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Abstract. Information sources such as spreadsheets and databases con-
tain a vast amount of structured data. Understanding the semantics of
this information is essential to automate searching and integrating it. Se-
mantic models capture the intended meaning of data sources by mapping
them to the concepts and relationships defined by a domain ontology.
Most of the effort to automatically build semantic models is focused on
labeling the data fields with ontology classes and/or properties, e.g., an-
notating the first column of a table with dbpedia:Person and the second
one with dbpedia:Film. However, a precise semantic model needs to ex-
plicitly represent the relationships too, e.g., stating that dbpedia:director
is the relation between the first and second column. In this paper, we
present a novel approach that leverages the small graph patterns oc-
curring in the Linked Open Data (LOD) to automatically infer the se-
mantic relations within a given data source assuming that the source
attributes are already annotated with semantic labels. We evaluated our
approach on a dataset of museum sources using the linked data published
by Smithsonian American Art Museum as background knowledge. Min-
ing only patterns of length one and two, our method achieves an average
precision of 78% and recall of 70% in inferring the relationships included
in the semantic models associated with data sources.

Keywords: semantic model, semantic relation, linked data, semantic
label, semantic web

1 Introduction

Information sources such as relational databases, spreadsheets, XML, JSON,
and Web tables contain a significant amount of structured data. Given this
large amount of data available, we would like to be able to easily search over
this information or integrate different pieces of information. Understanding the
semantics of data sources enables us to provide a richer search experience and
automate the data integration task. In the Semantic Web, we can represent
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dbpedia:museum

dbpedia:painter

dbpedia:Artwork

dbpedia:title foaf:name rdfs:label

Abraham Lincoln | Mathew B. Brady | National Portrait Gallery
Winter Landscape|Mortimer L. Smith| Detroit Institute of Art

Zinnias Charles Demuth | Dallas Museum of Art

Fig. 1: The semantic model of a sample source containing data of some paintings

the semantics of data by mapping it to the concepts and relationships defined
by a domain ontology. In this paper, we use a graphical representation called
semantic model to show the mapping between a data source and an ontology.
In a semantic model, the nodes are ontology classes and the links are ontology
properties. Figure 1| depicts a semantic model for a sample data source including
information about some paintings. This model explicitly represents the meaning
of the data by mapping the source to the DBpedia ontologyﬂ and the FOAF
ontologyﬁ Knowing this semantic model enables us to easily transform the data
in the table to RDF and publish it on the Web.

The process of creating a semantic model for a source involves two steps:
(1) semantic labeling, and (2) establishing the semantic relations. In semantic
labeling, each data field, or source attribute, is labeled with a semantic type, a
class or/and a data property of the domain ontology. In our example in Figure
the semantic types of the first, second, and third columns are title of Artwork,
name of Person, and label of Museum respectively. However, a semantic model
that only includes the semantic labels does not precisely represent the implicit
meaning of the data because it is not telling us how the source attributes are
related to each other. In our example, a Person could be the owner, painter,
or sculptor of an Artwork, but in the context of the given source, only painter
correctly interprets the relationship between Artwork and Person. To build a
semantic model that fully recovers the semantics of a data source, we need a
second step that determines the semantic relations between the source attributes
in terms of the properties in the ontology.

There has been much effort to automatically map data sources to ontolo-
gies , but most focus on semantic labeling or are very limited
in automatically inferring the relationships. Our goal is to construct semantic
models that not only include the semantic types of the source attributes, but also
describe the relationships between them. Inferring the relationships between the
attributes is not a trivial task even when the correct semantic labels are given.
There might be multiple paths connecting two classes in the ontology and with-
out additional context, we do not know which one characterizes the intended
meaning of the data. This work focuses on the second step of building semantic

3 http://dbpedia.org/ontology
4 http://xmlns.com/foaf/spec
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title creation [name

The Island 2009 Walton Ford
Excavation at Night | 1908 George Wesley Bellows
Rose Garden 1901 Maria Oakey Dewing

Fig. 2: Sample data from the Crystal Bridges Museum of American Art

models. That is, we assume that source attributes are already annotated with
semantic labels and our work focuses on learning the relationships.

