99610 3
H10 0.00077 0.99923 2 0.00045 0.00149 0.99806 3
H11 0.00077 0.99923 2 0.00171 0.00507 0.99323 3
H12 0.00002 0.99998 2 0.00011 0.00049 0.99940 3
H13 0.00002 0.99998 2 0.00027 0.00178 0.99794 3
H14 0.00002 0.99998 2 0.00032 0.00107 0.99861 3
H15 0.00002 0.99998 2 0.00134 0.00940 0.98927 3
H16 0.00002 0.99998 2 0.00088 0.00636 0.99277 3
H17 0.00002 0.99998 2 0.00000 0.00000 1.00000 3
H18 0.00056 0.99944 2 0.00051 0.00498 0.99451 3
H19 0.00000 1.00000 2 0.00002 0.00014 0.99984 3
H20 0.00003 0.99997 2 0.00020 0.00135 0.99846 3
H21 0.00056 0.99944 2 0.00047 0.00384 0.99569 3
H22 0.01718 0.98282 2 0.00136 0.01488 0.98377 3
H23 0.00003 0.99997 2 0.01539 0.13091 0.85370 3
H24 0.99998 0.00002 1 0.00206 0.98054 0.01740 2

of the remaining examined dissimilarities shown acceptable results by cluster-
ing heteroskedastic processes, thus emphasizing the usefulness of dQAF in this
framework.

Note that a limitation of our procedure is that series are assumed to be
strictly stationary and hence further research must be carried out. Although
we have followed a dissimilarity-based approach, it is worthy to emphasize that
model-based techniques can be also an interesting alternative. Likewise the fuzzy
approach, the use of probabilistic models such as mixture models (see e.g. [2])
allows us to assign each datum to one single cluster although this assignment
relies on a probabilistic approach since the mixing proportions are estimated
from the data. Unlike the fuzzy approach, no fuzziness parameter is required by
using mixture models, although the model selection problem must be solved in
the latter case.
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Abstract Developing causal models from observational longitudinal stud-
ies is an important, ubiquitous problem in many disciplines. A disadvan-
tage of current causal discover algorithms, however, is the inherent instability
in structure estimation. With finite data samples small changes in the
data can lead to completely different optimal structures. The present
work presents a new causal discovery algorithm for longitudinal data
that is robust for finite data samples. We validate our approach on a
simulated data set and real-world data on Chronic Fatigue Syndrome
patients.

Keywords: Longitudinal data, Causal modeling, Structural equation
model, Stability selection, Multi-objective evolutionary algorithm.

1 Introduction

Developing causal models from observational longitudinal studies is an impor-
tant, ubiquitous problem in many disciplines, which has led to the development
of a variety of causal discovery algorithms in the literature [1–5]. A disadvantage
of current causal discovery algorithms, however, is the inherent instability in
structure learning. With finite data samples small changes in the data can lead
to completely different optimal structures, since errors made by the discovery
algorithm may be propagated and lead to further errors [6]. In [7] we developed
a robust causal discovery algorithm for cross-sectional data. The method per-
forms structure search over Structural Equation Models (SEMs) by maximizing
model scores in terms of data fit and complexity. The present work extends our
causal discovery algorithm to longitudinal data. We describe how longitudinal
causal relationships can be modelled for an arbitrary number of time slices. Fur-
thermore, we show how a longitudinal causal model can easily be scored using
standard SEM software by data reshaping. The algorithm produces accurate
structure estimates and is shown to be robust for finite samples. We validate our
approach on one simulated longitudinal data set and one real-world longitudinal
data set for Chronic Fatigue Syndrome.

Copyright c©2015 for this paper by its authors. Copying permitted for private and academic
purposes.
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2 Proposed method

We use a SEM for causal modeling. The general form of the equations is

xi = fi(pai, εi), i = 1, . . . , n. (1)

where pai denotes the parents which represent the set of variables considered to
be direct causes of Xi and εi represents errors on account of omitted factors that
are assumed to be mutually independent [8]. In this study, we focus on causal
models with no reciprocal relationships, and no latent variables. Thus the causal
model can also be represented by a Directed Acyclic Graph (DAG). We score
models using both the chi-square χ2 (measuring the data fit) and the model

complexity (measuring the number of parameters).
We use the method we developed in [7] to perform exploratory search over

SEM models. Based on the idea of stability selection [9], the method subsamples
the data D with size ⌊|D|/2⌋ without replacement and generates Pareto optimal
models for each subset. After that, all Pareto optimal models are transformed
into their corresponding model equivalent classes, called Completed Partially Di-

rected Acyclic Graph (CPDAG) [10]. From these CPDAGs we compute the edge
and causal path stability graph, such as Figure 3a, by grouping them according
to model complexity and computing their selection probability, i.e., the number
of occurrences divided by the total number of models for a certain level of model
complexity. Stability selection is then performed by specifying two thresholds,
πsel (boundary of selection probability) and πbic (boundary of complexity). For
example, setting πsel = 0.6 means that all causal relationships with edge sta-
bility or causal path stability (Figure 3) above this threshold are considered
stable. The second threshold πbic is used to control overfitting. We set πbic to
the level of model complexity at which the minimum average Bayesian Infor-

mation Criterion (BIC) score is found. For example, πbic = 7 means that all
causal relationships with an edge stability or a causal path stability lower than
this threshold (Figure 3) are considered parsimonious. Causal relationships that
intersect with the top-left region are considered both stable and parsimonious
and called relevant, from which we can derive a causal model.

The method in [7] only handles cross-sectional data. Based on the idea of
“unrolling” the network in Dynamic Bayesian Networks [4, 5], we extended the
method to handle longitudinal data. We model longitudinal causal relationships
with a SEM model consisting of two time slices (Figure 1a) that can be “un-
rolled” into a network with an arbitrary number of time slices (Figure 1b). Time
slice ti represents the relationships within a time slice (intra-slice causal relation-
ships, solid arcs in Figure 1a). Causal relationships between time slices (inter-slice
causal relationships, dashed arcs in Figure 1a) always go forward in time, i.e.,
from time slice ti−1 to time slice ti.

