
FEDRR: Fast, Exhaustive Detection of
Redundant Hierarchical Relations in Large

Biomedical Ontologies

Guangming Xing1, Licong Cui2, and Guo-Qiang Zhang2?

1Department of Computer Science
Western Kentucky University, Bowling Green, KY 42101, USA

2Institute of Biomedical Informatics
University of Kentucky, Lexington, KY 40506, USA

guangming.xing@wku.edu

{licong.cui,gqatcase}@gmail.com

Abstract. Redundant hierarchical relations refer to such patterns as
two paths from one concept to another, one with length one (direct)
and the other with length greater than one (indirect). This paper intro-
duces a novel and scalable approach, called FEDRR – Fast, Exhaustive
Detection of Redundant Relations – for quality assurance work during
ontological evolution. FEDRR combines the algorithm ideas of Dynamic
Programming with Topological Sort, for exhaustive mining of all redun-
dant hierarchical relations in ontological hierarchies, in O(c · |V | + |E|)
time, where |V | is the number of concepts, |E| is the number of the
relations, and c is a constant in practice. Using FEDRR, we performed
exhaustive search of all redundant is-a relations in two of the largest onto-
logical systems in biomedicine: SNOMED CT and Gene Ontology (GO).
235 and 1609 redundant is-a relations were found in the 2015-03-01 ver-
sion of SNOMED CT and 2015-05-01 version of GO, respectively. Each
redundant relation represents a possibly unintended defect that needs to
be corrected in the ontology quality assurance process. FEDRR provides
a generally applicable, effective tool for systematic detecting redundant
relations in large ontological systems for quality improvement.

Keywords: Redundant relations, SNOMED CT, Gene Ontology, Dy-
namic Programming

1 Introduction

Ontologies are shared conceptualizations of a domain represented in a formal lan-
guage. They represent not only the concepts (nodes) but the relationships (edges)
between the concepts. Ontologies have become a critical knowledge source in in-
formatics and data intensive applications, such as information retrieval [1], data
integration [2], data management [3], and decision support [4].

This paper focuses on a particular type of ontological structural defect: re-
dundant relations. Redundant hierarchical relations refer to such patterns as two
paths from concept X to concept Y , one with length one (direct) and the other
with length greater than one (indirect). For hierarchical relations such as sub-
sumption (is-a), relations implied by transitivity should not be explicitly stated.
For example, in Gene Ontology (GO 2015-05-01 version) we have (see Table 1):

? Corresponding author.

2 FEDRR

GO Id Relation GO Id

A GO:0046879 is-a B GO:0009914

B GO:0009914 is-a C GO:0010817

C GO:0010817 is-a D GO:0065008

D GO:0065008 is-a E GO:0065007

E GO:0065007 is-a F GO:0008150

Table 1: A=“hormone secre-
tion;” B=“hormone transport;”
C= “regulation of hormone lev-
els;” D=“regulation of biologi-
cal quality;” E=“biological regula-
tion;” F= “biological process.”

Fig. 1: Graphical rendering of Table 1 and
a direct edge between A and F, where di-
rected edges represent “is-a” relation.

However, “A (GO:0046879) is-a F (GO:0008150)” is directly asserted as well
(Fig. 1). This represents redundant relations to be studied in this paper: two
paths exist between A and F: one directly between A and F, and the other
indirectly through B, C, D, and E as intermediate concept nodes.

The principle of parsimony in ontological modeling refers to the omission of
relations implied by the transitive property of a relationship, such as “is-a” rela-
tions in GO. By violating this principle, redundant relations may increase main-
tenance burden for ontology curators. It can also cause and inaccurate methods
and algorithms based on this general principle. For example, semantic distance
between concepts is a widely used technique [5]. Ontological mapping and align-
ment methods rely on the ordered structure of the hierarchical relation [6], with
notions of neighborhood and proximity serving as their foundation. The pres-
ence of redundant relations induce a short-circuit: two concepts with a larger
semantic distance may result in a smaller distance by mistake; and concepts not
within a neighborhood may be counted as such.

