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Abstract 

The new stochastic approach of impulsive 
noise filtering, based on the input sample 
separation by modified clusterization criterion, 
is proposed. It is shown that preliminary 
filtration by the proposed procedure provides 
robust narrowband sound frequency estimation 
and eliminates failures of the estimation 
algorithm caused by the impulsive noise. 

1. Introduction 

Digital audio systems are widely applied today in 
many areas of human activity. One of the biggest class 
of them are acoustic arrays that perform measurement 
and processing of sound field. One of the key branch in 
digital sound processing is Noise Source Identification 
(NSI) techniques. They play an important role in the 
acoustic camera, which is aimed to locate and 
characterize sound sources. It fuses images, received by 
the sensors in a complex image. This image consists of 
a camera image as a background and contour lines 
describing sound field as a foreground [Bil76].  

Most of NSI techniques have a “narrowband” nature. 
This means that the sound map must be recalculated for 
each frequency of interest. Usually calculations are 
performed for the predefined set of bounds and 
corresponding center frequencies. The difference 
between actual frequency and defined one leads to 
inaccurate results. Therefore, knowledge of the original 
signal  frequency is important for precise estimation of 
sound field parameters. 

The estimate can be easily obtained in the steady 
state from long enough Fast Fourier Transform, but in 
non-stationary case it must be estimated instantly in 
real time. For fast, effective and precise estimation of 
any instantaneous parameter, the data sample must be 
as short as possible; therefore, appearance of impulsive 
noise has the most substantial influence on the 

estimation in such situation. Hence there is need to 
recover an original data from the degraded observations 
before main processing stage. 

Filtering of an impulsive noise generally gives 
positive effect not only on frequency estimation, but 
also for NSI algorithms. The acoustical array is a 
multichannel system and almost simultaneous 
occurrence of impulses in many different channels can 
completely corrupt calculation results. 

2. Problem Statement 

In view of NSI application, attention in the paper is 
paid to a class of narrowband signals which parameters 
are changed slowly in time. The problem of the 
instantaneous frequency estimation can be interpreted 
as estimation on the limited observation interval 
(usually less than two periods of signal) during which 
the parameters are changed slowly and a narrowband 
signal is considered as a harmonic one. 
For description of a mixture of a digital narrowband 
signal si with a white Gaussian noise ηi of power σ2

 and 
impulsive noise ζ the following typical additive model 
of a data sample is used: 
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where υi is a sign function υi =sgn(pi), that can get 
values –1, 1, 0 with corresponding probabilities pζ/2, 
pζ/2, 1–pζ/2; pζ is an impulsive noise appearance 
probability; ζ is an impulsive noise amplitude 
(considered as constant for all impulses);  ρi is a signal 
instantaneous amplitude; ϕ0 is an initial phase; ωi is an 
instantaneous angular frequency; τ is a sampling 
interval, N is a sample size. Further, the normalized 
frequency γ=ωτ is used to omit τ. Such the mixture 
model is close to a Bernoulli–Gaussian model of an 
impulsive noise process [Vas08]. 
The mixture sample (1) can be represented by the next 
probability density function 
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It corresponds to a Tukey-Huber model, which is the 
mostly used one for investigation of robust methods. It 

Copyright © 2015 for the individual papers by the papers' authors. 

Copying permitted only for private and academic purposes.  

In: A. Bădică, M. Colhon (eds.): Proceedings of the 2015 Balkan 

Conference on Informatics: Advances in ICT 



41 

 

supposes that majority of sample counts have an 
expected distribution fη and some of counts belong to 
fηζ. The latter ones are outliers that produce “tails” of 
the distribution. The aim of the paper is describing of 
the robust instantaneous frequency estimation 
procedure with removing of distorting outliers in (2). 

3. Methodological Basis 

3.1 Brief description of NSI techniques 

The NSI techniques can be divided onto two 
categories:  near-field acoustic holography (NAH) and 
beamforming [Bai13]. NAH is aimed to reconstruction 
of a sound field in the 3D space. Beamforming gives a 
map of a sound intensity by measurement of the signal 
response from a variety of directions. The main concept 
of the both NSI techniques is the next: the sound 
pressures measured by the microphones (more rarely – 
particle velocities, captured by probes) are processed 
by an imaging algorithm of either type to calculate an 
acoustic map of the sound pressure or sound intensity 
with a snap to physical coordinates. 