To score our models on longitudinal data we use data reshaping. In the
reshaped data, the first n data points contain the relations that occur in the
first two time slices t0 and t1. The next n data points contain the relations
that occur in time slices t1 and t2. The i-th subset of n data points contain
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Figure 1: (a) The longitudinal causal model. (b) The “unrolled” causal graph
used to generate longitudinal data. It contains four continuous variables
(X1, . . . , X4) in three different time slices t0, . . . , t2.

the relations in time slices ti−1 and ti. The reshaped data then allows us to use
standard SEM software to compute the scores.

3 Application to Simulated Data

For this experiment, we generated a longitudinal data set with 400 instances
from a causal graph as depicted in Figure 1b. The data set consists of three time
slices with four continuous variables for each time slice.1 When we searched over
SEM models we added prior knowledge that variables X1 and X2 do not cause
variable X3 directly. We performed the search over 200 subsets.

As the true model is known, we measure the performance of our method by
means of the Receiver Operating Characteristic (ROC) [11] for both edges and
causal paths. The threshold πsel is fixed to a value (πsel ∈ {0.3, 0.6, 0.8, 0.9})
while πbic is varied. We compute the True Positive Rate (TPR) and the False

Positive Rate (FPR) from the CPDAG of the true model. As for an example,
in the case of edge stability, a true positive means that an edge that appears
within the top-left region bounded by πsel and πbic also exists in the CPDAG of
the true model. Figure 2 portrays the ROC curves for both edge and causal path
stability. Generally we can see that higher values of πsel tend to give better ROC
curves. This suggests that our approach is able to find the underlying structure
with high reliability scores. A notable point is that the ROC curves stop at a
TPR and/or FPR value lower than 1. Since some of the edges and paths are
disallowed (i.e., no edges in time-slice ti−1 and no paths from ti to ti−1) some
of the edges and causal paths in the stability graphs end up with a selection
probability of 0 and the result is that the ROC curves cannot reach the upper
right corner with TPR = FPR = 1.

1Available at http://bit.ly/1L6dBOo
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Figure 2: A plot of ROC curves for (a) the edge stability and (b) the causal path
stability, for different values of πsel. A higher πsel shows a better ROC curve. See
the main text for an explanation why the ROC curves stop at some point.

4 Application to Real-world Data

For an application to real-world data, we consider a data set about Chronic

Fatigue Syndrome (CFS) which consists of 183 subjects and five time slices
with six discrete variables [12]. The variables are, fatigue severity, the sense
of control over fatigue, focusing on the symptoms, the objective activity of the
patient (oActivity), the subject’s perceived activity (pActivity), and the physical
functioning. We use Expectation Maximization implemented in SPSS [13] to
impute the missing values. As all of the variables have large scales, e.g., in the
range between 0 to 155, we treat them as continuous variables. We added prior
knowledge that the variable fatigue does not cause any of the other variables
directly. We performed the search over 200 subsets.

Figure 3a shows that nineteen relevant edges were found, consisting of eleven
intra-slice and eight inter-slice relationships which among of these, six are between
the same variables and two are between different variables. Figure 3b shows that
thirty-two relevant causal paths were found, consisting of twelve intra-slice and
twenty inter-slice relationships which among of these, six are between the same
variables and fourteen are between different variables. For a more intuitive rep-
resentation, we combine the stability graphs into a model using the following
procedure. First, the nodes are linked according to the nineteen relevant edges.
Second, edges are oriented according to our background knowledge. Eight of the
inter-slice relationships are oriented from time slice ti−1 to ti and five of the
intra-slice edges can be oriented since it is known that the variable fatigue does
not directly cause any other variable. Third, the edges are oriented according to
the relevant causal paths, which results in another twenty-eight directed edges.
The inferred model is shown in Figure 4. Each edge is annotated with a reliabil-
ity score which is the maximum score obtained in the top-left region of the edge
stability graph.
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Figure 3: The stability graphs for CFS together with πsel and πbic, yielding four
regions. The top-left region contains the relevant causal relations. (a) The edge
stability graph. (b) The causal path stability graph. Orange-dashed lines rep-
resent inter-slice relationships between the same variables, black-dotted lines
represent inter-slice relationships between different variables, green-solid lines
represent intra-slice relationships.

From the stability graphs we can see that the most stable causal relations are
the inter-slice relations between the same variables followed by some of the intra-
slice causal relations. Almost all of the inter-slice relations between different vari-
ables are not considered relevant. A directed edge X → Y in Figure 4 indicates
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that a change in variableX causes a change in variable Y . In the intra-slice causal
relationships, we found that all variables are direct causes for fatigue severity.
We also found all variables, except fatigue, to be direct causes for the perceived
activity. Furthermore, the variable control is a direct cause for both focusing
on the symptoms and physical functioning. Generally the inter-slice relation-
ships show direct causes between the same variables. In addition, the variables
pActivity and control indicate a stronger direct cause for fatigue severity and
focusing on symptoms, respectively, as they contribute a direct cause in both
time slices. The inferred model is consistent with results reported in the medical
literature [12, 14,15].
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Figure 4: The inferred model of CFS by combining the edge stability and causal
path stability graphs.

5 Conclusion

Causal discovery from longitudinal data is an important, ubiquitous problem
in science. Current causal discovery algorithms, however, have difficulty dealing
with the inherent instability in structure estimation. The present work intro-
duces a new discovery algorithm for longitudinal data that is robust for finite
samples. Experimental results on both artificial and real-world data sets show
that the method results in reliable structure estimates. Future research will aim
to estimate the size of causal effects.
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Abstract. With the deployment of smart meters across many countries,
data are being collected at a large scale and volume. These data are
collected for billing purposes but also to get analytical insights. Our
main goal here is to build an understandable model able to explain the
electric consumption patterns regarding several features. We chose to use
decision tree models as they are easily comprehensible and have already
been parallelized with success. In our industrial context, we often have
to work on electrical time-series where the target to predict is neither a
label (classification) nor a numerical value (regression) but a time-series
representing a load curve. Therefore we use a different split criterion
to separate time-series: the inertia. We also need a dedicated method
for categorical features since the standard implementation would not
work for time-series. This method is based on a hierarchical clustering
in order to have a good trade-off between the computational complexity
and the exploration of the possible bi-partition splits. We demonstrate
the performance of our implementation on datasets with different sizes
(up to a terabyte).

