
LOTUS: Linked Open Text UnleaShed

Filip Ilievski, Wouter Beek, Marieke van Erp,
Laurens Rietveld and Stefan Schlobach

The Network Institute
VU University Amsterdam

{f.ilievski,w.g.j.beek,marieke.van.erp,
l.j.rietveld,k.s.schlobach}@vu.nl

Abstract. It is difficult to find resources on the Semantic Web today, in
particular if one wants to search for resources based on natural language
keywords and across multiple datasets. In this paper, we present LOTUS:
Linked Open Text UnleaShed, a full-text lookup index over a huge Linked
Open Data collection. We detail LOTUS’ approach, its implementation,
its coverage, and demonstrate the ease with which it allows the LOD
cloud to be queried in different domain-specific scenarios.

Keywords: Findability, Text Indexing, Semantic Search, Big Data

1 Introduction

Linked Open Data sources, such as those found in the Linked Open Data Cloud
and the LOD Laundromat, hold a promise for relatively easy access to a wealth of
information. Simultaneous querying of a large number of data sets is facilitated
through services such as the LOD Laundromat[1]. Unfortunately, it has always
been difficult to find resources on the Semantic Web. A resource is typically
‘found’ by memorizing its resource-denoting IRI and/or by memorizing the IRI of
a SPARQL endpoint in which descriptions about that resource are disseminated.
It has been especially difficult to find resources based on textual descriptions
associated to that resource. In cases where a text index for Semantic Web data
has been built, such an index has usually been restricted to a single dataset. The
findability problem of the Semantic Web poses an extra challenge for users from
outside of the Semantic Web community and wish to use semantic resources.

In this paper, we present LOTUS, a full-text lookup index over the Linked
Open Data cloud in the LOD Laundromat. Text search on the LOD cloud is not
new, as Sindice1 and LOD Cache2 show. However, we take a completely text-
centric approach to ready the LOTUS index for text analysis tasks such as named
entity disambiguation. Existing disambiguation systems (DBpedia Spotlight[10],
Babelfy[11], NERD tools[15]) rely on a single or limited set of knowledge sources,
and thus suffer from limited coverage. Entity disambiguation systems based on

1 http://www.sindice.com/, discontinued in 2014.
2 http://lod.openlinksw.com/

LOTUS then hold a potential to improve the entity annotation recall by finding
resources outside in an extended set of knowledge sources.

The LOTUS index focuses on the string values present in RDF statements
to create a fast and scalable index over the data in the LOD Laundromat.3 This
enables easy querying of the LOD Laundromat through an API or web interface
and provides an option to search for strings in particular languages through an
associated language tag. LOTUS is a first step up to an accessible disambiguation
system over the LOD cloud, to be used for example in NLP applications, that
currently suffer from lack of coverage of resources such as Wikipedia/DBpedia[8].
Furthermore, as LOTUS provides a link between text and documents in the LOD
cloud, Information Retrieval over the LOD cloud becomes an interesting option.
In Section 6, we will discuss some use case scenarios. Our contributions are the
following:

- A problem description of accessing textual resources on the Semantic Web
today (Section 2)

- The LOTUS system (Sections 4 and 5)
- Three use cases that showcase the potential of LOTUS (Section 6)

2 Problem description

How do we find relevant resources on the Semantic Web today? The Semantic
Web currently largely relies on two findability strategies: IRI dereferencing and
SPARQL query endpoints.

Dereference According to Semantic Web folklore an IRI c should dereference
to a set of expressions Φ(c) in which that IRI appears (sometimes only in the
subject position, but this is immaterial to the current argument).

Which expressions belong to Φ(c) is decided by the authority of c, i.e., the
person or organization that pays for the domain that appears in c’s authority
component. Non-authoritative expressions about c, denoted Φ(c), are all expres-
sions in which c occurs (again, possibly as a subject) but are not part of Φ(c).