We present a novel approach that exploits the knowledge from the domain
ontology and the Linked Open Data (LOD) to automatically infer the semantic
relations within a given data source. The LOD cloud contains a vast amount of
semantic data that can be used to learn how instances of different classes are
linked to each other. The main contribution of our work is exploiting the graph
patterns occurring in the linked data to disambiguate the relationships between
the source attributes. First, we use SPARQL to extract graph patterns with
different lengths occurring in the linked data. Next, we combine these patterns
into one graph and expand the resulting graph using the paths inferred from the
domain ontology. Then, we introduce a search algorithm that explores the graph
starting from the semantic labels of the source and heuristically finds the top k
semantic models connecting all the labels.

We evaluated our approach on a dataset of well-known museum sources mod-
eled using the CIDOC—CRMH ontology along with some other known vocabu-
laries including a total of 147 classes and 409 properties. We used the linked
data published by the Smithsonian American Art Museunﬁ as the background
knowledge. When we used only patterns of length one, our method achieved an
average precision of 65% and recall of 55% in inferring the relationships included
in the semantic models associated with data sources. Once we added patterns of
length two, the precision and recall improved to 78% and 70%. Our evaluation
shows that the longer the patterns extracted from the linked data, the more
accurate semantic models are generated.

2 DMotivating Example

In this section, we provide an example to explain the problem of inferring se-
mantic relations within structured sources. In this example, we want to model a
data source using the CIDOC-CRM ontology and then use the created seman-
tic model to publish the source data as RDF. This source is a table containing
information about artworks in the Crystal Bridges Museum of American Artﬂ
(Figure . We formally write the signature of this source as s(title, creation,
name) where s is the name of the source and title, creation, and name are the
names of the source attributes (columns).

® http://www.cidoc-crm.org
S http://americanart.si.edu/collections/search/lod/about
" http://crystalbridges.org


http://www.cidoc-crm.org
http://americanart.si.edu/collections/search/lod/about
http://crystalbridges.org

4 Taheriyan et al.

E22_Man-Made_Object

P102_has_title

P108i_was_produced_by

P14_carried_out_by

E12_Production

P4_has_time-span

P131_is_identified_by
\ 4

P82_at_some_time_within label

E82_Actor_Appellation

A 4

creation name

Fig. 3: The semantic model of the source s

To model this source, we first need to label the source attributes. This
task involves assigning a semantic type to each source attribute. We formally
define a semantic type to be a pair consisting of a domain class and one of
its data properties (class_uri,property_uri) [7]. In this example, the correct se-
mantic types for the columns title, creation, and name are (E35_Title,label),
(E52_Time-Span, P82_at_some_time_within), and (E82_Actor_Appellation,label).
Various techniques can be employed to automate the labeling task, nonetheless,
in this work, we assume that the labeling step is already done and we concentrate
on inferring the semantic relations.

Figure [3] shows the correct semantic model of the source s. As we can see in
the figure, none of the semantic types corresponding to the source columns are
directly connected to each other, which makes the problem of finding the cor-
rect semantic model more complex. There are many paths in the CIDOC-CRM
ontology connecting the assigned labels. For instance, we can use the classes
E39_Actor and E67_Birth to relate the semantic types E82_Actor_Appellation
and E52_Time-Span:

(E39_Actor, P1_is_identified_by, E21_Actor_Appellation)
(E39_Actor, P98i_was_born, E67_Birth)
(E67_Birth, P4_has_time-span, E52_Time-Span)

However, this way of modeling does not correctly represent the semantics
of this particular data source. In general, the ontology defines a large space of
possible semantic models and without additional knowledge, we do not know
which one is a correct interpretation of the data.