Keywords: CourboTree, Hadoop, Spark, Decision Tree, Parallelization

1 Introduction

With the deployment of smart meters across many countries, data are being
collected at a large scale and volume. Electric meters measure and transmit
electric power consumption from every individual household and enterprise at a
rate of a measurement from every 24 hours down to 10 minutes to a centralized
information system. In France, EDF provides electricity to more than 35 mil-
lion customers leading to a massive amount of data to process. These data are
collected for billing purposes but also to get analytical insights. Our main goal
in this paper is to build an understandable model able to explain the electrical
consumption patterns regarding several features such as localization or type of
contract. We chose to use decision tree models as they are easily comprehensible
and have already been parallelized with success in the Hadoop ecosystem.

CourboSpark is part of the X-Data project: http://www.xdata.fr/

Copyright c©2015 for this paper by its authors. Copying permitted for private and academic
purposes.
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Decision trees are well known methods in machine learning which are mainly
used for classification and regression tasks. In our industrial context, we often
have to work on electrical time-series where the target to predict is neither a label
(classification) nor a numerical value (regression) but a time-series representing
a load curve. Many versions of decision trees were proposed on top of Hadoop.
The Spark [3] implementation seems to be the most suitable for our use-case.
Therefore we extended the current Spark/MLlib [4] implementation of decision
trees so that it can deal with a time-series as a target.

We first present previous work on parallel decision trees and explain why
we choose to reuse the MLlib implementation. Then we describe the time-series
regression problem. In section 4, the inertia criterion used to separate time-series
is presented. Section 5 will focus on the algorithm adaptation for categorical fea-
tures with a method based on a hierarchical clustering. Finally, we demonstrate
the performance of our implementation on datasets with different sizes (up to a
terabyte).

2 Previous work on parallel decision trees

Our goal is to port our in-house software, CourboTree [1, 2], into a distributed
system so that more data can be processed. Our CourboTree software build
decision tree on time-series based on the inertia criterion.

Many implementations of parallel decision trees have been proposed. In this
paper we focus on implementations that can run on top of Hadoop. Hadoop
clusters offer a very good trade-off between computing power/storage and price.
Hadoop is based on horizontal scaling: the computing power/storage is quasilin-
ear with the number of nodes in the cluster. To have more power, more nodes
have to be added into the cluster. Table 1 presents different implementations
of decision trees on Hadoop. We used the following criteria to compare these
implementations:

– partitioning: horizontal means the algorithm will parallelize computations
on the lines, vertical on the columns of the dataset;

– engine: the execution engine that will run the parallel algorithm. These en-
gines can also optimize the execution graph of the algorithm (as for Spark);

– target type: categorical for classification, numerical for regression (can be
both)

– ensemble: ability to build an ensemble of trees (random forest, bagging of
random trees...)

– pruning: does the algorithm prune the tree to avoid over-fitting?
– open-source: is the source code available so that we can easily reuse it?

As we aimed to reuse an open-source implementation and our datasets mainly
grow in an horizontal way, we choose to adapt the MLlib implementation. More-
over it uses the Spark engine which is faster than the original Map/Reduce engine
in Hadoop.
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Partitionning Engine Target type Ensemble Pruning Open-source

MLlib [4] Horizontal Spark Num + Nom Yes No Yes

MR C4.5 [5] Vertical MR Nom No No No

PLANET [6] Horizontal MR Num + Nom Yes No No

SAMOA [7] Vertical Storm/S4 Num + Nom Yes Yes Yes

Table 1. Comparison of parallel decision trees in the Hadoop ecosystem (MR: original
Map-Reduce, Storm/S4: streaming frameworks, Spark: new computing engine – widely
used to replace MR).

3 Problem description: time-series regression

The problem is the same as the one stated in CourboTree [1, 2]: explain load
curves pattern using explanatory features. It can be seen as time-series regres-
sion. For this problem, we define our dataset as follows:

– 1, ..., n: the examples of the dataset;
– w1, ..., wn: the weights of the examples;
– X1, ..., Xj , ..., Xp: the p explanatory features where xij is the value for the

example i for Xj , these features can be either numerical or categorical;
– Y1, ..., Yk, ..., Yq: the q numerical variables defining the time-series where yik

is the value for the example i for Yk. This time-series is the target of the
regression.

Therefore an example i is described as the following tuple: wi, xi1...xip, yi1...yiq.
There can be missing values for either the explanatory features or the time-series.

As in CourboTree, the model used to explain the load curves is a tree:

– l: a node/leaf of the tree,
– gl: the center of gravity of the examples in l. Its coordinates gl1, . . . , glq are

the weighted mean of the examples in the node/leaf l for the q points of the
time-series Y .

4 Split criteria: inertia

Decision trees used in classification aim to lower the impurity in the leaves and
use a criterion such as the entropy gain or the Gini coefficient. For regression
task, variance reduction is often used. As we deal with time-series we want to
lower the variance between the time-series within a leaf/node. In this paper we
use the euclidean distance to compute the variance. Other distances could be
used.

