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Abstract. Time series classification in the dissimilarity space combines
the advantages of the dynamic time warping and the rich mathematical
structure of Euclidean spaces. We applied dimension reduction using
PCA followed by support vector learning on dissimilarity representations
to 43 UCR datasets. Results indicate that time series classification in
dissimilarity space has potential to complement the state-of-the-art.

1 Introduction

Time series classification finds many applications in diverse domains such as
speech recognition, medical signal analysis, and recognition of gestures [2—4].
Surprisingly, the simple nearest-neighbor method together with the dynamic
time warping (DTW) distance still belongs to the state-of-the-art and is reported
to be exceptionally difficult to beat [1,5,10]. This finding is in stark contrast to
classification in Euclidean spaces, where nearest neighbor methods often merely
serve as baseline. One reason for this situation is that nearest neighbor methods
in Euclidean spaces compete against a plethora of powerful statistical learning
methods. The majority of these statistical learning methods are based on the
concept of derivative not available for warping-invariant functions on time series.

The dissimilarity space approach proposed by [7] offers to combine the advan-
tages of the DTW distance with the rich mathematical structure of Euclidean
spaces. The basic idea is to first select a set of k reference time series, called
prototypes. Then the dissimilarity representation of a time series consists of k
features, each of which represents its DTW distance from one of the k£ proto-
types. Since dissimilarity representations are vectors from R, we can resort to
the whole arsenal of mathematical tools for statistical data analysis. The dis-
similarity space approach has been systematically applied to the graph domain
using graph matching [6,9]. A similar systematic study of the dissimilarity space
approach for time series endowed with the DTW distance is still missing.

This paper is a first step towards exploring the dissimilarity space approach
for time series under DTW. We hypothesize that combining the advantages of
both, the DTW distance and statistical pattern recognition methods, can result
in powerful classifiers that may complement the state-of-the-art. The proposed
approach applies principal component analysis (PCA) for dimension reduction of
the dissimilarity representations followed by training a support vector machine
(SVM). Experimental results provide support for our hypothesis.
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2 Dissimilarity Representations of Time Series

2.1 Dynamic Time Warping Distance

A time series of length n is an ordered sequence x = (x1,...,x,) with features
z; € R sampled at discrete points of time ¢ € [n] = {1,...,n}. To define the
DTW distance between time series x and y of length n and m, resp., we construct
a grid G = [n] x [m]. A warping path in grid G is a sequence ¢ = (t1,...,t;)
consisting of points t; = (i, jx) € G such that

1.ty =(1,1) and ¢, = (n,m) (boundary conditions)
2. tpp1 —tr € {(1,0),(0,1),(1,1)} (warping conditions)

for all 1 < k < p. The cost of warping € = (z1,...,2,) and y = (y1,.-.,Ym)
along ¢ is defined by

do(x,y) = Z (xi_yj)27

(i,)€d

where (z; — yj)2 is the local transformation cost of assigning features z; to y;.
Then the distance function

d(x,y) = min dy (2, y),

is the dynamic time warping (DTW) distance between @ and y, where the min-
imum is taken over all warping paths in G.

2.2 Dissimilarity Representations

Let (7, d) be a time series space T endowed with the DTW distance d. Suppose
that we are given a subset

P=Apy,....pr} ST

of k reference time series p; € T, called prototypes henceforth. The set P of
prototypes gives rise to a function of the form

¢:T_>Rka T (d(w7p1)a-~'ad(w>pk))7

where R” is the dissimilarity space of (T, d) with respect to P. The k-dimensional
vector ¢(x) is the dissimilarity representation of x. The i-th feature of ¢(x)
represents the dissimilarity d(x, p;) between x and the i-th prototype p;.

