
Proceedings 1st International Workshop on Advanced Analytics and Learning on Temporal Data
AALTD 2015

Causality on Longitudinal Data:
Stable Specification Search in Constrained

Structural Equation Modeling

Ridho Rahmadi1,2, Perry Groot2, Marianne Heins4,
Hans Knoop3, and Tom Heskes2

1 Department of Informatics, Universitas Islam Indonesia.
2 Institute for Computing and Information Sciences, Radboud University Nijmegen.
3 Expert Centre for Chronic Fatigue, Radboud University Medical Centre, Nijmegen.

4 Netherlands Institute for Health Services Research, Utrecht.
r.rahmadi@cs.ru.nl

Abstract Developing causal models from observational longitudinal stud-
ies is an important, ubiquitous problem in many disciplines. A disadvan-
tage of current causal discover algorithms, however, is the inherent instability
in structure estimation. With finite data samples small changes in the
data can lead to completely different optimal structures. The present
work presents a new causal discovery algorithm for longitudinal data
that is robust for finite data samples. We validate our approach on a
simulated data set and real-world data on Chronic Fatigue Syndrome
patients.
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1 Introduction

Developing causal models from observational longitudinal studies is an impor-
tant, ubiquitous problem in many disciplines, which has led to the development
of a variety of causal discovery algorithms in the literature [1–5]. A disadvantage
of current causal discovery algorithms, however, is the inherent instability in
structure learning. With finite data samples small changes in the data can lead
to completely different optimal structures, since errors made by the discovery
algorithm may be propagated and lead to further errors [6]. In [7] we developed
a robust causal discovery algorithm for cross-sectional data. The method per-
forms structure search over Structural Equation Models (SEMs) by maximizing
model scores in terms of data fit and complexity. The present work extends our
causal discovery algorithm to longitudinal data. We describe how longitudinal
causal relationships can be modelled for an arbitrary number of time slices. Fur-
thermore, we show how a longitudinal causal model can easily be scored using
standard SEM software by data reshaping. The algorithm produces accurate
structure estimates and is shown to be robust for finite samples. We validate our
approach on one simulated longitudinal data set and one real-world longitudinal
data set for Chronic Fatigue Syndrome.
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2 Proposed method

We use a SEM for causal modeling. The general form of the equations is

xi = fi(pai, εi), i = 1, . . . , n. (1)

where pai denotes the parents which represent the set of variables considered to
be direct causes of Xi and εi represents errors on account of omitted factors that
are assumed to be mutually independent [8]. In this study, we focus on causal
models with no reciprocal relationships, and no latent variables. Thus the causal
model can also be represented by a Directed Acyclic Graph (DAG). We score
models using both the chi-square χ2 (measuring the data fit) and the model
complexity (measuring the number of parameters).

We use the method we developed in [7] to perform exploratory search over
SEM models. Based on the idea of stability selection [9], the method subsamples
the data D with size b|D|/2c without replacement and generates Pareto optimal
models for each subset. After that, all Pareto optimal models are transformed
into their corresponding model equivalent classes, called Completed Partially Di-
rected Acyclic Graph (CPDAG) [10]. From these CPDAGs we compute the edge
and causal path stability graph, such as Figure 3a, by grouping them according
to model complexity and computing their selection probability, i.e., the number
of occurrences divided by the total number of models for a certain level of model
complexity. Stability selection is then performed by specifying two thresholds,
πsel (boundary of selection probability) and πbic (boundary of complexity). For
example, setting πsel = 0.6 means that all causal relationships with edge sta-
bility or causal path stability (Figure 3) above this threshold are considered
stable. The second threshold πbic is used to control overfitting. We set πbic to
the level of model complexity at which the minimum average Bayesian Infor-
mation Criterion (BIC) score is found. For example, πbic = 7 means that all
causal relationships with an edge stability or a causal path stability lower than
this threshold (Figure 3) are considered parsimonious. Causal relationships that
intersect with the top-left region are considered both stable and parsimonious
and called relevant, from which we can derive a causal model.

The method in [7] only handles cross-sectional data. Based on the idea of
“unrolling” the network in Dynamic Bayesian Networks [4, 5], we extended the
method to handle longitudinal data. We model longitudinal causal relationships
with a SEM model consisting of two time slices (Figure 1a) that can be “un-
rolled” into a network with an arbitrary number of time slices (Figure 1b). Time
slice ti represents the relationships within a time slice (intra-slice causal relation-
ships, solid arcs in Figure 1a). Causal relationships between time slices (inter-slice
causal relationships, dashed arcs in Figure 1a) always go forward in time, i.e.,
from time slice ti−1 to time slice ti.

To score our models on longitudinal data we use data reshaping. In the
reshaped data, the first n data points contain the relations that occur in the
first two time slices t0 and t1. The next n data points contain the relations
that occur in time slices t1 and t2. The i-th subset of n data points contain
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Figure 1: (a) The longitudinal causal model. (b) The “unrolled” causal graph
used to generate longitudinal data. It contains four continuous variables
(X1, . . . , X4) in three different time slices t0, . . . , t2.

the relations in time slices ti−1 and ti. The reshaped data then allows us to use
standard SEM software to compute the scores.