Given a node t, its intra inertia is defined as:

Iw(l) =
∑

i∈l

wi

∑

k=1,...,q

(yik − glk)
2
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This criteria can be used in the same way as the criterion used in classification
and regression trees. The best split to divide a leaf l into two leaves lL and lR is
the one minimizing the intra-inertia of these two new leaves:

argmin

(

Iw(lL) + Iw(lR)

)

Computing this intra-inertia is expensive but we can use the König-Huyghens
theorem which states that the global inertia is the sum of the intra-inertia Iw
and inter-inertia IB :

I = Iw + IB

Therefore we can maximize the inter-inertia instead of minimizing the intra-
inertia (which is also known as the “Ward’s method” [8] in statistics). This
corresponds to find the centers of gravity of the two new leaves which are the
furthest possible (relatively to their center weights). The computation of the
inter-inertia is much more effective. For each potential split points we do not
need to recompute the intra-inertia on all the points to the two new centers of
gravity, but just the distance between the two new centers of gravity.

For times-series this means to maximize the distance between the average
curves in the two leaves (lL, lR) having weights (wL, wR):

argmax

(

wL.wR

wL + wR

∑

i∈1...q

(gLi − gRi)
2

)

As computing the inter-inertia criterion is more effective we have only used
this criterion in CourboSpark. Both criteria are sums that can be parallelized.
Therefore the computation can be easily spread across the nodes in the cluster
in order to take advantage of its computational power.

5 Categorical variables: hierarchical clustering

For numerical feature, the MLlib algorithm has a parameter to specify the num-
ber of “bins” that will be tested as split points. These bins correspond to quan-
tiles computed on a random sample of the whole dataset. For the categorical
features the next section explains how the current implementation works and
how it was adapted for time-series.

Building a binary decision tree with categorical feature requires to evaluate
all the bi-partition/split of the modalities. The bi-partition with the lowest value
of the criteria is the one chosen to split the node into two leaves. This evaluation
can be costly as for m modalities there are (2m−1

− 1) possible bi-partitions.
With m up to 30, the computation of all these partitions can be computed in
a reasonable time (less than a minute on recent hardware). Our datasets have
categorical features up to 100 modalities (the number of French departments
for example). An exhaustive test of all the bi-partitions would take too much
time as the number of bi-partitions to test is exponential with the number of
modalities.
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Dataset: In order to control the experiments we have developed a generator.
This generator takes as parameters: the depth of the tree, number of points in
the time-series, number of features, number of modalities for categorical features.
We configured the generator to have a tree of depth 4, with 10 numerical and 10
categorical features (50 modalities each). Each time-series has 144 points (step
of 10 minutes for one day). We generated from 10 to 1,000 millions time-series.

Configuration: The experiments were run on a cluster of 10 machines. Each
machine has 32 cores, 48 GB of RAM and 14 SATA spinning disks. Spark was
configured to run with 9 executors with 20 GB and 8 cores each.

Results: The results of the the experimentation are presented in Figure 2. As we
can see the Spark MLlib implementation of decision tree scales almost linearly
with the dataset size.
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Fig. 2. Time to build the tree depending on the dataset size (10 to 1,000 millions
curves).

More experiments were conducted with similar results. We tested datasets
with up to 100 features, and also up to 500 modalities for categorical features.

7 Future works

We plan to extend our implementation so that it can deal with “cyclic features”
as day of the week, month of the year... which are common in our datasets.
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This case is similar to numerical feature but gives two times more possible split
points.

The MLlib library only build trees which are balanced (each leaf is at the
same depth). The current CourboTree implementation first grows the part of the
tree that gives the greatest loss of inertia and therefore can produce unbalanced
trees. As we would like to have the lowest global inertia for a given number of
leaves, we would either need to drive the tree construction to expand just a part
of the tree or to do post-pruning to remove parts of the tree. A next step could
be to use this pruning to control over-fitting.

More generally we plan to do more extensive tests to study how the Spark
configuration (number of executors, memory...) impact performance depending
on the datasets properties (number of features, modalities/bins...).
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Abstract. Sensors and Internet-of-Things scenarios promise a wealth
of interaction data that can be naturally represented by means of time-
varying graphs. This brings forth new challenges for the identification and
removal of temporal graph anomalies that entail complex correlations of
topological features and activity patterns. Here we present an anomaly
detection approach for temporal graph data based on an iterative tensor
decomposition and masking procedure. We test this approach using high-
resolution social network data from wearable sensors and show that it
successfully detects anomalies due to sensor wearing time protocols.

Keywords: Data cleaning, anomaly detection, non-negative tensor fac-
torization, high-resolution social networks, sensors, temporal networks.

1 Introduction

Emerging applications in the big data and Internet-of-Things domains pose new
problems for data cleaning. Time-resolved interaction data, in particular, are
especially challenging because the relational nature of the data yields anomalies
that entangle temporal and topological aspects. Several studies have focused on
identifying anomalous behaviors in graph-based datasets [1] and time-varying
networks [2]. However, mesoscale anomalies that mimic normal behaviors are
observed in empirical data and call for further research.

Here we focus on time-varying graphs [3] represented as three-mode tensors
and we present an semi-supervised anomaly detection method based iterative
tensor decomposition and masking. We report on the performance of this method
in detecting and removing anomalies in an empirical social network dataset gath-
ered by using wearable proximity sensors in a school.

2 Methodology

A static graph can be represented by an adjacency matrix M ∈ R
N×N , where

Mij = 1 if a contact between i and j occurred and Mij = 0 otherwise. This
description can be generalized to the case of a time-varying graph, by using a
sequence of S consecutive adjacency matrices, that can be easily arranged as a
tensor T ∈ R

N×N×S .

Copyright c©2015 for this paper by its authors. Copying permitted for private and academic
purposes.
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The extraction of latent structures can then be performed by following the
iterative approach described below. This framework allows to carry out the data
cleaning by unearthing at each iteration group behaviours of nodes having cor-
related activities and classifying these patterns of activities as meaningul or
anomalous.