Using brute force, exhaustive detection of redundant relations can be com-
putationally expensive for large ontologies. For example, SNOMED CT (2015-
03-01 version) contains over 300,000 active concepts. A naive approach would
be to find the longest paths between the end nodes of each of the over 500,000
edges (relations). Assuming each edge takes 100ms, processing a single version
of SNOMED CT would take 14 hours. Finding all paths between all possible
pairs among the 300k nodes would take over 10,000 days if each pair takes 10ms.

This paper introduces a novel and scalable approach, called FEDRR, Fast,
Exhaustive Detection of Redundant Relations, for quality assurance work during
ontological evolution. In contrast to the 14 hours naive approach required for
each SNOMED CT version, FEDRR needed <20 seconds (Section 4).

Using FEDRR, we performed exhaustive search of all redundant is-a relations
in two of the largest ontological systems in biomedicine: SNOMED CT and GO.
235 and 1609 redundant is-a relations were found in the most recent versions
of SNOMED CT and GO, respectively. Each redundant relation represents a
possibly unintended defect that needs to be corrected in the ontology quality
assurance process. We further performed longitudinal analyses using FEDRR on
5 recent versions of SNOMED CT and 10 versions of GO.

2 Background

SNOMED CT. SNOMED CT is the world’s largest clinical terminology [7,
8]. It provides broad coverage of clinical medicine, including findings, diseases,
and procedures for use in electronic medical records. From a structural per-
spective, SNOMED CT can be seen as a series of large directed acyclic graphs,

FEDRR 3

one for each of its 19 “sub-hierarchies” including Procedure, Substance, Body
structure, Specimen, Clinical finding, and Organism. No concept is shared across
sub-hierarchies except for the root. Each concept comes with a SNOMED CT
identifier, which is an integer. SNOMED CT concepts are linked by hierarchical
relations within each sub-hierarchy.
Gene Ontology. The Gene Ontology [9] is a collection of three ontologies to de-
scribe attributes of gene products in three non-overlapping domains of molecular
biology: Cellular Component, the parts of a cell or its extracellular environment;
Molecular Function, the elemental activities of a gene product at the molecular
level, such as binding or catalysis; and Biological Process, operations or sets of
molecular events with a defined beginning and end, pertinent to the functioning
of integrated living units (cells, tissues, organs, and organisms). Within each on-
tology, terms have free text definitions and unique identifiers. GO terms can be
related to each other by is-a and part-of relationships, forming a directed acyclic
graph. The GO vocabulary is designed to be species-agnostic, and is intended
to capture multiple organisms.
Ontology Quality Assurance. Large, comprehensive terminological systems
such as SNOMED CT and GO continue to evolve over time [12–19]. Ontology
Quality Assurance (OQA) is an indispensable part of the ontological engineer-
ing lifecycle [10, 11]. OQA attempts to assess and improve the overall quality of
ontologies in aspects such as the consistency of the ontological structure with
respect to the explicit and implicit knowledge they capture; the coverage of the
ontology in terms of classes and properties needed to support specific applica-
tions; and the non-redundancy of classes and properties.

The basic premise of OQA is a mixed closed-world assumption (CWA) and
open-world assumption (OWA). In a formal system of logic used for knowledge
representation, such as ontological systems, CWA refers to the assumption that a
relationship holds true between two concepts is also explicitly asserted to be true,
unless they are implied by logical properties such as transitivity. It dictates that,
in reverse, a relationship between two concepts that is not asserted explicitly,
must be false. OWA, on the other hand, refers to the assumption that lack of
knowledge does not imply falsity.

In the context of OQA, OWA refers to the evolving state of knowledge in
a domain, in the sense that new concepts may be included in an ontological
system in a continuous fashion. The lack of a concept in an ontological system
does not imply that such a concept does not exist. CWA, on the other hand,
implies that, among existing concepts in an ontological system, the lack of an
explicit relationship of a known relation-type between two concepts means that
such a relationship does not exist between the two concepts.

The principle of parsimony in ontological modeling is a direct consequence of
CWA. It refers to the fact that relations implied by the transitive property of a
relationship, such as the example given in Fig. 1, must not be explicitly stated. By
violating this principle, redundant relations can cause methods and algorithms
based on this general principle inaccurate. Detecting redundant relations is an
important task for OQA, which is the focus of this paper.