Now assume that we have access to a repository of linked data contain-
ing the RDF triples published by some other museums. We can exploit this
linked data to bias the search space to prefer those models that are used for
related source. Once we have identified the semantic types of the source at-
tributes, we can search the linked data to find the frequent patterns connecting
the corresponding classes. For example, by querying the linked data, we find out
that P131_is_identified_by is more popular than P1_is_identified_by to connect in-
stances of E82_Actor_Appellation and instances of E21_Person, and this makes
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Fig.4: Sample graph patterns connecting the classes c;, co, and c3 using the
ontology properties p1, p2, and p3

sense when we investigate the definitions of these two properties in the ontol-
ogy. The property P1_is_identified_by describes the naming or identification of
any real world item by a name or any other identifier, and P131_is_identified_by
is a specialization of P1_is_identified_by that identifies a name used specifically
to identify an instance of E39_Actor (superclass of E21_Person). We can query
the linked data to find longer paths between entities. For instance, by inspect-
ing the paths with length two between the instances of F22_Man-Made_Object
and E21_Person, we observe that the best way to connect these two classes
is through the path: E22_Man-Made_Object D108 was produced by, ;19 Production
P14_is_carried_out_by E21_Person.

3 Inferring Semantic Relations

In this section, we explain our approach to automatically deduce the attribute
relationships within a data source. The input to our approach are the domain
ontology, a repository of linked data in the same domain, and a data source whose
attributes are already labeled with semantic types. The output is a semantic
model expressing how the assigned labels are connected.

3.1 Extracting Patterns from Linked Open Data

The Linked Open Data (LOD) includes a vast and growing collection of semantic
content published by various data providers in many domains. When modeling
a source in a particular domain, we can exploit the linked data published in that
domain to hypothesize attribute relationships within the source. We assume that
the source attributes are labeled with (class_uri,property_uriy pairs.

We use SPARQL to query the linked data in order to extract the graph
patterns connecting the instances of the classes corresponding to the semantic
types. Each pattern consists of some nodes and links. The nodes correspond to
ontology classes and the links correspond to ontology properties. Suppose that
we want to find the patterns connecting three classes ¢1, ¢z, and c3. Figure [
exemplifies some of the possible patterns to connect these classes. Depending on
the structure of the domain ontology, there might be a large number of possible
patterns for any given number of ontology classes. For simplicity, in this paper,
we only extract the tree patterns, the patterns in which the number of properties
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Algorithm 1 Construct Graph G

Input: LOD Patterns, Semantic Types, Domain Ontology
Output: Graph G
> Add LOD patterns
sort the patterns descending based on their length
exclude the patterns contained in longer patterns
merge the nodes and links of the remaining patterns into G
> Add Semantic Types
for each semantic type (class_uri,property-uri) do
add the class to the graph if it does not exist in G
end for
> Add Ontology Paths
for each pair of classes ¢; and ¢; in G do
find the directed and inherited properties between ¢; and c; in the ontology
add the properties that do not exist in G
: end for
return G

[

is exactly one less than the number of classes (the first three patters in Figure|4)).
That said, we define the length of a pattern as the number of links (ontology
properties) in a pattern. For example, a pattern with length one is in the form

of ¢1 ch indicating that at least one instance of the class ¢; is connected to
an instance of the class ¢y with the property p. The following SPARQL query
extracts the patterns with length one and their frequencies from the linked data:
SELECT DISTINCT ?cl ?p ?c2 (COUNT(x*) as ?count)

WHERE {

77X 7p ?y.

?x rdf:type 7cl.

7y rdf:type 7c2.

FILTER (?x != ?7y).}

GROUP BY 7cl1 ?p 7c2
ORDER BY DESC(?count);

Querying a triple store containing a huge amount of linked data to mine long
patterns is not efficient. In our experiments, we only extracted the patterns with
length one and two. We will see later that even small graph patterns provide
enough evidence to infer rich semantic models.

3.2 Merging LOD Patterns into a Graph

Once we extracted the LOD patterns, we combine them into a graph G that
will be used to infer the semantic models. Building the graph has three parts:
(1) adding the LOD patterns, (2) adding the semantic labels assigned to the
source attributes, and (3) expanding the graph with the paths inferred from the
ontology. Algorithm [1] shows the pseudocode of building the graph.