Step 1. The Non-negative Tensor Factorization [6] is used as a powerful tool
to approximate the tensor T as a sum of R rank-one tensors ar ◦ br ◦ cr, called
components. In the specific case of temporal networks, ar and br provide the
membership of nodes to the component r, whereas cr is the temporal activity
pattern of the component. Moreover, it is possible to consider ar ≈ br if the
graph is undirected. The components can be recovered by solving an optimization
problem with non-negative constraints. The minimization problem

min

∥

∥

∥

∥

∥

tijk −

R
∑

m=1

R
∑

n=1

R
∑

l=1

aimajnckl

∥

∥

∥

∥

∥

2

F

s.t. aim, ajn, ckl ≥ 0 (1)

is computed by the alternating non-negative least squares method [7], solved
by using the block principal pivoting algorithm [8]. The selection of a suitable
number R of components is guided at each iteration by the Core Consistency
Diagnostic [9, 10], and performed in order to prevent overfitting.

Step 2. The extracted components are analysed in order to discriminate
between those dominated by anomalous activities or meaningful behaviours. To
this end, a classifier working on the temporal activity patterns of each component
cr was developed.

Step 3. Spurious contact patterns highlighted by the anomalous components
are combined into a mask, used to clean the original tensor. The nodes involved
in each of these contacts are detected by analysing the level of membership
given by ar. The occurrence times of these contacts are given by the anomalous
windows found in the temporal patterns cr. These windows are recovered by
using a step detection algorithm based on the Otsu threshold [11].

Step 4. The mask is applied to the tensor T in order to erase the invalid
entries. The cleaned tensor T ′ becomes then the input of the consecutive iteration
in the iterative framework.

Step 5. The procedure is repeated until no component is classified as anoma-
lous in step 2.

3 Results and Validation

The current investigation involves the analysis of a high-resolution dataset which
describes the interactions of people in a primary school in Hong Kong. The school
population consisted in 709 children and 65 teachers divided into 30 classes. Data
were collected by using wearable proximity sensors [4, 5] over 10 consecutive days
in March 2013, from Monday 18th to Thursday 27th. These sensors record spatial
proximity with a resolution of 20s. As a result, a time-varying network with
N = 774 nodes was created. The data were then aggregated over a time-window
of 5min, leading to a division of the overall network in S = 2680 snapshots.
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Abstract. Averaging a set of time series is a major topic for many
temporal data mining tasks as summarization, extracting prototype or
clustering. Time series averaging should deal with the tricky multiple
temporal alignment problem; a still challenging issue in various domains.
This work compares the major progressive and iterative averaging time
series methods under dynamic time warping (dtw).

1 Introduction

Time series centroid estimation is a major issue for many temporal data analysis
and mining tasks as summarization, extracting temporal prototype or clustering.
Estimating the centroid of a set of time series under time warp should deal
with the tricky multiple temporal alignment problem [1–4]. Temporal warping
alignment of time series has been an active research topic in many scientific
disciplines. To estimate the centroid of two time series under temporal metrics,
as the dynamic time warping [5–7], one standard way is to embed the time series
into a new Euclidean space defined by their temporal warping alignment. In this
space, the centroid can be estimated as the average of the linked elements. The
problem becomes more complex where the number of the time series is more than
two, as one needs to determine a multiple alignment that links simultaneously
all the time series on their commonly shared similar elements.

A first manner to determine a multiple alignment is to search, by dynamic
programming, the optimal path within an n-dimensional grid that crosses the n
time series. The complexity of this approach prevents its use, as it constitutes
an NP-complete problem with a complexity of O(Tn) that increases exponen-
tially with the number of time series n and the time series length T . A second
way, that identifies progressive approaches, is based on combining progressively
pairwise time series centroids to estimate the global one. The progressive ap-
proaches may suffer of the early error propagation through the set of pairwise
centroid combinations. The third approach is iterative, it works similarly to the
progressive approach, but mainly reduces the error propagation by repeatedly
refining the barycenter and realigning it to the initial time series. In general,
the main progressive and iterative approaches are of heuristic nature limited to
the dynamic time warping metric, that provide an estimation of the barycenter
without guarantee of an optimal solution.

The main contribution of this work is to introduce some major progressive
and iterative approaches for time series centroid estimation, prior to present their

Copyright c©2015 for this paper by its authors. Copying permitted for private and academic
purposes.
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characteristics, as well as an extensive comparison between the mentioned meth-
ods throughout real and synthetic datasets, where to the best of our knowledge
this necessary study is never conducted before.

The rest of this paper is organized as follows: In the next section, different
approaches are studied and Section 3 presents the conducted experimentation
and discuss the results obtained. Lastly, Section 4 concludes the paper.

2 Progressive and iterative approaches

The progressive and iterative methods for averaging a set of time series are
mostly derived from the multiple sequence alignment methods to address the
tricky multiple temporal alignment problem. In the following, we review the
major progressive and iterative approaches for time series averaging under time
warp.

Gupta et al. in [8] used the dtw in the sequence alignment to average a set
of time series. The method, called ”NonLinear Alignment and Averaging Filters

(nlaaf)”, uses a tournament scheme averaging approach that it’s simplest aver-
aging ordering consists in pairwise averaging sequences following a tournament
scheme. That way, N/2 average sequences are created at first step. Then those
N/2 sequences, in turn, arepairwise averaged into N/4 sequences, and so on,
until one sequence is obtained. In this approach, the averaging method between
two sequence is applied (N − 1) times. nlaaf works by placing each element of
the average sequence of two time sequences, as the center of each association cre-
ated by DTW. Its main drawback lies in growth of its resulting length, because
each use of the average method can almost double the length of the average
sequence. That is why nlaaf is generally used in conjunction with a process
reducing the length of the average, leading to a loss of information and thus
to an unsatisfactory approximation. Additionally, the average strongly depends
on the order of time series sequences and so, different orders of sequences give
different average sequence.

To avoid the bias induced by random selection, Niennattrakul et al. [11, 12]
proposed a framework of shape averaging called ”Prioritized Shape Averaging

(psa)”, which uses hierarchical clustering with a new dtw averaging function,
labeled ”Scaled Dynamic Time Warping” with extra capability in stretching
some parts of warping path so that the result is more similar to a sequence time
series with more weight. Niennattrakul used hierarchical clustering as a heuristic
to order the priority. In spite of this hierarchical averaging method aims to pre-
vent the order dependency, the length of average sequences remains a problem.
Local averaging strategies like nlaaf or psa may let an initial approximation
error propagate throughout the averaging process. If the averaging process has
to be repeated, the effects may dramatically alter the quality of the result. This
is why a global approach is desirable, where sequences would be averaged all
together, with no sensitivity to their order of consideration.