Findability of non-authoritative expressions occurs through an alternating
sequence of IRI dereference and graph traversal operations. Even though ex-
pressions in Φ(c) ∪ Φ(c) by definition belong to the same graph component, it
may well be possible that no path from terms in Φ(c) to terms in Φ(c) exists.
Indeed, since the Semantic Web does not implement the notion of backlinks, an
architectural decision it has in common with the WWW, dereferenceability is
inherently unable to solve the findability problem.

In addition to its theoretical limitations, the real-world implementation of
dereferenceability has proven to be both difficult and costly, since it requires a
Web Server to run on the dereferenced IRI’s authority. It is not uncommon for
IRIs to be unavailable, either temporarily or permanently.

3 The LOD Laundromat contained 38,606,408,433 triples on 6 July 2015

Since only IRIs can be dereferenced, natural language access to the Semantic
Web cannot be gained at all through dereference. It is therefore not possible
to find a resource based on RDF literals to which it is related. It is certainly
not possible to search for resources based on keywords that only bear a close
similarity to (some of the) literals to which those resources are related.

SPARQL endpoints The second approach towards solving the findability
problem is through the use of SPARQL endpoints. When compared to dereferencability-
based graph traversal, SPARQL endpoints provide a far more powerful approach
for finding an individual resource c based on the authoritative expressions Φ(c)
about it. As for the findability of non-authoritative expressions about c, SPARQL
endpoints have largely the same problems as the dereferenceability approach.

While it is possible to evaluate a SPARQL query over multiple datasets,
thereby including expressions in Φ(c) as well, these datasets have to be included
explicitly by using the SERVICE keyword [14]. This requires that all endpoints
which disseminate expressions in Φ(c) are known, making the findability ap-
proach somewhat circular. While there are potentially many such endpoints (de-
pending on c) the list will have to be assembled anew for each new term.

In addition to the unpracticality of finding all non-authoritative endpoints
that say something about c, there is no guarantee that all expressions in Φ(c) are
disseminated by some SPARQL endpoint. Empirical studies show that SPARQL
endpoint availability is generally quite low, indicating that some SPARQL-
disseminated expressions may happen to be unavailable at query time [2].

The SPARQL query language is largely oriented towards matching graph
patterns and datatyped values. As such the SPARQL specification defines regular
expression-based operations on the lexical expressions of literals but does not
include string similarity matches or other more advanced NLP functionality.

Querying multiple datasets is possible via other paradigms, such as Linked
Data Fragments [18]. However, these largely share the disadvantages of SPARQL.

Summarizing, findability is a problem on the Semantic Web today. The find-
ability problem will not be solved by implementing existing approaches or stan-
dards in a better way, but requires a completely novel approach instead.

3 Related work

LOTUS bears much resemblance to Sindice [17], a system that allowed search on
Semantic Web documents based on IRIs and keywords that appeared in those
documents. Sindice crawled the network of dereferenceable IRIs and queryable
SPARQL endpoints to gather data documents. The contents of each document
were included in two centralized indices: one for text and one for IRIs. Sindice
also semantically interpreted inverse functional relations, e.g. mapping telephone
numbers onto individuals. Currently, LOTUS does not perform any type of se-
mantic interpretation, although such functionality could be built on top of it.

There are several differences between LOTUS and Sindice. Some of these are
due to the underlying LOD Laundromat architecture and some to the LOTUS

Fig. 1. Representation of the capabilities of LOTUS, providing the missing aquamarine
link between standard Semantic Web resources and text and Literals

system itself. Firstly, Sindice can relate IRIs and keywords to documents in
which the former occur. LOTUS can do much more (see Figure 1): it can relate
keywords, IRIs and documents to each other (in all directions).

Secondly, Sindice requires data to adhere to the Linked Data principles.
Specifically, it requires an IRI to either dereference or be queryable in a SPARQL
endpoint. LOTUS is build on top of the LOD Laundromat which accepts any
type of Linked Data, e.g. it allows data entered through Dropbox.

