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Abstract. Our aim is to extend standard principal component analysis

for non-time series data to explore and highlight the main structure of

multiple sets of multivariate time series. To this end, standard variance-

covariance matrices are generalized to lagged cross-autocorrelation ma-

trices. The methodology produces principal component time series, which

can be analysed in the usual way on a principal component plot, except

that the plot also includes time as an additional dimension.

1 Introduction

Time series data are ubiquitous, arising throughout economics, meteorology,

medicine, the basic sciences, even in some genetic microarrays, to name a few of

the myriad fields of application. Multivariate time series are likewise prevalent.

Our aim is to use principal components methods as an exploratory technique to

find clusters of time series in a set of S multivariate time series. For example,

in a collection of stock market time series, interest may center on whether some

stocks, such as mining stocks, behave alike but differently from other stocks,

such as pharmaceutical stocks.

A seminal paper in univariate time series clustering is that of Košmelj and

Batagelj (1990), based on a dissimilarity measure. Since then several researchers

have proposed other approaches (e.g. Caiado et al (2015), D’Urso and Maharaj

(2009)). A comprehensive summary of clustering for univariate time series is in

Liao (2005). Liao (2007) introduced a two-step procedure for multivariate series

which transformed the observations into a single multivariate series. Most of

these methods use dissimilarity functions or variations thereof. A summary of

Liao (2005, 2007) along with more recent proposed methods is in Billard et al.

(2015). Though a few authors specify a particular model structure, by and large,

the dependence information inherent to time series observations is not used.

Dependencies in time series are measured through the autocorrelation (or,

equivalently, the autocovariance) functions. In this work, we illustrate how these
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dependencies can be used in a principal component analysis. This produces prin-

cipal component time series, which in turn allows the projection of the original

time series observations onto three dimensional principal component by time

space. The basic methodology is outlined in Section2, and illustrated in Section

3.

2 Methodology

2.1 Cross-Autocorrelation functions for S > 1 series and p > 1

dimensions

Let Xst = {(Xstj), j = 1, . . . , p}, t = 1, . . . , Ns, s = 1, . . . , S, be a p-dimensional

time series of length Ns, for each series s. For notational simplicity, assume

Ns = N for all s. Let us also assume the observations have been suitably differ-

enced/transformed so that the data are stationary.

For a standard single univariate series time series where S = 1 and p = 1, it

is well-known that the sample autocovariance function at lag k is (dropping the

s = S = 1 and j = p = 1 subscripts)

γ̂(k) =
1

N

N−k∑
t=1

(Xt − X̄)(Xt+k − X̄), k = 0, 1, . . . , X̄ =
1

N

N∑
t=1

Xt, (2.1)

and the sample autocorrelation function at lag k is ρ̂(k) = γ̂(k)/γ̂(0), k =

0, 1, . . ..

These autocorrelation functions provide a measure of the time dependence

between observations changes as their distance apart, lag k. They are used to

identify the type of model and also to estimate model parameters. See, many

of the basic texts on time series, e.g., Box et al. (2011); Brockwell and Davis

(1991); Cryer and Chan (2008). Note that the divisor in Eq.(2.1) is N , rather

than N −k. This ensures that the sample autocovariance matrix is non-negative

definite.

For a single multivariate time series where S = 1 and p ≥ 1, the cross-

autocovariance function between variables (j, j′) at lag k is the p × p matrix

Γ (k) with elements estimated by

γ̂jj′(k) =
1

T

T−k∑
t=1

(Xtj − X̄j)(Xt+k,j′ − X̄j′), k = 0, 1,with X̄j =
1

N

N∑
t=1

Xtj ,

(2.2)
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and the cross-autocorrelation function between variables (j, j′) at lag k is the

p× p matrix, ρ(k), with elements {ρjj′(k), j, j′ = 1, . . . , p} estimated by

ρ̂jj′(k) = γ̂jj′(k)/{γ̂jj(0)γ̂j′j′(0)}1/2, k = 0, 1, . . . . (2.3)

Unlike the autocorrelation function obtained from Eq.(2.1) with its single

value at each lag k, Eq.(2.3) produces a p×p matrix at each lag k. The function

Eq.(2.2) was first given by Whittle (1963) and shown to be nonsymmetric by

Jones (1964). In general, ρjj′(k) ̸= ρj′j(k) for variables j ̸= j′, except for k = 0,

but ρ(k) = ρ′(−k); see, e.g., Brockwell and Davis (1991).