A direct manner to estimate the centroid proposed by Abdulla et al. [1],
called ”Cross-Words Reference Template (cwrt)”, which uses medoid as the
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reference time series as follows. First, the time series medoid is selected. The
whole time series are then described in the representation space defined by the
reference medoid. In the next step, all sequences are aligned by dtw to a single
medoid and then the average is computed by averaging the time-aligned time
series across each point. Petitjean et al. [3] proposed a global averaging method,
called ”Dtw Barycenter Averaging (dba)”, which consists in iteratively refining
an initially average sequence, in order to minimize its distance to the averaged
sequence. As a summary, the dba under temporal warping is a global approach
that can average a set of sequences all together.

All the methods define heuristic approaches, although with no guarantee
of optimal solutions, the provided approximations are accurate particularly for
time series that behave similarly within the set. However these approaches may
fail principally for time series with similar global behavior and local temporal
differences, as one needs to deploy local instead of global averaging process.

3 Experimental study

The experiments are conducted to compare the above approaches on classes of
time series composing various datasets. The datasets can be divided into two
categories. The first one is composed of time series that have similar global
behavior within the classes, where the time series of the second category may
have distinct global behavior, while sharing local characteristics [9]. For the
comparison, the induced inertia reduction rate and the required run time are
evaluated as well as the qualitative comparison of the centroids obtained by a
visualization. In the following, we first describe the datasets used, then specify
the validation process and discuss the obtained results.

3.1 Data descrpition

The experiments are first carried out on four well known public datasets cbf, cc,
digits and character traj. [10]. These data define a favorable case for the av-
eraging task as time series behave similarly within the classes. Then, we consider
more complex datasets: bme1, umd1, spiral [4], noised spiral1 and conssea-
son [10]. They are composed of time series that behave differently within the
same classes while sharing several local characteristics. Table 1 indicates for each
data set: the number of classes it includes (Nb. Class), the number of instances
(Nb. TS), the number of attributes (Nb. Att), the time series length (TS length)
and the global or local nature of similarity within the classes (Type).

3.2 Validation process

The four mentioned methods nlaaf, psa, cwrt and dba described in Section
2 is compared together. The performances of these approaches are evaluated
through the centroid estimation of each class of the above described datasets.

1 http://ama.liglab.fr/∼douzal/data
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Table 1: Data description

dataset nb. class nb. ts. nb. att. ts. length type

CBF 3 930 1 128

global
CC 6 600 1 60
DIGITS 10 220 2 85
CHAR. TRAJ. 20 200 3 20

BME 3 150 1 90

local
UMD 3 150 1 121
SPIRAL 1 50 3 95
NOISED SPIRAL 1 50 3 300
CONSSEASON 2 365 1 144

Particularly, the efficiency of each approach is measured through: a) the reduc-
tion rate of the inertia criterion; the initial inertia being evaluated around the
time series medoid that minimizes the distances to the rest of time series and
b) the space and time complexity. The results reported hereafter are averaged
through a bootstrap process, with 10 repetitions. Finally for all reported results,
the best one which is significantly different from the rest(t-test at 1% risk) is
indicated in bold.

Inertia reduction rate Time series averaging approaches are used to estimate
centroid of the time series classes described above, then the inertia w.r.t. the
centroids is measured. Lower is the inertia higher representative is the extracted

centroid. Table 2, gives the obtained inertia reduction rates irr=1−
∑

N

i=1 D(xi,c)∑
N

i=1 D(xi,m)
,

averaged per dataset; x1, ..., xN being the set of time series, D the metric, c the
determined centroid and m the initial medoid. Table 2 shows that the dba
provides the highest irr for the most datasets. Some negative rates observed
indicate an inertia increase.

Table 2: Comparison of Inertia Reduction Rate(IRR)

dataset nlaaf psa cwrt dba

CBF 8.3% 12.3% -61.3% 32.1%
CC 9.8% 28.6% 6.8% 34.2%
Digits 26.1% 79.5% 77.6% 82.2%
CHAR. TRAJ. 67.1% 87.7% 85.2% 90.6%
BME 34.9% 43.1% -11.8% 59.4%
UMD 25.6% 51.1% -56.2% 48.8%
SPIRAL 59.8% 64.4% 64.2% 65.8%
NOISED SPIRAL 61.4% 66.3% 9.3% 9.8%
CONSSEASON 84.1% 70.5% 4.6% 21.4%
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Time and space complexity In Table 3 the studied approaches are compared
w.r.t their space and time complexity. The results, averaged per dataset, reveal
almost dba the faster method and psa the slowest one. The cwrt approach is
not comparable to the rest of the methods as it performs directly an euclidean
distance on the time series once the initial dtw matrix evaluated. Remark that
for nlaaf and psa the centroid lengths are very large making these approaches
unusable for large time series. The centroid lengths for the remaining methods
are equal to the length of the initial medoid. The higher time consumptions
observed for nlaaf and psa are mainly explained by the progressive increase of
the centroid length during the pairwise combination process.

Table 3: Comparison of Time/Space complexity

dataset
nlaaf psa dba

length time length time length time(nb-it.)