Thirdly, LOTUS allows incorrect datasets to be partially included due to the
cleaning mechanism of the LOD Laundromat. This is an important feature since
empirical observations collected over the LOD Laundromat indicate that at least
70% of crawled data documents contain bugs such as syntax errors.

Fourthly, since Sindice returns a list of online document links as a result, it
relies on the availability of the original data sources. While it has this in common
with search engines for the WWW, it is known that data sources on the Semantic
Web have much lower availability [6]. LOTUS returns document IRIs that can
either be downloaded from their original sources or from a cleaned copy made
available through the LOD Laundromat Web Service.

Fifthly, LOTUS operates on a much larger scale than Sindice did. Sindice
allowed 30M IRIs and 45M literals to be searched while LOTUS allows 3,700M
IRIs and 5,320M literals, a difference in scale of more than factor 100.

4 LOTUS

The purpose of LOTUS is to relate unstructured (natural language text) data
to structured data using RDF as paradigm to express such structured data. LO-
TUS has access to an underlying architecture that exposes a large collection of
resource-denoting terms and structured descriptions of those terms, all formu-
lated in RDF. It indexes natural text literals which appear in the object position
of RDF statements and allows the denoted resources to be findable based on ap-
proximate literal matching and, optionally, an associated language tag.

4.1 Described resources

RDF defines a graph-based data model in which resources can be described in
terms of their relations to other resources. The textual labels denoting some of
these resources provide an opening to relate unstructured to structured data.

An RDF statement expresses that a certain relation holds between a pair of
resources. We take a described resource to be any resource that is denoted
by at least one term appearing in the subject position of an RDF statement.

LOTUS does not allow every resource in the Semantic Web to be found
through natural language search, as some described resources are not denoted
by a term that appears in the subject position of a triple whose object term
is a textual label. Fortunately, many Semantic Web resources have at least one
textual label linked to them and as the Semantic Web adheres to the Open World
Assumption, resources that have no textual description today may receive one
tomorrow, as everyone is free to add new content.

4.2 RDF Literals

In the context of RDF, textual labels appear mainly as part of RDF literals. An
RDF literal is either a pair 〈D,LEX〉 or a triple 〈rdf:langString, LEX,LT 〉 [3].
D is a datatype IRI denoting a datatype. LEX is a Normal Form C (NFC) Uni-
code string [4]. LT is a language tag identifying an IANA-registered natural
language per BCP 47 [13].

Semantically speaking, RDF literals denote resources, similar to the way
in which IRIs denote resources. A datatype D defines the collection of allowed
lexical forms (lexical space), the collection of resources denoted by those lexical
forms (value space), a functional mapping from the former to the latter and a
non-functional mapping from the latter to the former.

We are specifically interested in literals that contain natural language text.
However, not all RDF literals express – or are intended to express – natural
language text. For instance, there are datatype IRIs that describe a value space
of date-time points or polygons. Since we are working with RDF data we cannot
rely on a whitelist of datatype IRIs in order to extract all and only natural
language texts from the LOD Cloud. Firstly, there is no fixed set of datatypes and
datatype IRIs as datasets can define their own. Secondly, even if we would settle
for a partial whitelist we would not be able to denote a collection of datatype IRIs
that only denoted natural language texts. While natural language text is often
found together with datatype IRI xsd:string, in practice we find that integers
and dates are also stored under that datatype, even though custom datatypes
for integers and dates exist. Due to these reasons, we filter the lexical expressions
to include through a pattern regardless of the datatype IRI associated with it.

Finally, LOTUS indexes the language tags when explicitly specified by the
dataset author, however, no automatic language detection is performed.

Fig. 2. LOTUS System Architecture

4.3 Offline approximate string matching

LOTUS performs offline approximate string matching. Approximate string match-
ing[12] is an alternative to exact string matching, where a given pattern is
matched to text while still allowing a number of errors. LOTUS preprocesses
text and builds the data index offline, allowing the approximation model to be
enriched with TF-IDF term weighting score [7], phonetic matching, synonym
matching, match granularity (phrase- or term-based match).