When NAH performs near-field imaging of noise 
sources, beamforming generally works in far field. 
Unlike beamforming, that carries out spatial filtering 
and maximizes the signal power from certain direction, 
NAH provides, based on measurements over a two-
dimensional aperture, a reconstruction of the three-
dimensional sound field from the source’s boundary out 
to the far field. Precision of reconstruction depends 
mostly on microphone spacing distance, sound 
frequency and distance between source surface and 
measurement plane. NAH operates in a low frequency 
range, upper boundary of which is limited by a distance 
between microphones. On the other hand, beamforming 
works in the full frequency range but its use is 
reasonable only at high frequencies when it gives better 
resolution than holography.  

Beamforming provide the best performance on the 
irregular arrays, which geometry (positions of 
microphones) is optimized in order to get the lowest 
possible level of false responses. As opposite to 
beamforming, NAH is usually performed on a regular 
array grid that is also the requirement for the classic 
Fourier NAH. Many modern NAH approaches perform 
calculation in the time domain and usually do not 
require location of microphones on some equidistant 
positions. Hence, it allows reconstructing of sound 
fields even with irregular array geometries. 

3.2 Impulse noise filtering techniques 

Conventional global filtering approach like a low-
pass filtering assumes that both corrupted and 
uncorrupted samples must be processed. Median filters 
and other order statistics filters, that process a localized 
area, also typically modify uncorrupted samples as the 
transversal filtering is applied uniformly over the whole 
signal [Vas08]. In addition, median filter eliminates 
changes in the input signal with a duration less than a 
half size of the filter window and does not properly 
filter a set of consequent impulses longer than a half 
size. Some modifications of the classic median filter, 
that eliminate some its disadvantages, were developed 
[Geo11]. 

Some detection methods perform processing in time 
and frequency domains simultaneously, for example 
wavelet-based method in [Non08]. Yet another filtering 
approach uses fuzzy impulse detection, but mostly for 
images [Sch06]. 

Impulsive noise usually distorts a relatively small 
amount of total counts in the sample. Since usually a 
relatively large part of the signal counts remain 
unaffected by the impulsive noise. Hence, it is 
advantageous to replace only the noisy ones, leaving 
the uncorrupted counts unchanged. This ideology is 
implemented by the another approach that performs 
model-based two-stage filtering by using a linear 
prediction system [Esq02]. For audio signals, the most 
often used models are autoregressive (AR) or 
autoregressive moving average (ARMA) [Oud14]. In 
this case, the system consists of two main parts: 
detector and interpolator that perform individual 
processing of the each element of the data set. 

Another independent class of methods is stochastic 
ones [Bas88]. They are close to model-based ones, but 
the statistical properties of data samples are used. A 
similar approach is proposed in the paper for pre-
filtering before frequency estimation. 

3.3 Frequency Estimation 

In this paper frequency estimation is carried out with 
using of the algorithm mentioned in the previous work 
[Pro12]. It has been synthesized with using an AR 
model for a single-tone harmonic signal mixed with a 
white Gaussian noise: 

2i1i2i1ii
)cos(2

−−−−
−γ=−α= sssss ,   (3) 

where α=2cos(γ) is a parameter of auto-regression.  
The algorithm is based on the solution of the 

quadratic equation 
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0222 =−α−α B ,  (4) 

with coefficient B calculated on the basis of the input 
signal sample ( )x  as:  
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The equation (4) has two roots 

22),( +±=α −+∗ BB . Finally, frequency is estimated 
as ( )2/arccos

)(* +∗α=γ .  
Generally, this algorithm is robust in many cases 

with only the impulsive noise and without the Gaussian 
one [Pro09], but it becomes highly sensitive when 
Gaussian and impulsive noises occur simultaneously 
and are multiplied during calculations. Therefore, 
removing of impulses is a necessary condition before 
estimation procedure starts. 

4. Impulsive noise detection 

The NSI Robust parameters estimation usually 
consists of the next processing stages [Hub09]: 

1) Data “errors” or corrupted counts detection; 
2) Processing of detected counts by removing them 

from the sample or their restoration with the help of 
neighbor ones; 

3) Pure robust estimation using the restored sample. 
Here steps 1) – 2) belong to impulse noise filtering. 
The new stochastic approach based on the cluster 

analysis theory [Eve11] is proposed for performing 
impulses detection. The key idea is to apply 
clusterization methods for analysis of the input sample 
probability distribution and separate all counts in the 
sample onto (two) independent clusters: the subsample 
with normal counts and relatively small subsample with 
impulsive noise counts. The important assumption here 
is that the signal amplitude is relatively small in 
comparison to impulse amplitude, that allows to 
distinguish these clusters. The similar approach was 
proposed earlier by the author in application to 
electroencephalogram signals analysis [Pro13]. 