The graph G is a weighted directed graph in which nodes correspond to
ontology classes and links correspond to ontology properties. The algorithm to
construct the graph is straightforward. However, we adopt a subtle approach
to weight the links. We assign a much lower weight to the links added from
the LOD patterns comparing to the links added from the ontology. Since we
are generating minimum-cost models in the next section, this weighting strategy
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gives more priority to the links used more frequently in the linked data. The
weight of the links coming from the LOD patterns has an inverse relation with
the frequency of the patterns.

The other important feature of the links in the graph is their tags. We assign
an identifier to each pattern added to the graph and annotate the links with the
identifiers of the supporting patterns. Suppose that we are adding two patterns
my : c1 25 yes and m2 1 o -LveaL5ey to G. The link p1 from ¢; to co will
be tagged with {m1, ma}, the link ps from co to ¢ will have only {m;} as its tag
set, and the link p3 from c5 to ¢4 will be tagged with {msy}. We use the link tags
later to prioritize the models containing larger segments from the LOD patterns.

3.3 Generating and Ranking Semantic Models

The final part of our approach is to compute the semantic models from the graph.
We map the semantic types to the nodes of the graph and then find the top &
minimal trees connecting those nodes. The algorithm that finds the top k trees
is a customized version of the BANKS algorithms [1]. It creates one iterator for
each of the nodes corresponding to the semantic types, and then the iterators
follow the incoming links to reach a common ancestor.

The BANKS algorithm uses the iterator’s distance to its starting point to
decide which link should be followed next. Because our weights have an inverse
relation with their popularity, the algorithm prefers more frequent links. How-
ever, selecting more popular links does not always yield the correct semantic
model. The coherence of the patterns is another important factor that we need
to consider. Thus, we use a heuristic that prefers the links that are parts of the
same pattern even if they have higher weights. Suppose that m; : ¢; Py and
ma @ 1230022y are the only patterns used to build the graph G, and the
weight of the link po is higher than p;. Assume that ¢; and c3 are the semantic
labels. The algorithm creates two iterators, one starting from ¢; and one from
c3. The iterator that starts from cs reaches co by following the incoming link
c2225¢4. At this point, it analyzes the incoming links of ¢, and although p; has
lower weight, it first chooses po to traverse next. This is because ps is part of
the pattern msy which includes the previously traversed link ps.

Once we computed top k trees, we rank them first based on their coherence
and then their cost (sum of the weights of the links). The coherence metric gives
priority to the models that contain longer patterns. For example, a model that
includes one pattern with length 3 will be ranked higher than a model including
two patterns with length 2, and the latter in turn will be preferred over a model
with only one pattern with length 2.

4 Evaluation

To evaluate our approach, we used a dataset of 29 museum data sources in
CSV, XML, or JSON format containing data from different art museums in
the US. The total number of attributes for this dataset was 418 (on average
14 attributes per source). We applied our approach on this dataset to find the
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Table 1: The evaluation dataset

Evaluation Dataset

number of sources 29

number of attributes 418
number of classes in the ontologies 147
number of properties in the ontologies 409
number of nodes in the gold-standard models|812
number of links in the gold-standard models |785

candidate semantic models for each source and then compared the first ranked
models with the gold standard models created manually by an expert in CIDOC
Conceptual Reference Model (CIDOC-CRM). Table [1| shows more details of the
evaluation dataset. The dataset including the sources, the domain ontologies,
and the gold standard models is available on GitHubﬂ The source code of our
approach is integrated into Karma which is available as open sourceﬂ

The linked data that we used as the background knowledge is the RDF
data published by the Smithsonian American Art Museum. The museum has
made use of the CIDOC-CRM to map out the concepts and relationships that
exist within the artwork collection. This repository includes more than 3 million
triples (3,398,350). We injected the data into a Virtuoso triple store and then
used SPARQL to extract patterns of length one and two. There were 68 distinct
patterns with length one (two nodes and one link) and 634 distinct patterns with
length two (three nodes and two links).