The choice of optimal string matching model is nontrivial and depends on
the intended application. News articles may benefit from term-based matching,
synonym matching and TF-IDF scoring, as they often deal with incomplete
entity phrases. On the contrary, journal paper titles may better be matched as
a complete phrase, neglecting the TF-IDF score and synonyms of the individual
terms. Term-based matching (Q1 and Q2 in section 5.2) is disjunctive: minimum
one term should be matched. Phrase-based matching (Q3 and Q4) is conjunctive
and requires all terms to occur sequentially and in the given order.

5 Implementation

The LOTUS system architecture consists of two components: Index Building
(IB) procedure and Public Interface (PI). The role of the IB component is to
index strings from LOD Laundromat; the role of PI is to expose the indexed data
to users for querying. The two system components are executed sequentially: data
is initially indexed, then it can be queried through the exposed public interface.

5.1 System Architecture

Indexing of data is expensive. Hence, initially we create an index over all data
from LOD Laundromat through a batch loading procedure, by streaming LOD
Laundromat statements through its query interface, Frank, to a client script. The

client script parses the received RDF statements and performs a bulk indexing
request in ElasticSearch,4 where the textual index is built. Once the initial index-
ing is finished, we only incrementally update the index when new data appears
in LOD Laundromat, triggered by an event handler in LOD Laundromat.

We use Frank’s Frank documents command to enumerate all LOD Laun-
dromat data sets and download them sequentially in a stream (Step 1 in Fig-
ure 2). Following the approach described in Section 4, we consider only the
statements that contain a literal as an object and use the regular expression
”/^[-\.,0-9]*$/” to filter out statements with numbers and dates as lexical
forms. The remaining statements are then parsed and the resulting data is in-
dexed in ElasticSearch (Step 2 in Figure 2). Each ElasticSearch entry has the
following format:

{
” docid ” : IRI ,
” langtag ” : STRING,
” p r e d i c a t e ” : IRI ,
” s t r i n g ” : STRING,
” s ub j e c t ” : IRI

}

The fields “string” and “langtag” (language tag) are preprocessed (“ana-
lyzed”) by ElasticSearch at indexing time, which allows for flexible, fuzzy lookup
of these fields. The motivation behind analyzing the “string” field comes nat-
urally, as this contains unstructured text and will rarely be queried for exact
match. We also preprocess the language tag field: following BCP 47 semantics5,
a language tag can easily contain subtags, such as country codes. In order to also
retrieve the specific language tags (e.g. “en-US”) when looking for general lan-
guage tags (e.g. “en”), we decided to preprocess the language tag field to allow
flexible matching. The remaining three fields can be looked up as exact matches,
as these are IRIs and contain structured text following the RDF standard.

5.2 API

Users can search the underlying data through an API. The usual query flow is
described in steps 3-6 of Figure 2. Our NodeJs6 interface to the indexed data cur-
rently exposes four matching functions: two term-based and two phrase-based,
which rely on underlying ElasticSearch string matching and scoring techniques7:

-Q1: terms(pattern, size): Disjunct lookup of set of terms (supplied via the
pattern parameter) occurring in the string field of an entry. The candidate score

4 https://www.elastic.co/products/elasticsearch
5 https://tools.ietf.org/html/bcp47
6 https://nodejs.org
7 Detailed description of the theoretical basis for matching and scoring candidates in

ElasticSearch is available at https://www.elastic.co/guide/en/elasticsearch/

guide/current/scoring-theory.html

Table 1. Statistics over the indexed data

total # literals encountered 12,018,939,378

integers and dates 6,699,148,542

indexed entries (=# string literals) 5,319,790,836

distinct sources 508,244

distinct language tags terms 713

hours to create the index 56

disk space used 484.77 GB

is proportional to the amount of terms spotted. The best size hits are returned.
-Q2: langterms(pattern, size, langtag): Term-based query, with a langtag

value supplied as a preference: the hits which contain the preferred language
tag will receive higher score.