When there are S ≥ 1 series and p ≥ 1 variables, the definition of Eqs.(2.2)-

(2.3) can be extended to give a p×p sample cross-autocovariance function matrix

between variables (j, j′) at lag k, Γ̂ (k), with elements given by, for j, j′ =

1, . . . , p,

γ̂jj′(k) =
1

NS

S∑
s=1

N−k∑
t=1

(Xstj − X̄j)(Xs,t+k,j′ − X̄j′), k = 0, 1, (2.4)

with X̄j =
1

NS

S∑
s=1

N∑
t=1

Xstj ;

and the p × p sample cross-autocorrelation matrix at lag k, ρ̂(1)(k), has ele-

ments ρ̂jj′(k), j, j
′ = 1, . . . , p, obtained by substituting Eq.(2.4) into Eq.(2.3).

This cross-autocovariance function in Eq.(2.4) is a measure of time dependence

between observations k units apart for a given variable pair (j, j′), calculated

across all S series. Notice, the sample means X̄j in Eq.(2.4) are calculated across

all NS observations.

An alternative approach is to calculate these sample means by series. In

this case, the cross-autocovariance matrix Γ̂ (k) has elements estimated by, for

j, j′ = 1, . . . , p, s = 1, . . . , S,

γ̂jj′(k) =
1

NS

S∑
s=1

N−k∑
t=1

(Xstj − X̄sj)(Xs,t+k,j − X̄sj′), k = 0, 1, (2.5)

with X̄sj =
1

N

N∑
t=1

Xstj ;

and the corresponding p × p cross-autocorrelation function matrix ρ̂(2)(k) has

elements ρ̂jj′(k) found by substituting Eq.(2.5) into Eq.(2.3).

Other model structures can be considered, which would provide other options

for obtaining the relevant sample means. These include class structures, lag k

structures, weighted series and/or weighted variable structures, and the like; see

Billard et al. (2015).
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2.2 Principal Components for Time Series

In a standard classical principal component analysis on a set of p-dimensional

multivariate observations X = {Xij , i = 1, . . . n, j = 1, . . . , p}, each observation

is projected into a corresponding νth order principal component, PCν(i), through

the linear combination of the observation’s variables,

PCν(i) = wν1Xi1 + · · ·+ wνpXip, ν = 1, . . . , p, (2.6)

where wν = (wν1, . . . , wνp) is the ν
th eigenvector of the correlation matrix ρ (or,

equivalently for non-standardized observations, the variance-covariance matrix

Σ). The eigenvalues satisfy λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0, and
∑p

ν=1 λν = p (or, σ2 for

non-standardized data). A detailed description of this methodology for standard

data can be found in any of the numerous texts on multivariate analysis, e.g.,

Joliffe (1986) and Johnson and Wichern (2007) for an applied approach, and

Anderson (1984) for theoretical details.

For time series data, the correlation matrix ρ is replaced by the cross-

autocorrelation matrix ρ(k), for a specific lag k = 1, 2, . . . , and the νth order

principal component of Eq.(2.6) becomes

PCν(s, t) = wν1Xs1t + · · ·+wνpXspt, ν = 1, . . . , p, t = 1, . . . , N, s = 1, . . . , S.

(2.7)

The elements of ρ(k) can be estimated by ρ̂jj′(k) from Eq.(2.4) or from Eq.(2.5)

(or from other choices of model structure). The problem of non-positive defi-

niteness, for lag k > 0, for the cross-autocorrelation matrix has been studied by

Rousseeuw and Molenberghs (1993) and Jäckel (2002), with the recommendation

that negative eigenvalues be re-set at zero.

3 Illustration

To illustrate, take a data set (<http://dss.ucar.edu/datasets/ds578.5>) where

the observations are time series of monthly temperatures at S = 14 cities

(weather stations) in China over the years 1923-88. In the present analysis,

each month is taken to be a single variable corresponding to the twelve months

(January, . . . , December, respectively); hence, p = 12. Clearly, these variables

are dependent as reflected in the cross-autocovariances when j ̸= j′.

Let us limit the discussion to using the cross-autocorrelation functions at lag

k = 1, evaluated from Eq.(2.4) and Eq.(2.3), and shown in Table 1. We obtain the

corresponding eigenvalues and eigenvectors, and hence we calculate the principal

components PCν , ν = 1, . . . , p, from Eq.(2.6). A plot of PC1 × PC2× time is
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displayed in Figure 1, and that for PC1 × PC3× time is given in Figure 2. An

interesting feature of these data highlighted by the methodology is that it is

the PC1 × PC3 pair that distinguishes more readily the city groupings. Figure

3 displays the PC1 × PC3 values for all series and all times without tracking

time (i.e., the 3-dimensional PC1 × PC3 × time values are projected onto the

PC1 × PC3 plane). Hence, we are able to discriminate between cities.