Generally, clusterization is carried out on the basis 
of some optimization criterion or an objective function. 
Usually it is an extent of objects density inside the 
cluster or an extent of distance between different 
clusters. Actually, most of cluster separation 
procedures can be considered as exact or approximate 
algorithm of some objective function optimization and 
finding a threshold. 

The most widespread methods for optimal threshold 
v calculation [Kor89] are based on the criterion of the 

minimal sum of cluster variances, which for a two-
component sample can be written as: 
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In order to increase sensitivity to presence of the 
second “impulsive” subsample the modified criterion is 
considered:  
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It allows correct treatment of mixtures that contain 
small amount of impulses. 

Finally, the proposed impulse filtering procedure can 
be represented in the form of four consequent steps of 
calculations. On the first step of processing in order to 
facilitate detection of the sample with bipolar pulse it is 
necessary to take the absolute value 

nn
xz = , 

1,0 −= Nn . Taking into account that time order of 
discrete values (1) is insignificant, it can be 
transformed via ( )zy ℜ=  into an ordered statistics 
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which must be separated onto two parts with 
corresponding standard deviation values: σl, σr. 

The next step includes the calculation of values of 
the above mentioned criterion for each discrete rank 
(v),N. (the function (7) is used here) The separation 
threshold is simply found as argmin among all these 
values. When the threshold is obtained, all counts that 
exceed its value are marked as defective or i. e. 
containing a noise impulse. 

On the last stage of processing the detected impulses 
must be replaced by interpolation or extrapolation 
using “good” neighbor counts. In view of assumption 
on small duration of the impulses, only the simplest 
linear interpolation is used in this paper. 

5. Simulation results 

The effectiveness of impulsive noise filtering was 
analyzed in connection to its influence on the frequency 
estimation process by the aforementioned algorithm. 
The flowchart of the frequency estimation process 
including the impulse filtering one can see in Fig. 1. 

Statistical simulations by the Monte-Carlo approach 
were done under the next conditions: a signal sample 
size N=50, the sample contains one period of the signal, 
hence the normalized frequency 126.050/2 ≈π=γ , 
SNR=20 dB, signal to impulsive noise ratio is –20 dB, 
number of numerical simulations for each plot is 
10000. 
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Figure 1: Flowchart of the frequency  

estimation process 

Fig. 2 shows plots of dependencies of estimation 
algorithm failure probability on impulsive noise 
appearance probability. Three cases are regarded: 
without filtering, with filtration by a classic median 
filter and by using the proposed separation. From the 
presented figure one can see that the appearance of the 
impulsive noise with big power significantly worsen 
performance of the frequency estimation algorithm. 
Small decreasing of failure rate at higher noise 
probability can be explained by the fact that some 
impulses start to appear one after another and such a 
sequence has less influence on the algorithm. 

The median filter of size 5 makes a situation better 
and substantially decreases probability of failure, at low 
appearance probability in particular, but its rate is still 
high enough. Longer filter window allows getting 
additional suppression of many impulses but there must 
be tradeoff between noise filtering and the signal 
deformation due influence of the filter. The proposed 
separation procedure for impulse noise filtration makes 
failures caused by impulses action almost impossible.  

In addition, the comparison of the precision of 
frequency estimation was carried out in three 
aforementioned cases without any filtering, with 
filtration by the classic median filter and by using the 
separation. The plots of mean and standard deviation 
are shown in Fig. 3. 

 

Figure 2: Comparison of algorithm failure 

probabilities for different filtration methods 

 

Figure 3: Comparison of precision indicators of 

frequency estimations for different filtration methods 

Similarly to situation with failures, the estimation 
algorithm does not give reliable estimates, when the 
probability of noise appearance is high.  The median 
filter reduces the deviation of a mean in about two 
times. The separation procedure provides a mean and a 
standard deviation close to constant values. 

The carried out statistical studies have shown that 
the proposed method works well with relatively big 
impulses, when signal to impulsive noise ratio is –10 
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dB or lower. When the amplitude of impulses is low, 
two clusters of good and corrupted counts are located 
very close to each other and the polymodality of 
impulse distribution vanishes. It is hard to find the 
threshold in this case. 

6. Conclusions 

The proposed impulse noise filtering procedure 
provides better frequency estimation quality in 
comparison to conventional median filter when the 
impulse to signal amplitude ratio is 10 dB or more. 
This is caused by better sensitivity of the procedure to 
appearance of big impulses in the sample. At the same 
time, it provides constant estimation precision, when 
impulse appearance probability is not bigger than 0.15. 
This is a consequence of bigger number of points that 
have to be interpolated. Therefore, linear interpolation 
distorts the signal structure and worsen frequency 
estimation at bigger appearance probabilities. 
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