CBF 8283 392.32 35042 9999.99 128 42.91(30)
CC 992 4.15 1677 12.75 60 6.46(40)
DIGITS 313 0.52 530 1.09 85 0.51(15)
CHAR. TRAJ. 33 0.06 29 0.06 20 0.03(10)
BME 2027 5.46 2781 11.92 90 3.93(30)
UMD 2729 10.32 4280 28.87 121 4.75(30)
SPIRAL 660 1.62 1122 3.33 95 1.19(10)
NOISED SPIRAL 1699 16.13 9030 269.93 300 34.84(25)
CONSSEASON 5741 77.10 32706 3680.81 144 29.79(35)

3.3 Discussion

From Table 2, we can see that dba and psa lead to the highest inertia reduction
rates, where the best scores (indicated in bold) are reached by dba for almost all
datasets. However it is significantly lower for some challenging datasets. Finally,
cwrt has the lowest inertia reduction rates. The negative rates observed for
cwrt indicate an inertia increase. As expected, the dba method that iteratively
optimizes an inertia criterion, in general, reaches higher values than the non-
iterative methods (nlaaf, psa and cwrt).

From Table 3, the results reveal dba the fastest method and the psa the
slowest one. For nlaaf and psa the estimated centroids have a drastically large
dimension (i.e. a length around 104) making these approaches unusable for large
time series datasets. The nlaaf and psa methods are highly time-consuming,
largely because of the progressive increase of the centroid length during the pair-
wise combination process. The centroid lengths for the remaining methods are
equal to the length of the initial medoid (Table 3). Finally, psa appears greatly
slower than nlaaf; this is due to the hierarchical clustering on the whole time
series. We finally visualize here some of the centroids obtained by the different
methods to compare their shape to the one of the time series they represent.
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Figure (1) and (2) display the centroids obtained by the mentioned methods
respectively for the class ”funnel” of cbf and ”cyclic” of data set cc. As one
can note, for global datasets, almost all the approaches succeed in obtainging
centroids more or less similar to the initial time series. However, we observe
generally less representative centroids for nlaaf and psa.

Fig. 1: cbf-”funnel” centroids: (a) ground through, (b) nlaaf, (c) psa, (d) cwrt, (e) dba

Fig. 2: cc-”cyclic” centroids: (a) ground through, (b) nlaaf, (c) psa, (d) cwrt, (e) dba

4 Conclusion

The dtw is among the most frequently used metrics for time series in several
domains as signal processing, temporal data analysis and mining or machine
learning. However, for time series clustering, approaches are generally limited
to kmedoid to circumvent time series averaging under dtw and tricky multiple
temporal alignments problem. The present study compares the major progressive
and iterative time series averaging approaches under dynamic time warping. The
experimental validation is based on global datasets in which time series share
similar behaviors within classes, as well as on more complex datasets exhibiting
time series that share only local characteristics, that are multidimensional and
noisy. Both the quantitative evaluation, based on an inertia criterion and time
and space complexity, and the qualitative one (consisting in the visualization
of the centroids obtained by different methods) show the effectiveness of dba
approach. In particular, the dba method that iteratively optimizes an inertia
criterion, not only, reaches higher values than the non-iterative methods (nlaaf,
psa and cwrt), but also provides a fast time series averaging for global and local
datasets.
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Abstract. Factored gated restricted Boltzmann machine is a generative
model, which capable to extract the transformation from an image pair.
We extend this model by adding discriminative component, which allows
directly use this model as a classifier, instead of using the hidden unit
responses as features for another learning algorithm. To evaluate the
capabilities of this model, we have created a synthetically transformed
image pairs and demonstrated that the model is able to determine the
velocity of object presented on two consecutive images.

Keywords: Multiplicative interaction, temporal coherence, translational
motion, gated Boltzmann machine, supervision learning

1 Introduction

The gated Boltzmann machine is one of the models that uses multiplicative in-

teractions [8] for learning the representation, which can be useful to extract the
transformation between pairs of temporally coherent video frames [12]. Factor-
ized version of this model is presented in [9], where authors train the model on
shifts of random dot images and demonstrate that the model is able to identify
the different directions correctly. We continue this research by studying the pos-
sibility to predict not only directions, but also a shift value. From all types of
motion, we chose only translational motion, because it gives a great opportunity
to use this model in many vision tasks, such as object tracking or visual odom-
etry [4]. Therefore, the main objective of this work is to create a model that is
trained to identify velocity vector in the image coordinate.

Instead of using additional model on top of the mapping units, we are adding
discriminative component directly to the model. This technique was first applied
for restricted Boltzmann machine [6] and since that has become widely used for
similar models [11, 10]. In this paper, we are focused on the model that extracts
transformation from two consecutive images. Without considering the additional
discriminative component, there are several approaches of three-way structure
model training [9, 13]. We propose a simple learning algorithm and show that
it is not inferior to the existing. Moreover, our learning algorithm takes into
account additional label variables and we demonstrate how it effects the training
discriminative features. We refer to our model variants as classification factored

gated restricted Boltzmann machine (cfgRBM).

Copyright c©2015 for this paper by its authors. Copying permitted for private and academic
purposes.
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Fig. 1. Left shows the schematic representation of the cfgRBM model. Factorized form
of the multiplicative interactions between two visible x, y and hidden h vectors de-
picted by triangles. The discriminative component is presented as one-hot encoded
label vector z. Right shows specially chosen four filter pairs learned on horizontally
shifted handwritten digits.

2 The Model

We propose a model (Fig. 1) in which the hidden units h not only captures
the relationship between two images x and y, but also interacts with associated
label z. The model is defined in the terms of its energy function and the function
consists of two basic parts. The first of these is the factored three-way Boltzmann
machine [13] and the second is classification restricted Boltzmann machine [5].
Combining these two models we defined expression for the energy function as
follows:

E(x, y, z, h) = −
∑

f

(
∑

i

W x
ifxi)(

∑

j

W
y
jfyj)(

∑

k

Wh
kfhk)−

∑

kl

hkVklzl

−
∑

i

aixi −
∑

j

bjyj −
∑

k

ckhk −
∑

l

dlzl , (1)

where matrices W x,W y,Wh has size I×F, J×F and K×F respectively, I and
J are equal size of visible units, F - number of factors, K - number of hidden
units. The discriminative component is weight matrix V with size K × L and
one-hot encoded label vector z with L classes. Bias terms a, b, c and d associated
with two visible, hidden and label vectors respectively. We will assume that the
visible vectors are binary, but the model can be defined with real-valued units
[1]. Every column W x

·f and W
y
·f can be consider as filter pairs (Fig. 1).