2.3 Learning Classifiers in Dissimilarity Space

Suppose that
X = {(w1’y1>7"'7<wn7yn)} CTx).

is a training set consisting of n time series x; with corresponding class labels
y; € Y. Learning in dissimilarity space proceeds in three steps: (1) select a
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suitable set of prototypes P on the basis of the training set D, (2) embed time
series into the dissimilarity space by means of their dissimilarity representations,
and (3) learn a classifier in the dissimilarity space according to the empirical risk
minimization principle.

The performance of a classifier learned in dissimilarity spaces crucially de-
pends on a proper dissimilarity representation of the time series. We distinguish
between two common approaches:

1. Prototype selection: construct a set of prototypes P from the training set X.
2. Dimension reduction: perform dimension reduction in the dissimilarity space.

There are numerous strategies for prototype selection. Naive examples in-
clude all elements of the training set X and sampling a random subset of X. For
more sophisticated selection methods, we refer to [8]. Dimension reduction of
the dissimilarity representation includes methods such as, for example, principal
component analysis (PCA).

3 Experiments

The goal of this experiment is to assess the performance of the following classifiers
in dissimilarity space: (1) nearest neighbor using the Euclidean distance (ED-
DS), (2) support vector machine (SVM), and (3) principal component analysis on
dissimilarity representations followed by support vector machine (PCA+SVM).

3.1 Experimental Protocol

We considered 43 datasets from the UCR time series datasets [4], each of which
comes with a pre-defined training and test set. For each dataset we used the
whole training set as prototype set. To embed the training and test examples
into a dissimilarity space, we computed their DTW distances to the prototypes.

We trained all SVMs with RBF-kernel using the embedded training examples.
We selected the parameters v and C' of the RBF-kernel over a two-dimensional
grid with points (v;,C;) = (2%,27), where 7, are 30 equidistant values from
[—10, 10]. For each parameter configuration (y;, C;) we performed 10-fold cross-
validation and selected the parameters (v, C,) with the lowest average classi-
fication error. Then we trained the SVM on the whole embedded training set
using the selected parameters (7., C,). Finally, we applied the learned model to
the embedded test examples for estimating the generalization performance.

For PCA+SVM we performed dimension reduction using PCA prior training
of the SVM. We considered the ¢ first dimensions with highest variance, where
qg€{l,1+a,1+2a,....,1+19a} with a being the closest integer of k/20 and
k is the dimension of the dissimilarity space. For each ¢, we performed hyper-
parameter selection for the SVM as described above. We selected the parameter
configuration (g«,y«, Cx) that gave the lowest classification error. Then we ap-
plied PCA on the whole embedded training set, retained the first ¢, dimensions
and trained the SVM on the embedded training set after dimension reduction.
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Fig. 1. Scatter plots of accuracy of DTW against dissimilarity space methods.

Finally we reduced the dimension of the embedded test examples and applied
the learned model.

3.2 Results

Figure 1 shows the scatter plots of predictive accuracy of the nearest neighbor
using DTW against all three dissimilarity space methods and Table 1 shows the
error rates of all classifiers for each dataset.