3 Methods

The general mathematical abstraction of an ontological structure is a graph-
theoretic one: nodes correspond to concepts, and edges correspond to relations
(between nodes). For hierarchical relations in ontological systems such as “is-a,”
which obeys the transitivity property that

4 FEDRR

if A is-a B and B is-a C, then A is-a C,
one can model the structure of an ontological system as a directed acyclic graph
(DAG, as shown in part in Fig. 1).

Definition 1. Suppose G = (V,E) is a directed acyclic graph with V a set of
nodes, and E a set of edges between the nodes. A redundant relation in G is a
pair of nodes (s, t) such that (s, t) ∈ E, and there is an indirect path (i.e., length
more than 1) from s to t.

The closely related known algorithm for computing redundant relations in
the literature is all-pair longest path [20]. Although fixed source longest path
can be solved in time-complexity O(|V | + |E|) in a DAG [20], all-pair longest
path requires iteration over V , resulting in an O(|V | · |E|+ |V |2) time-complexity
algorithm. For large ontological systems such as SNOMED CT, such a running
time amounts to an intractable amount of processing time (requiring 10,000 days
if all-pair paths were to be computed).

FEDRR solves this problem in time-complexity O(c · |V | + |E|), where c is
the average number of descendants of a node. For the latest version of SNOMED
CT, we have c = 17.12 (see Time Complexity Analysis). For a single version of
SNOMED CT, the actual processing time is less than 20 seconds.

There are two key algorithmic ideas behind FEDRR. One is avoidance of
repeated computations by remembering the set of directly reachable nodes as
well as the set of indirectly reachable nodes, for each node. The second is to
completely skip node pairs that are not connected by a directed path. These ideas
are reflected in FEDRR using a novel combination of dynamic programming with
topological sort. The sparsity of most ontological structures, viewed as a DAG,
is a particularly suitable property for the second idea to take advantage of.

For a node u in a DAG G = (V,E), we introduce two sets, Du and Iu, where

– Du = {v | (v, u) ∈ E}, called the D-set, consists of the direct descendants
(i.e. children) of u; and

– Iu, called the I-set of u, is the set of all indirect descendants of u.

The design of our algorithm is based on the following observation.

Lemma 1. For each node v ∈ Du ∩ Iu, (v, u) is redundant.

Our algorithm amounts to the computation of (Du, Iu) for each node u. To
utilize the idea of dynamic programming, we update (Du, Iu) for each node u
according to the order by topological sort. The basic update scheme is illustrated
in the following diagram:

u Parent

({v1, v2, . . .},
⋃k

i=1(Dvi ∪ Ivi))

v1

(Dv1 , Iv1)

vk· · ·

(Dvk , Ivk)

v2

(Dv2 , Iv2)

Children

Fig. 2: Basic mechanism for updating the D-set and the I-set of a node.

Suppose we have obtained (Dvi , Ivi) for each i = 1, . . . , k, where {v1, v2, . . .} =

{v | (v, u) ∈ E}. Then we set Du = {v1, v2, . . .} and Iu =
⋃k

i=1(Di ∪ Ii). The
pseudo-code of FEDRR appears in Algorithm 1.

FEDRR 5

Algorithm 1 FEDRR: Dynamic programming using topological sort to compute the
D-set and I-set of each node
1: Input: G(V)
2: q := new Queue()
3: for all v ∈ V do
4: I[v] := ∅
5: D[v] := ∅
6: if no incoming edge for v then
7: q.enqueue(v)
8: end if
9: end for

10: while q not empty do
11: s := q.dequeue()
12: for all t ∈ s.to do
13: I[t] := I[t] ∪ I[s] ∪D[s]
14: D[t] := D[t] ∪ {s}
15: mark edge (s, t)
16: if no unmarked incoming edge for t then
17: q.enqueue(t)
18: end if
19: end for
20: end while

FEDRR starts by initializing an empty queue to hold the nodes that will be
sorted (line 2). Then nodes with no incoming edges are put to the queue, with
the D-set and I-set initialized as empty (lines 3 - 9). In the next phase (lines 10
- 20), the nodes are dequeued one at a time, with the I-sets and D-sets (for t)
updated according to the mechanism described in Fig. 2.