-Q3: phrase(pattern, size): Matches a phrase pattern occurring in the string
field of an entry as a whole. The best size hits are returned.

-Q4: langphrase(pattern, size, langtag): Phrase-based query, with a langtag
value expressed as a preference: the hits which match langtag are ranked higher.

LOTUS is also available as a web interface at http://lotus.lodlaundromat.
org/ for simple exploration of the data. The code of the API functions and data
from the use cases in Section 6 are available on github.8

5.3 Indexed Data

Statistics over the indexed data are presented in Table 1. We encountered over
12 billion literals in LOD Laundromat. We filtered all numbers and date literals,
summing up to 55.7% of the overall amount. The initial LOTUS index was
created in 56 hours and takes 484.77 GB of disk space storage. The current
index consists of 5.3 billion entries, coming from 508,244 distinct sources.9

There are 713 distinct terms occurring in the langtag field. Figure 3 presents
the proportion of the 10 most frequent language tags. “en” is by far the most fre-
quently encountered tag: 1,049,037,147 literals have been tagged with an English
language tag, followed by 165,996,755 German tags and 149,507,401 French tags.
Figure 3 also shows the proportion of the 10 most popular languages with respect
to the overall set of 5.3 billion literals: most of the literals have no language tag
assigned to them.

6 Use cases

To illustrate the need for access to multiple datasets, we perform a small recall
evaluation on a standard benchmark dataset, namely the CoNLL/AIDA Named

8 https://github.com/filipdbrsk/LOTUS_Search/
9 The number of different source documents in LOTUS is lower than the overall num-

ber of sources in LOD Laundromat, as not every source document contains string
literals.

Fig. 3. Distribution of language tags over the LOTUS literals

Table 2. Use case statistics by # of queries, # queries for which no result is retrieved,
queries for which we only find resources other than DBpedia and proportion of
DBpedia resources in the first 100 results per query type

CoNLL/AIDA Local Monuments Journals

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

queries 5,628 191 231

no result 54 54 1,286 1,286 3 3 23 23 0 X 10 X

no DBpedia 185 115 1,723 1,701 4 3 26 25 15 X 49 X

% DBpedia 64.35 79.11 69.49 77.68 67.19 84.92 70.48 83.23 22.33 X 24.83 X

entity linking benchmark dataset[5]. We also present two domain-specific use
cases, namely Local monuments and Scientific journals.

For each use case scenario, we gather a set of entities and query each entity
against LOTUS. We also counted the amount of entities without results and the
proportion of DBpedia resources in the first 100 candidates, as a comparison to
the (currently) most popular knowledge base. We then inspected a number of
query results to assess their relevance to the search query. The obtained quanti-
tative results are presented in Table 2. In the remainder of this section we detail
the specifics of each use case.

6.1 CoNLL/AIDA

The CoNLL/AIDA dataset[5] is an extension of the CoNLL 2003 Named Entity
Recognition Dataset [16] to also include links to Wikipedia entries for each entity.
7,112 of the entity phrases in CoNLL/AIDA have no DBpedia entry. We removed
the duplicate entities in each article, providing us with 5,628 entity mentions.
We focus on these to show the impact of having access to multiple datasets.

We suspect that the growth in DBpedia since the release of this dataset
has improved recall on the named entities, but there is still a benefit of using
multiple data sources. For smaller locations, such as the “Chapman Golf Club”,
relevant results are found in for example http://linkedgeodata.org/About.
Also, the fact that the different language versions of DBpedia are plugged in
helps in retrieving results from localised DBpedias such as for “Ismäıl Boulahya”,

a Tunesian politician described in http://fr.dbpedia.org/resource/Isma\

%C3\%AFl_Boulahya. Some of the retrieval is hampered by newspaper typos,
such as “Allan Mullally” (“Alan Mullally” is the intended entity).