We assumed that the correct semantic labels for the source attributes are
known. The goal was to see how well our approach learns the attribute relation-
ships having the correct semantic types. We performed three experiments. First,
we only used the domain ontology to build a graph on top of the semantic labels
and then computed the semantic model connecting those labels. In the second
experiment, we took into account the patterns with length one extracted from
the linked data, and in the third experiment, we used the patterns of both length
one and two. For each source, we computed top 10 candidate semantic models
and compared the first one with the correct model in the gold standard set.

We measured the accuracy of the computed semantic models by comparing
them with the gold standard models in terms of precision and recall. Assuming
that the correct semantic model of the source s is sm and the semantic model
learned by our approach is sm/, we define the precision and recall as:

rel(sm) Nrel(sm’) rel(sm) Nrel(sm’)

, recall =

precision =

rel(sm’) rel(sm)

where rel(sm) is the set of triples (u,v,e) in which e is a link from the node u
to the node v in the semantic model sm. Consider the semantic model in Figure[3]
rel(sm)={ (E22-Man-Made_Object, P108i_was_produced_by, E12_Production), ---}.

8 https://github.com/taheriyan/cold-2015
9 https://github.com/usc-isi-i2/Web-Karma
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Table 2: The evaluation results

background knowledge precision|recall|time (s)
domain ontology 0.07 0.05 0.17
domain ontology + patterns of length one 0.65 0.55 0.75
domain ontology + patterns of length one and two| 0.78 0.70 0.46

Since the correct semantic types are given, we excluded their corresponding
triples in computing the precision and recall. For example, we do not consider
(E35_Title, label, title) in our evaluation. From the 785 links in the correct mod-
els, 418 links correspond to the semantic types because we have 418 attributes.
Thus, our evaluation measures the accuracy of inferring the remaining 367 links.

Table [2| shows the average precision and recall for all 29 sources. An interest-
ing observation is that when we do not use the linked data patterns, the precision
and recall are close to zero. This low accuracy comes from the fact that in most
of the gold standard models, the attributes are not directly connected and there
are multiple paths between each pair of classes in the ontology (and thus in our
graph), and without additional information, we cannot resolve the ambiguity.
When we exploit the patterns with length one, there is a boost in precision and
recall. Since we are using the pattern frequencies in assigning the weights to the
links of the graph, using patterns of length one means that we are only taking
into account the popularity of the links in computing the semantic models. Once
we added the patterns with length two, our approach achieved more than 10%
improvement in both precision and recall. This means that considering coher-
ence (even to a small extent) in addition to the link popularity empowers our
approach to derive more accurate semantic models.

The column time in Table [2| shows the running time of our algorithm on a
single machine with a Mac OS X operating system and a 2.3 GHz Intel Core i7
CPU. This is the time from combining pre-extracted LOD patterns into a graph
until generating and ranking candidate semantic models. The algorithm is much
faster when we only use the domain ontology as the background knowledge,
because adding LOD patterns will be excluded from the graph construction
process (lines 1-3 in Algorithm . The reason why more time is required when
we use patterns of length one comparing to the case where we use patterns of
both length one and two is related to details of our algorithm to compute top k
minimal trees. Although it takes longer to create the graph when we add patterns
of length two, the algorithm to generate the candidate models finds top k trees
faster reducing the total running time.

5 Related Work

There has been many studies in the Semantic Web to automatically describe the
semantics of data sources as a mapping from the source to an ontology. Since the
focus of our work is on inferring the semantic relations, we compare our work
with the ones that pay attention to inferring semantic relationship and not only
semantic labeling.
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Limaye et al. [§] used YAGqE to annotate web tables and generate binary
relationships using machine learning approaches. Venetis et al. [15] presented a
scalable approach to describe the semantics of tables on the Web. To recover the
semantics of tables, they leverage a database of class labels and relationships
automatically extracted from the Web. They attach a class label to a column if
a sufficient number of the values in the column are identified with that label in
the database of class labels, and analogously for binary relationships. Although
these approaches are very useful in publishing semantic data from tables, they
are limited in learning the semantics of sources as a united model. Both of these
approaches only infer individual binary relationships between pair of columns.
They are not able to find the relation between two columns if no relationship
is directly instantiated between the values of those columns. Our approach can
connect one column to another one through a path in the ontology.