We illustrate the steps of Algorithm 1 using an example. The input DAG
is given below, and there is a redundant edge (colored in red) that FEDRR is
supposed to detect.

The algorithm starts with setting initial values for the D-set and the I-set
and enqueuing those node with no incoming edges, as shown on the top of Fig. 3
on the right.

6 FEDRR

1(∅, ∅) 2 (∅, ∅)

(∅, ∅)

(∅, ∅)

(∅, ∅)(∅, ∅)

(∅, ∅)

(∅, ∅)

After lines 2 - 9, nodes 1, 2 are enqueued.

1(∅, ∅) 2 (∅, ∅)

5 ({1, 2}, ∅)

(∅, ∅)

4 ({1, 2}, ∅)3({1}, ∅)

(∅, ∅)

(∅, ∅)

Nodes 1, 2 dequeued, D−set and I−set updated on 3, 4, 5. Nodes 3, 4, 5
enqueued.

1(∅, ∅) 2 (∅, ∅)

5 ({1, 2}, ∅)

6 ({4, 5}, {1, 2})

4 ({1, 2}, ∅)3({1}, ∅)

({4}, {1, 2})

({3}, ∅)

After nodes 3, 4, 5 dequeued, D-set and I-set updated on nodes 6, 7, 8 (7,
8 not enqueued yet, thus not numbered). Node 6 enqueued.

1(∅, ∅) 2 (∅, ∅)

5 ({1, 2}, ∅)

6 ({4, 5}, {1, 2})

4 ({1, 2}, ∅)3({1}, ∅)

8

7 ({4, 6}, {1, 2, 4, 5})

({3, 7}, {1, 2, 4, 5, 6})

Node 6 dequeued, D-set and I-set updated on node 7. Node 7 enqueued.
Node 7 dequeued, D-set and I-set updated on node 8. Node 8 enqueued.

Fig. 3: Illustration of Algorithm 1.

FEDRR 7

For this sample DAG, the result is shown in Fig. 4.

1(∅, ∅) 2 (∅, ∅)

5 ({1, 2}, ∅)

6 ({4, 5}, {1, 2})

4 ({1, 2}, ∅)3({1}, ∅)

8

7 ({4, 6}, {1, 2, 4, 5})

({3, 7}, {1, 2, 4, 5, 6})

Fig. 4: Node 8 dequeued, queue is empty.

Correctness. The correctness of the algorithm can be proved using mathemat-
ical induction by showing I[vi] = Ivi and D[vi] = Dvi after node vi is dequeued
(line 11) for i = 1 . . . |V |.

Proof. i = 1. The first dequeued node must be a node with no incoming edges.
This means Iv1 = ∅ and Dv1 = ∅. As both I[v1] = ∅ and D[v1] = ∅ from lines 4
and 5, we have I[v1] = Iv1 and D[v1] = Dv1 .

Suppose I[vi] = Ivi and D[vi] = Dvi is true for i = 1 . . . k−1. For i = k, then
we have D[vk] = {v | (v, vk) ∈ E} and I[vk] =

⋃
j(D[vkj] ∪ I[vkj]), where vkj ∈

{v | (v, vk) ∈ E}. Based on the definition of Dv, we have Dvk = {v | (v, vk) ∈
E} = D[vk]. From the induction hypothesis, we have I[vi] = Ivi and D[vi] = Dvi

for i = 1 . . . k−1. This means I[vk] =
⋃

j(D[vkj
]∪I[vkj

]) =
⋃

j(Dvkj
∪Ivkj

) = Ivk .