6.2 Local Monuments Guided Walks

The interest in applications such as Historypin (http://www.historypin.org)
or the Rijksmuseum API (https://www.rijksmuseum.nl/en/api) shows that
there are interesting use cases in cultural heritage and local data. To explore
the coverage of this domain in the LOD Laundromat, we created the local mon-
uments dataset by downloading a set of guided walks from the Dutch website
http://www.wandelnet.nl. We specifically focused on the tours created in col-
laboration with the Dutch National Railways as these often take walkers through
cities and along historic and monumental sites. From the walks ‘Amsterdam
Westerborkpad’ and ‘Mastbos Breda’, a human annotator identified 112 and 79
entities respectively. These are mostly monuments such as ‘De Grote Kerk’ (The
big church) or street names such as ‘Beukenweg’ (Beech street).

We manually inspected the top 10 results on a number of queries. Here we
find that the majority of the highest ranking results is still coming from DB-
pedia. However, when no DBpedia link is available, often a resource from the
Amsterdam Museum (http://semanticweb.cs.vu.nl/lod/am/) or Wikidata
(http://www.wikidata.org) is retrieved. The focus on entertainment in DBpe-
dia is also shown here for the query ‘Jan Dokter, the person who first walked the
route to commemorate his family that died in WWII. ‘Jan’ is a very common
Dutch first name, and ‘Dokter’ means ‘doctor’, which results in many results
about characters in Dutch and Flemish soap operas who happen to be doctors.
This expresses a need for allowing more context to be brought into the search
query to filter results better.

6.3 Scientific Journals

Whitelists (and blacklists) of scientific journals are used by many institutions to
gauge the output of their researchers. They are also used by researchers interested
in the scientific social networks. One such list is made publicly available by the
Norwegian Social Science Data Services Website (http://www.nsd.uib.no/).
Their level 2 publishing channel contains 231 titles of journals. The majority of
these titles is in English, but it also contains some German and Swedish titles
barring the use of the language tag in querying.

As the queries are generally longer and contain more context-specific terms
such as “journal”, “transactions”, “methods”, and “association”, the query re-
sults are generally more relevant and fewer come from DBpedia. Instead, a
large part of the queries come from sources ZDB (http://dispatch.opac.dnb.
de/LNG=DU/DB=1.1/) the 2001 UK’s Research Assessment Exercise as exposed
through RKB Explorer (http://rae2001.rkbexplorer.com/), Lobid (http:
//lobid.org/) and again Wikidata. The more generic titles, such as “Trans-
portation” yield, as expected, more generic results.

7 Discussion

Section 4 points out there is no optimal string matching strategy expected to fit
all use cases. Term-based string matching is more flexible and yields more results
than phrase-based matching. The right trade-off between these two strategies is
application-dependent and should be further investigated.

In our use cases, we were able to find resources for the majority of the entities,
but many of the results still come from generic data sets such as DBpedia. Still,
the different use cases show that this proportion differs per domain, opening
up new perspectives and challenges for application areas, such as Named Entity
Disambiguation and Information Retrieval.

Finally, LOTUS currently lacks integration of structured and unstructured
data. We allow a transition from natural language text to literals, documents
and resources; but relations between the structured data are currently missing
preventing the user from knowing which of the retrieved resources are identical,
similar or share context in a certain sense.

8 Conclusion and Future Work

In this paper, we presented the LOTUS system, a full text look-up application
over the LOD Laundromat Linked Open Data collection. We detailed the specific
difficulties in accessing textual content in the LOD cloud, and demonstrated the
potential of LOTUS in three small use case scenarios.

We expect LOTUS to grow with its applications, in particular named entity
disambiguation, wikification and information retrieval. On one hand, we foresee
the need for complementing the indexed data with implicit information about
the literals, such as associated language tag (when missing) and topic domain.

We also plan to expand LOTUS’ search functionality. This can be achieved by
introducing logical operators, such as negation, and fuzzy matching (for instance,
based on Levenshtein edit distance [9]). Functionality to exclude or favor specific
knowledge bases or data sources may be added in a next version of LOTUS.
Certain use cases would also benefit from integration of LOTUS with structured
data, for instance via SPARQL endpoints.