The first observation to be made is that the dissimilarity space endowed with
the Euclidean space is less discriminative than the time series space endowed with
the DTW distance. As shown by Figure 1, nearest neighbor (NN) with DTW
performed better than the ED-DS classifier in 34 out of 42 cases. Since the DTW
distance is non-Euclidean, dissimilarity spaces form a distorted representation of
the time series space in such a way that neighborhood relations are not preserved.
In most cases, these distortions impact classification results negatively, often by
a large margin. In the few cases where the distortions improve classification
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Data DTW ED-DS SVM PCA+SVM
50words 31.0 42.9 33.4 31.0 (+0.0)
Adiac 39.6 402 340 376 (+5.1)
Beef 50.0 56.7 60.0 40.0 (+20.0)
CBF 0.3 0.2 14 0.2 (+32.7)
ChlorineConcentration 35.2 48.3 28.9 30.2 (+14.3)
CinC ECG Torso 34.9 44.0 41.4 39.8 (-14.0)
Coffee 17.9 393 321 17.9 (10.0)
Cricket X 22.3 385 241 236 (-5.8)
Cricket Y 20.8 37.9 200 197 (+5.1)
Cricket Z 20.8 34.9 20.8 18.2 (+12.5)
DiatomSizeReduction 3.3 4.2 10.8 13.7 (-315.9)
ECG 23.0 20.0 16.0 18.0 (+21.7)
ECGFiveDays 23.2 224 24.9 14.1 (+39.4)
Face (all) 19.2 28.9 23.8 10.9 (+43.0)
Face (four) 17.1 19.3 13.6 17.0 (+0.0)
FacesUCR 9.5 17.1 134 9.0 (+5.6)
Fish 16.7 326 177 14.3 (114.5)
Gun-Point 9.3 20.0 6.7 87 (4+7.1)
Haptics 62.3 58.4 54.9 54.9 (+11.9)
InlineSkate 61.6 61.8 65.5 68.4 (-11.0)
ItalyPowerDemand 5.0 8.4 6.5 6.3 (-26.3)
Lighting 2 13.1 18.0 14.8 16.4 (-25.1)
Lighting 7 27.4 37.0 233 20.5 (125.0)
Mallat 6.6 46 56 5.5 (+17.3)
Medical Images 26.3 27.9 24.9 21.7 (+17.4)
MoteStrain 16.5 24.8 17.2 14.1 (+14.8)
Olive Oil 13.3 13.3 10.0 13.3 (40.0)
OSU Leaf 40.9 45.0 36.0 38.0 (+7.1)
SonyAIBORobotSurface 27.5 16.3 22.3 6.7 (+75.8)
Sony AIBORobotSurface 11 16.9 19.4 174 19.3 (-14.2)
Swedish Leaf 21.0 27.2 14.4 18.7 (+10.9)
Symbols 5.0 5.3 8.7 53 (-6.5)
Synthetic Control 0.7 1.7 1.3 2.0 (-185.7)
Trace 0.0 1.0 10 00 (+0.0)
TwoLeadECG 9.6 18.7 7.7 7.1 (+25.9)
TwoPatterns 0.0 18.7 0.0 0.0 (+0.0
uWaveGestureLibrary X 27.3 28.9 20.8 20.6 (+24.6)
uWaveGestureLibrary Y 36.6 40.5 28.6 28.5 (+22.2)
uWaveGestureLibrary Z 34.2 34.6 27.0 26.9 (+21.4)
Wafer 2.0 1.5 1.1 1.5 (426.2)
WordsSynonyms 35.1 43.9 39.0 34.3 (+2.2)
yoga 16.4 20.0 140 148 (+9.6)

Table 1. Error rates in percentages. Numbers in parentheses show percentage improve-
ment of PCA+SVM with respect to DTW.

results, the improvements are only small and could also be occurred by chance
due to the random sampling of the training and test set.

The second observation to be made is that the SVM using all prototypes
complements NN+DTW. Better and worse predictive performance of both clas-
sifiers is balanced. This shows that powerful learning algorithms can partially
compensate for poor representations.
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The third observation to be made is that SVM+PCA outperformed all other
classifiers. Furthermore, SVM+PCA is better than NN+DTW in 28 and worse
in 9 out of 42 cases. By reducing the dimension using PCA, we obtain better
dissimilarity representations for classification. Table 1 highlights relative im-
provements and declines of PCA+SVM compared to NN+DTW with +£10% or
more in blue and red color, respectively. We observe a relative change of at least
+10% in 27 out of 43 cases. This finding supports our hypothesis that learning
on dissimilarity representations complements NN-+DTW.

4 Conclusion

This paper is a first step to explore dissimilarity space learning for time series
classification under DTW. Results combining PCA with SVM on dissimilarity
representations are promising and complement nearest neighbor methods us-
ing DTW in time series spaces. Future work aims at exploring further elastic
distances, prototype selection, dimension reduction, and learning methods.
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