Carman and Knoblock [3] use known source descriptions to learn a semantic
description that precisely describes the relationship between the inputs and out-
puts of a source, expressed as a Datalog rule. However, their approach is limited
in that it can only learn sources whose models are subsumed by the models of
known sources. That is, the description of a new source is a conjunctive combi-
nations of known source descriptions.

In our earlier Karma work [6], we build a graph from learned semantic types
and a domain ontology and use this graph to semi-automatically map a source
to the ontology. Since only using the ontology does not necessarily generates
accurate models, we had the user in the loop to interactively refine the suggested
models. Later, we introduced an automatic approach that exploits the semantic
models of similar data sources in addition to the domain ontology to learn a
model for a new unknown source |13l14]. Our work in this paper complements our
previous work in cases where few, if any, known semantic models are available. In
fact, the number of known semantic models is limited in many domains, however,
there may be a huge amount of semantic data published in those domain. The
presented approach mines the small graph patterns from the available linked
data to infer the semantic relationships within data sources.

Our work is closely related to other work leveraging the Linked Open Data
(LOD) cloud to capture the semantics of sources. Mulwad et al. [9] used Wiki-
tology [12], an ontology which combines some existing manually built knowledge
systems such as DBPedia and Freebase [2], to link cells in a table to Wikipedia
entities. They query the background LOD to generate initial lists of candidate
classes for column headers and cell values and candidate properties for relations
between columns. Then, they use a probabilistic graphical model to find the cor-
relation between the columns headers, cell values, and relation assignments. The
quality of the semantic data generated by this category of work is highly depen-
dent on how well the data can be linked to the entities in the LOD. While for
most popular named entities there are good matches in the LOD, many tables
contain domain-specific information or numeric values (e.g., temperature and
age) that cannot be linked to the LOD. Moreover, these approaches are only

10 mttp://www.mpi-inf .mpg.de/yago-naga/yago
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able to identify individual binary relationships between the columns of a table.
However, an integrated and united semantic model is more than fragments of
binary relationships between the columns. In a complete semantic model, the
columns may be connected through a path including the nodes that do not
correspond to any column in the table.

6 Discussion

We presented a novel approach to infer semantic relations within structured
sources. Understanding how the source attributes are related is an essential part
of building a precise semantic model for a source. Such models automate the
process of publishing semantic data. The core idea of our work is to exploit the
small graph patterns occurring in the Linked Open Data to hypothesize attribute
relationships within a data source.

Our evaluation results support the theory that more accurate models can
be constructed when longer graph patterns from LOD are used. Although these
patterns can be pre-computed, using SPARQL queries to extract long patterns
from a large number of triples is challenging. For example, the Virtuoso response
time to the SPARQL query to extract patterns of length two with a chain shape
(c1 e ﬂ>03) was approximately 90 seconds, and it was roughly 1 hour for the
query to extract patterns of length two having a V-shape (¢q &CQ(p—SC;),). We
were only able to collect a few patterns with length three and could not extract
any pattern with length four from our Virtuoso server in a 5-hour timeout.
Efficiently mining more complex patterns from the linked data is one direction
of our future work.

One limitation of the presented approach is that it heavily depends on the
linked data at hand. It assumes that there is sufficient amount of linked data
available in the same domain that we are modeling the target data sources.
Another direction of our future work is to extend our approach to cases where
no or sparse data is available. We want to investigate how the current method
can be combined with our previous work that uses known semantic models to
learn semantic models of structured sources [13}/14].

Our work plays a role in helping communities to produce consistent Linked
Data so that sources containing the same type of data use the same classes and
properties when published in RDF. Often, there are multiple correct ways to
model the same type of data. A community is better served when all the data
with the same semantics is modeled using the same classes and properties. Our
work encourages consistency because our algorithms bias selection of classes and
properties towards those used more frequently in existing data.
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