Finally, in-depth evaluation of performance (scalability and response time)
and usability of results is desired. Evaluation can, for example, be done by com-
paring LOTUS to standard WWW web search engines and restricting the results
to filetype:rdf.

Acknowledgments

The research for this paper was supported by the European Union’s 7th Frame-
work Programme via the NewsReader Project (ICT-316404) and the Netherlands
Organisation for Scientific Research (NWO) via the Spinoza fund.

References

1. Beek, W., Rietveld, L., Bazoobandi, H.R., Wielemaker, J., Schlobach, S.: Lod
laundromat: a uniform way of publishing other peoples dirty data. In: ISWC 2014,
pp. 213–228 (2014)

2. Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.Y.: SPARQL web-
querying infrastructure: Ready for action? In: ISWC 2013 (2013)

3. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 concepts and abstract syntax
(2014)

4. Davis, M., Whistler, K.: Unicode normalization forms (August 2012), http://www.
unicode.org/reports/tr15/tr15-37.html

5. Hoffart, J., Yosef, M.A., Bordino, I., Fürstenau, H., Pinkal, M., Spaniol, M.,
Taneva, B., Thater, S., Weikum, G.: Robust disambiguation of named entities in
text. In: Proceedings of the Conference on Empirical Methods in Natural Language
Processing. pp. 782–792. Association for Computational Linguistics (2011)

6. Hogan, A., Umbrich, J., Harth, A., Cyganiak, R., Polleres, A., Decker, S.: An
Empirical Survey of Linked Data Conformance. Web Semantics: Science, Services
and Agents on the World Wide Web 14, 14–44 (2012)

7. Joachims, T.: A probabilistic analysis of the rocchio algorithm with tfidf for text
categorization. Tech. rep., DTIC Document (1996)

8. Kittur, A., Chi, E.H., Suh, B.: What’s in wikipedia? : mapping topics and conflict
using socially annotated category structure. In: Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems (CHI’09). pp. Pages 1509–1512
(2009)

9. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. In: Soviet physics doklady. vol. 10, pp. 707–710 (1966)

10. Mendes, P.N., Jakob, M., Garćıa-Silva, A., Bizer, C.: DBpedia Spotlight: Shedding
Light on the Web of Documents. pp. 1–8. 7th International Conference on Semantic
Systems. ACM (2011)

11. Moro, A., Raganato, A., Navigli, R.: Entity linking meets word sense disambigua-
tion: a unified approach. Transactions of the Association for Computational Lin-
guistics 2, 231–244 (2014)

12. Navarro, G.: A guided tour to approximate string matching. ACM computing sur-
veys (CSUR) 33(1), 31–88 (2001)

13. Phillips, A., Davis, M.: Tags for identifying languages (September 2009), http:

//www.rfc-editor.org/info/rfc5646

14. Prud’hommeaux, E., Buil-Aranda, C.: SPARQL 1.1 Federated Query (2013), http:
//www.w3.org/TR/sparql11-federated-query/

15. Rizzo, G., Troncy, R.: Nerd: a framework for unifying named entity recognition and
disambiguation extraction tools. In: Proceedings of EACL 2012. pp. 73–76 (2012)

16. Tjong Kim Sang, E.F., Meulder, F.D.: Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In: Proceedings of CoNLL-2003.
pp. 142–147. Edmonton, Canada (2003)

17. Tummarello, G., Delbru, R., Oren, E.: Sindice.com: Weaving the open linked data.
In: Proceedings ISWC’07/ASWC’07. pp. 552–565 (2007)

18. Verborgh, R., Vander Sande, M., Colpaert, P., Coppens, S., Mannens, E., Van de
Walle, R.: Web-scale querying through linked data fragments. In: Proceedings of
the 7th Workshop on Linked Data on the Web (2014)