Time Complexity Analysis. The topological sorting itself takes O(|V | +
|E|) time [21]. With the computation of D-set and I-set, the total time is
O(

∑
(u,v)∈E(|Dv|+ |Iv|) + |V |+ |E|). When |E| = O(|V |) (which is the case for

both SNOMED CT and GO), the running time is O(
∑

v(|Dv|+ |Iv|)+ |V |+ |E|).
If we let c =

∑
v(|Dv|+|Iv|)

|V | , then the running time is in O(c · |V | + |E|). Based

on the definition of Dv and Iv,
∑

v(|Dv| + |Iv|) is the size of transitive closure
pairs shown in Tables 2 and 4. Even though the worst-case running time is
O(|V |2)(when c = |V |), c is a relatively small constant for ontological systems in
practice. This is validated by our experimental results shown in Tables 2 and 4.
For the latest version of SNOMED CT, c = 5,408,010

315,904 = 17.12, and for the latest

version of GO, c = 557,550
42,979 = 12.97.

4 Results

4.1 Experimental Environment

To detect redundant is-a relations from SNOMED CT and Gene Ontology, we
ran the FEDRR method on a MacBook Pro running the Mac OS X Yosemite
with 16 GB RAM and Intel Core i7 processor. FEDRR was implemented in Java
programming language based on JDK7.

8 FEDRR

4.2 Redundant is-a relations in SNOMED CT

We ran the FEDRR method on 5 versions of SNOMED CT (US edition) from
2013 to 2015 dated on 2013-03-01, 2013-09-01, 2014-03-01, 2014-09-01, and 2015-
03-01. Table 2 summarizes the result of each version including numbers of con-
cepts, is-a relations, and transitive closure pairs (TC), and number of redundant
is-a relations (RR); percentage of redundant is-a relations (RR%) among transi-
tive closure pairs; and computing time in milliseconds to detect redundant is-a
relations. For example, for the 2015-03-01 version, there were 315,904 concepts,
467,799 is-a relations, 5,408,010 transitive closure pairs, and 235 redundant is-a
relations; the percentage of the redundant is-a relations among the transitive
closure pairs is 0.00435%; and it took about 15 seconds to complete. For each
version, it only took a few seconds to identify all the redundant is-a relations,
indicating the efficiency of FEDRR.

Table 2: Summary of the results for 5 versions of SNOMED CT. TC: number
of transitive closure pairs, RR: number of redundant is-a relations, T(ms): time
taken in milliseconds.

Version # Concepts # is-a Relations TC RR RR% T(ms)

2013-03-01 299,198 444,565 5,165,131 203 0.00393 10,874

2013-09-01 300,485 447,442 5,226,630 240 0.00459 10,472

2014-03-01 300,409 446,603 5,188,221 277 0.00534 10,335

2014-09-01 302,902 449,564 5,222,506 305 0.00584 10,074

2015-03-01 315,904 467,799 5,408,010 235 0.00435 15,264

Table 3 shows the numbers of redundant is-a relations in 5 versions of SNOMED
CT with respect to the length of the indirect path. For each version, li(i = 2, 3, 4)
is the number of redundant is-a relations in length of i regarding to the indirect
path. For example, in the version of 2015-03-01, there were 224 redundant is-a
relations in length of 2, 10 in length of 3, and 1 in length of 4. In general, most
redundant is-a relations were in length of 2, and no redundant is-a relations
exceeding length of 4 was identified.

Table 3: Numbers of redundant is-a relations in 5 versions of SNOMED CT re-
garding to the length of the indirect path. li represents the number of redundant
is-a relations in length of i regarding to the indirect path.

Version l2 l3 l4 Total

2013-03-01 199 4 0 203

2013-09-01 233 7 0 240

2014-03-01 264 11 2 277

2014-09-01 291 13 1 305

2015-03-01 224 10 1 235

4.3 Redundant is-a relations in Gene Ontology

We ran the FEDRR method to detect redundant is-a relations in 10 versions of
Gene Ontology from 2014-08-01 to 2015-05-01 updated monthly. Table 4 sum-
marizes the basic results of each version. For instance, for the 2015-05-01 version,

FEDRR 9

there were 42,979 concepts, 71,954 is-a relations, 557,550 transitive closure pairs,
and 1,609 redundant is-a relations; the percentage of the redundant is-a relations
among the transitive closure pairs is 0.2886%; and it took 1,538 milliseconds to
complete. As the number of concepts and is-a relations were increasing, the
number and percentage of redundant is-a relations (RR) were monotonically in-
creasing every month and increased more than twice from the 2014-08-01 version
(497; 0.0961%) to the 2015-05-01 version (1,609; 0.2886%). For each version, it
only took a couple of seconds to identify all the redundant is-a relations, indi-
cating the efficiency of FEDRR.