3 Application to Simulated Data

For this experiment, we generated a longitudinal data set with 400 instances
from a causal graph as depicted in Figure 1b. The data set consists of three time
slices with four continuous variables for each time slice.1 When we searched over
SEM models we added prior knowledge that variables X1 and X2 do not cause
variable X3 directly. We performed the search over 200 subsets.

As the true model is known, we measure the performance of our method by
means of the Receiver Operating Characteristic (ROC) [11] for both edges and
causal paths. The threshold πsel is fixed to a value (πsel ∈ {0.3, 0.6, 0.8, 0.9})
while πbic is varied. We compute the True Positive Rate (TPR) and the False
Positive Rate (FPR) from the CPDAG of the true model. As for an example,
in the case of edge stability, a true positive means that an edge that appears
within the top-left region bounded by πsel and πbic also exists in the CPDAG of
the true model. Figure 2 portrays the ROC curves for both edge and causal path
stability. Generally we can see that higher values of πsel tend to give better ROC
curves. This suggests that our approach is able to find the underlying structure
with high reliability scores. A notable point is that the ROC curves stop at a
TPR and/or FPR value lower than 1. Since some of the edges and paths are
disallowed (i.e., no edges in time-slice ti−1 and no paths from ti to ti−1) some
of the edges and causal paths in the stability graphs end up with a selection
probability of 0 and the result is that the ROC curves cannot reach the upper
right corner with TPR = FPR = 1.

1Available at http://bit.ly/1L6dBOo
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Figure 2: A plot of ROC curves for (a) the edge stability and (b) the causal path
stability, for different values of πsel. A higher πsel shows a better ROC curve. See
the main text for an explanation why the ROC curves stop at some point.

4 Application to Real-world Data

For an application to real-world data, we consider a data set about Chronic
Fatigue Syndrome (CFS) which consists of 183 subjects and five time slices
with six discrete variables [12]. The variables are, fatigue severity, the sense
of control over fatigue, focusing on the symptoms, the objective activity of the
patient (oActivity), the subject’s perceived activity (pActivity), and the physical
functioning. We use Expectation Maximization implemented in SPSS [13] to
impute the missing values. As all of the variables have large scales, e.g., in the
range between 0 to 155, we treat them as continuous variables. We added prior
knowledge that the variable fatigue does not cause any of the other variables
directly. We performed the search over 200 subsets.

Figure 3a shows that nineteen relevant edges were found, consisting of eleven
intra-slice and eight inter-slice relationships which among of these, six are between
the same variables and two are between different variables. Figure 3b shows that
thirty-two relevant causal paths were found, consisting of twelve intra-slice and
twenty inter-slice relationships which among of these, six are between the same
variables and fourteen are between different variables. For a more intuitive rep-
resentation, we combine the stability graphs into a model using the following
procedure. First, the nodes are linked according to the nineteen relevant edges.
Second, edges are oriented according to our background knowledge. Eight of the
inter-slice relationships are oriented from time slice ti−1 to ti and five of the
intra-slice edges can be oriented since it is known that the variable fatigue does
not directly cause any other variable. Third, the edges are oriented according to
the relevant causal paths, which results in another twenty-eight directed edges.
The inferred model is shown in Figure 4. Each edge is annotated with a reliabil-
ity score which is the maximum score obtained in the top-left region of the edge
stability graph.
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Figure 3: The stability graphs for CFS together with πsel and πbic, yielding four
regions. The top-left region contains the relevant causal relations. (a) The edge
stability graph. (b) The causal path stability graph. Orange-dashed lines rep-
resent inter-slice relationships between the same variables, black-dotted lines
represent inter-slice relationships between different variables, green-solid lines
represent intra-slice relationships.

From the stability graphs we can see that the most stable causal relations are
the inter-slice relations between the same variables followed by some of the intra-
slice causal relations. Almost all of the inter-slice relations between different vari-
ables are not considered relevant. A directed edge X → Y in Figure 4 indicates
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that a change in variableX causes a change in variable Y . In the intra-slice causal
relationships, we found that all variables are direct causes for fatigue severity.
We also found all variables, except fatigue, to be direct causes for the perceived
activity. Furthermore, the variable control is a direct cause for both focusing
on the symptoms and physical functioning. Generally the inter-slice relation-
ships show direct causes between the same variables. In addition, the variables
pActivity and control indicate a stronger direct cause for fatigue severity and
focusing on symptoms, respectively, as they contribute a direct cause in both
time slices. The inferred model is consistent with results reported in the medical
literature [12,14,15].
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Figure 4: The inferred model of CFS by combining the edge stability and causal
path stability graphs.

5 Conclusion

Causal discovery from longitudinal data is an important, ubiquitous problem
in science. Current causal discovery algorithms, however, have difficulty dealing
with the inherent instability in structure estimation. The present work intro-
duces a new discovery algorithm for longitudinal data that is robust for finite
samples. Experimental results on both artificial and real-world data sets show
that the method results in reliable structure estimates. Future research will aim
to estimate the size of causal effects.
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