To train the model, we also need to define the joint probability distribution
over three vectors:

p(x, y, z) =

∑

h exp(−E(x, y, z, h))
∑

x,y,z,h exp(−E(x, y, z, h))
, (2)

where the numerator is summing over all possible hidden vectors and denomi-
nator is partition function which cannot be efficiently approximated.
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2.1 Inference

The inference task of proposed model is defined as the problem of classifying
the motion between two related images. In order to choose the most probable
label under this model, we must compute conditional distribution p(z|x, y). We
have adapted the calculations from the case of single input units [5] for the case
of three-way interaction. As a result, for reasonable numbers of labels L, this
conditional distribution can be also computed exactly and efficiently, by writing
it as follows:

p(zl = 1 | x,y) =
exp(dl)

∏

k (1 + exp(okl(x,y)))
∑

l∗ exp(dl∗)
∏

k (1 + exp(okl∗(x,y)))
, (3)

where
okl(x,y) = ck + Vkl +

∑

f

Wh
kf (W

x
·f

⊤
x)(W y

·f
⊤
y) (4)

is an input to k hidden unit received from images x, y and estimated label l.

2.2 Learning

In order to train a cfgRBM to solve a classification problem, we need to learn the
model parameters Θ = (W x,W y,Wh, V, a, b, c, d). Given a training set Dtrain =
{(xα, yα, zα)} and a predefined joint distribution (2) between three variables,
the model can be trained by minimizing the negative log-likelihood:

Lgen(Dtrain) = −

|Dtrain|
∑

a=1

log p(xα, yα, zα) . (5)

In order to minimize this function the gradient for any cfgRBM parameters
θ ∈ Θ can be written as follows:

−Eh|xα,yα,zα

[

∂E(xα, yα, zα, h)

∂θ

]

+ Ex,y,z,h

[

∂E(x, y, z, h)

∂θ

]

, (6)

where subscript of the expectation denotes the distribution for variables. There
exists a learning rule [2], called “Contrastive Divergence”, which can be used
to approximate this gradient. Taking this rule into consideration we proposed
the Algorithm 1 for the training of cfgRBM model. The main difference from
the other approaches for training three-way interaction is in symmetrically sam-
ple vectors x,y in the negative phase. Detailed information about the partial
derivatives with respect to the model parameters can be obtained from [9, 5].

In case of factored three-way interactions the calculation of the gradient (6)
involves numerical instabilities. Especially when using a large input vectors. To
avoid this we also use a norm constraint on columns of matrics W x and W y. It
is a common approach to stabilizing learning. For example, the same recommen-
dations are given by [3] for method “Adaptive Subspace Self-Organizing Map”
to learn invariant properties of moving input patterns.
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Algorithm 1 Symmetric training update of the cfgRBM model

Require: training triplet (xα, yα, zα) and learning rate λ

# Notation
# a← b means a is set to value b

# a ∼ p means a is sampled from p

# Positive phase
x0 ← xα, y0 ← yα, z0 ← zα

h0
k ← sigm(okl0(x

0, y0))

# Sample
ĥ ∼ p(h|x0, y0, z0)

# Negative phase
x

1 ∼ p(x|y0, ĥ), y1 ∼ p(y|x0, ĥ), z1 ∼ p(z|ĥ)
h1
k ← sigm(okl1(x

1,y1))

# Update
for θ ∈ Θ do

θ ← θ − λ
(

∂E(x0,y0,z0,h0)
∂θ

− ∂E(x1,y1,z1,h1)
∂θ

)

end for

3 Experiments

The main goal of this research is to build a model that is capable to extract
translational motion from two related images. Therefore, we created a synthetic
data consisting of image pairs in which the second image is horizontally and rel-
atively shifted towards the first. We take MNIST dataset1 and randomly choose
a shift value in the range [-3 3] for each image. As a result we get 7 possible
labels for 60, 000 training and 10, 000 test image pairs of relatively shifted hand-
written digits. All the models in the following experiments have 200 factors and
100 hidden units. For detailed information about learning parameters we refer
to our implementation2 of the models.

In the first experiment (Fig. 2), we compare different learning strategies for
the cfgRBM model. The first learning method is taken from [9], where authors
described a conditional model. The second method is proposed in [13], where
authors define the joint distribution for an image pair. The results show that
Algorithm 1 in the end of learning has the lowest classification and reconstruction
test error. It is also interesting to note that there are different delays before filters
become specialized in their frequency and phase-shift characteristics.

In the second experiment (Fig. 3), we compare hidden units activities of mod-
els with and without a discriminative component. In the first case we trained
a model completely unsupervised without any labeled information. In the sec-
ond case cfgRBM model was trained using Algorithm 1. The results show that

1 http://yann.lecun.com/exdb/mnist/
2 https://cit.ifmo.ru/~sorokin/cfgRBM/
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descriminative component has a strong effect on hidden features. In addition,
we also demonstrate an effect on the hidden units in the case with wrong label
information.

Fig. 2. Three learning stratagies for cfgRBM model. The reconstruction was calculated
only for y visible units. In both graphs the error value obtained on test set and the
ordinate is scaled logarithmically. Best view in color.

Fig. 3. Hidden units activations. For every test sample, activation of 100 hidden units
projected to 2D coordinates using t-SNE [7]. a) model trained without discriminative
component. b) model extendet with additional labeled units. c) exactly the same model
as in the case (b), but labels of classes {-3,-2} and {2,3} are deliberetly combined.
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4 Conclusion

In this paper, we incorporate supervision learning for factored gated restricted
Boltzmann machine model. Our results show that proposed model is capable to
identify the velocity of the object presented on two consecutive images. In the
future work we plan to apply this model for videos which may be represented
as a temporally ordered sequence of images. Particularly, the ability to extract
translational motion will be useful for tracking tasks.
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