Table 4: Summary of the results for 10 versions of Gene Ontology. TC: number
of transitive closure pairs, RR: number of redundant is-a relations, RR%: per-
centage of redundant is-a relations among transitive closure pairs, T(ms): time
taken in milliseconds.
Version # Concepts # is-a Relations TC RR RR% T(ms)

2014-08-01 41,436 66,544 517,092 497 0.0961 1,372

2014-09-01 41,694 66,995 522,741 502 0.0960 1,472

2014-10-01 41,867 67,536 528,821 631 0.1193 1,455

2014-11-01 42,012 69,300 541,718 1,031 0.1903 1,497

2014-12-01 42,189 69,887 545,168 1,193 0.2188 1,425

2015-01-01 42,329 70,272 544,210 1,277 0.2347 1,510

2015-02-01 42,466 70,724 546,158 1,420 0.2600 1,549

2015-03-01 42,588 71,032 548,006 1,463 0.2670 1,542

2015-04-01 42,805 71,549 552,367 1,552 0.2810 1,437

2015-05-01 42,979 71,954 557,550 1,609 0.2886 1,538

Table 5 shows the numbers of identified redundant is-a relations for the 10
versions with respect to the length of the indirect path. For each version, li (i =
2, . . . , 7) is the number of redundant is-a relations in length of i regarding to
the indirect path. For example, in the version of 2015-05-01, there were 1,238
redundant is-a relations in length of 2 and 255 in length of 3. Most redundant is-a
relations were in length of 2 or 3 regarding to the indirect path. There were only
a couple of redundant is-a relations in length of 7. No redundant is-a relations
exceeding length of 7 was identified.

Table 5: Numbers of redundant is-a relations in 10 different versions of Gene
Ontology regarding to the length of the indirect path. li represents the number
of redundant is-a relations in length of i regarding to the indirect path.

Version l2 l3 l4 l5 l6 l7 Total

2014-08-01 421 40 23 11 1 1 497

2014-09-01 419 44 24 13 1 1 502

2014-10-01 512 72 29 15 2 1 631

2014-11-01 771 164 64 27 4 1 1,031

2014-12-01 921 174 63 27 7 1 1,193

2015-01-01 980 202 62 24 8 1 1,277

2015-02-01 1,098 220 68 24 8 2 1,420

2015-03-01 1,119 237 72 25 8 2 1,463

2015-04-01 1,198 238 78 29 7 2 1,552

2015-05-01 1,238 255 78 29 7 2 1,609

10 FEDRR

4.4 Evaluation

Even though in most cases redundant edges should be removed, in some cases
the redundancy is caused by a mistake of an edge along the indirect path. For
example, in Fig. 5, the assertion that “Bilateral congenital dislocation of hip”
is-a “Congenital dislocation of right hip” is most likely in error. This is because
a concept involving “bilateral” should not be a subclass of a concept of limited
laterality: “right” (but not “left”). Removing this edge would have automatically
eliminated the redundancy of the detected relation.

Fig. 5: A visualized example of redundant is-a relation in SNOMED CT.

To evaluate the performance of FEDRR’s detection of redundant is-a rela-
tions, a random sample of 30 redundant relations from SNOMED CT (2015-03-01
version) and 50 from GO (2015-05-01 version) were selected and manually re-
viewed by two human annotators. One annotator was asked to manually verify
if the redundant hierarchical relations identified by FEDRR are correct. The
other annotator was asked to review each redundant relation and provide on
feedback if the redundant relation (direct edge) should be removed or an edge
in the indirect path should be removed.

The first annotator verified that all of the redundant hierarchical relations
identified by FEDRR are correct, that is, 100% accurancy. Table 6 shows the
feedback of the second annotator. Among 30 redundant is-a relations in SNOMED
CT, 24 (80%) should have direct edge removed, and 6 (20%) should have indirect
edge removed. Among 50 redundant is-a relations in GO, 45 (90%) should have
direct edge removed, and 5 (10%) should have indirect edge removed.