Thus, we observe that cities 1-4 (Hailaer, HaErBin, MuDanJiang and ChangChun,

respectively), color coded in black (and indicated by the symbol black ◦ and full

lines (‘lty=1’)) have similar temperatures and are located in the north-eastern

region of China. Cities 5-7 (TaiYuan, BeiJing, TianJin), identified by red (△ and

lines − · − (‘lty=4’)), are in the north, and have similar but different tempera-

ture trends than do those in the north-eastern region. Two (BeiJing and TianJin)

are located close to sea-level, while the third (TaiYuan) is further south (and so

might be expected to have higher temperatures) but its elevation is very high so

decreasing its temperature patterns to be more in line with BeiJing and TianJin.

Cities 8-11 (ChengDu, WuHan, ChangSha, HangZhou), green (∗) with lines · · ·
(‘lty=3’), are located in central regions with ChengDu further west but elevated.

Finally, cities 12-14 (FuZhou, XiaMen, GuangZhou), blue (�) with lines −−−
(‘lty=8’), are in the southeast part of the country.

Pearson correlations between the variables Xj , j = 1, . . . , 12, and the prin-

cipal components PCν , ν = 1, . . . , 12, sand correlation circles (not shown) show

that all months have an impact on PC1 with the months of June, July and Au-

gust having a slightly negative influence on PC2. Plots for other k ̸= 1 values

give comparable results. Likewise, analyses using the cross-autocorrelations of

Eq.(2.5) also produce similar conclusions.

4 Conclusion

The methodology has successfully identified cities with similar temperature trends,

which trends a priori could not have been foreshadowed, but which do conform

with other geophysical information thus confirming the usefulness of the method-

ology. The cross-autocorrelation functions for a p-dimensional multivariate time

series have been extended to the case where there are S ≥ 1 multivariate time

series. These replaced the standard variance-covariance matrices for use in a

principal component analysis, thus retaining measures of the time dependencies

inherent to time series data. The methodology produces principal component

time series, which can be compared in the usual way on a principal component

plot, except that the plot also includes time as an additional plot dimension.
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Table 1 - Sample Cross-Autocorrelations - ρ̂(k), k = 1

Sample Cross-Autocorrelations ρ̂jj′(1)

Xj X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

X1 0.965 0.963 0.947 0.938 0.924 0.883 0.851 0.888 0.942 0.959 0.961 0.964

X2 0.960 0.959 0.954 0.942 0.926 0.882 0.850 0.887 0.935 0.950 0.958 0.957

X3 0.952 0.952 0.948 0.937 0.925 0.876 0.840 0.882 0.929 0.940 0.947 0.948

X4 0.943 0.945 0.941 0.936 0.929 0.883 0.846 0.877 0.923 0.932 0.935 0.940

X5 0.921 0.923 0.922 0.924 0.926 0.894 0.841 0.870 0.916 0.918 0.915 0.915

X6 0.886 0.888 0.890 0.891 0.897 0.882 0.852 0.871 0.895 0.889 0.877 0.878

X7 0.849 0.845 0.849 0.847 0.850 0.855 0.894 0.912 0.887 0.865 0.857 0.848

X8 0.890 0.883 0.877 0.879 0.877 0.870 0.906 0.927 0.922 0.904 0.899 0.891

X9 0.943 0.938 0.922 0.921 0.915 0.895 0.892 0.923 0.960 0.958 0.950 0.946

X10 0.960 0.953 0.938 0.931 0.921 0.891 0.869 0.906 0.956 0.964 0.963 0.958

X11 0.970 0.960 0.947 0.936 0.921 0.879 0.862 0.897 0.952 0.961 0.962 0.963

X12 0.969 0.960 0.948 0.933 0.920 0.878 0.849 0.889 0.946 0.959 0.962 0.961
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Figure 1 - Temperature Data: PC1 × PC2 over Time – All Cities, k = 1
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Figure 2 - Temperature Data: PC1 × PC3 over Time – All Cities, k = 1
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Figure 3 - Temperature Data: PC1 × PC3 – All Cities, All Times, k = 1