Table 6: Numbers of direct edge and indirect edge that should be removed for
30 redundant is-a relations in SNOMED CT and 50 in Gene Ontology.

Remove direct edge Remove indirect edge

SNOMED CT 24 (80%) 6 (20%)

Gene Ontology 45 (90%) 5 (10%)

5 Discussions

5.1 Related Work

There has been related work on exploring redundant relations in biomedical
ontologies or terminologies [22–24]. Bodenreider [22] investigated the redundancy
of hierarchical relations across biomedical terminologies in the Unified Medical
language System. Different from this work, FEDRR focuses on developing a
fast and scalable approach to detect redundant hierarchical relations in a single
ontology.

FEDRR 11

Gu et al [23] investigated five categories of possibly incorrect relationship as-
signment including redundant relations in the Foundational Model of Anatomy.
The redundant relations were detected based on the interplay between the is a
and other structural relationships (part of, tributary of, branch of). A review of
20 samples from possible redundant part of relations validated 14 errors, a 70%
correctness. FEDRR differs from this work in two ways. Firstly, FEDRR aims to
provide an efficient algorithm to identify redundant hierarchical relations from
large ontologies with 100% accuracy. Secondly, FEDRR can be used for detecting
redundant relations in all DAG with the transitivity property.

Mougin [24] studied redundant relations as well as missing relations in GO.
The identification of redundant relations was based on the combination of rela-
tionships including is a and is a, is a and part of, part of and part of, and is a
and positively regulates. FEDRR’s main focus is to provide a generalizable and
efficient approach to detecting redundant hierarchical relations in any ontology,
which has been illustrated by applying it to two of the largest biomedical on-
tologies SNOMED CT and GO. Moreover, the redundant hierarchical relations
detected by FEDRR were evaluated by human experts, while only number of
redundant relations was reported in [24] without human annotator’s validation.

6 Conclusion

Detecting and removing redundant relations is an important quality improve-
ment task for biomedical ontologies because non-redundancy is the basic premise
of all semantic measures derived from ontological structures, such as semantic
distance between concepts and ontology mapping and alignment. We introduced
FEDRR for fast and exhaustive detection of all redundant hierarchical relations
in ontological hierarchies. Our algorithm runs in linear time to the size of the
ontological structure in practice.

Using FEDRR, we performed systematic and exhaustive search of all redun-
dant relations in two of the largest ontological systems in biomedicine: SNOMED
CT and Gene Ontology. The algorithmic core of FEDRR is easy to implement
and extremely efficient. In our extensive experiments on real-world, largest onto-
logical structures, it took less than 20 seconds for FEDRR to process SNOMED
CT and Gene Ontology.

With these results, we believe that FEDRR is production ready. After creat-
ing a user guide and a technical guide, with an associated visualization interface,
we intend to release it as an open-source tool to the ontological engineering com-
munity in the near future.

Acknowledgments. We thank Shiqiang Tao for the SVG template which
helped the rendering of the diagrams used for this work. The project described
was supported by the National Center for Advancing Translational Sciences,
UL1TR000117, and in part by the Software Solutions of Applied Research and
Technology Program at Western Kentucky University. The content is solely the
responsibility of the authors and does not necessarily represent the official views
of the NIH.

References

1. Cui L, Tao S, Zhang GQ. A Semantic-based Approach for Exploring Consumer
Health Questions Using UMLS. AMIA Annual Symp Proc 2014, pp. 432-441.

12 FEDRR

2. Zhang GQ, Cui L, Lhatoo S, Schuele S, Sahoo S. MEDCIS: Multi-Modality
Epilepsy Data Capture and Integration System. AMIA Annual Symp Proc 2014,
pp. 1248-1257.

3. Jayapandian C, Chen CH, Dabir A, Lhatoo S, Zhang GQ, Sahoo S. Domain On-
tology As Conceptual Model for Big Data Management: Application in Biomedical
Informatics. International Conference on Conceptual Modeling, Atlanta, 2014 (in
press).

4. Bodenreider O. Biomedical ontologies in action: role in knowledge management,
data integration and decision support. Geissbuhler A, Kulikowski C, editors. IMIA
Yearbook of Medical Informatics 2008. Methods Inf Med 2008;47(Suppl 1):67-79.

5. Couto, Francisco M., Mário J. Silva, and Pedro M. Coutinho. Measuring semantic
similarity between Gene Ontology terms. Data & knowledge engineering 61, no. 1
(2007): 137-152.

6. Giunchiglia F, Autayeu A, Pane J, S-match: an open source framework for match-
ing lightweight ontologies Semantic Web, 3 (3) (2012), pp. 307-317

7. Donnelly K. SNOMED-CT: The advanced terminology and coding system for
eHealth. Stud Health Technol Inform Vol. 121, pages 279-90, 2006.

8. Bodenreider, O. The unified medical language system (UMLS): integrating biomed-
ical terminology. Nucleic acids research, 32(suppl 1), D267-D270, 2004.

9. Gene Ontology Consortium. The Gene Ontology (GO) database and informatics
resource. Nucleic acids research 32.suppl 1: D258-D261, 2004.

10. Min H, Perl Y, Chen Y, Halper M, Geller J, Wang Y. Auditing as part of the
terminology design life cycle. J Am Med Inform Assoc 2006;13(6): 676-690.

11. He Z, Ochs C, Agrawal A, Perl Y, Zeginis D, Tarabanis K, Elhanan G, Halper
M, Noy N, Geller J. A family-based framework for supporting quality assurance
of biomedical ontologies in BioPortal. In AMIA Annual Symposium Proceedings
2013, pp. 581-590.

12. Tao S, Cui L, Zhu W, Sun M, Bodenreider O, Zhang GQ. Mining Relation Reversals
in the Evolution of SNOMED CT Using MapReduce. AMIA Joint Summits on
Translational Science 2015, pp. 46-50.

13. Ceusters W. Applying Evolutionary Terminology Auditing to SNOMED CT.
AMIA Annu Symp Proc. 2010 Nov 13;2010:96-100.

14. Hartung M, Grob A, Rahm E. COnto-Diff: generation of complex evolution map-
pings for life science ontologies. J Biomed Inform. 2013 Feb;46(1):15-32.

15. Kirsten T, Gross A, Hartung M, Rahm E. GOMMA: a component-based infras-
tructure for managing and analyzing life science ontologies and their evolution. J
Biomed Semantics. 2011 Sep 13;2:6. doi: 10.1186/2041-1480-2-6.

16. Jiang G, Chute CG. Auditing the semantic completeness of SNOMED CT using
formal concept analysis. J Am Med Inform Assoc 2009;16(1):89-102.

17. Zhang GQ and Bodenreider O. Using SPARQL to Test for Lattices: application to
quality assurance in biomedical ontologies. The Semantic Web-ISWC 2010, pages
273-288, 2010.

18. Zhang GQ and Bodenreider O. Large-scale, exhaustive lattice-based structural
auditing of SNOMED CT. American Medical Informatics Association (AMIA)
Annual Symposium, pages 922-926, 2010.

19. Zhang GQ, Zhu W, Sun M, Tao S, Bodenreider O, Cui L. MaPLE: A MapRe-
duce Pipeline for Lattice-based Evaluation of SNOMED CT. IEEE International
Conference on Big Data, 2014;754-9.

20. Sedgewick R, Wayne K, Algorithms (4th ed.), Addison-Wesley Professional, pp.
661-666, ISBN 9780321573513, 2011.

21. Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford
(2001), Section 22.4: Topological sort, Introduction to Algorithms (2nd ed.), MIT
Press and McGraw-Hill, pp. 549-552, ISBN 0-262-03293-7.

22. Bodenreider O. Strength in numbers: exploring redundancy in hierarchical relations
across biomedical terminologies. AMIA Annual Symp Proc 2003, pp. 101-105.

23. Gu HH, Wei D, Mejino JLV, and Elhanan G. Relationship auditing of the FMA
ontology. Journal of biomedical informatics 42(3): 550-557, 2009.

24. Mougin F. Identifying redundant and missing relations in the gene ontology. Stud-
ies in health technology and informatics 210: 195-199, 2014.

