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Abstract. The Interaction Network Ontology (INO) has been demonstrated to 
be valuable in providing a structured ontological vocabulary for literature 
mining of gene-gene interactions from biomedical literature. Our analysis of the 
Learning Logic in Language (LLL) challenge and vaccine datasets showed that 
many interactions are signaled with 2 or more interaction keywords used in 
combination. In this paper, we extend the INO by adding combinatory patterns 
of two or more literature mining keywords to related INO interaction classes. 
An INO-based literature mining pipeline was further developed based on 
SPARQL queries and SciMiner, an in-house literature mining program. The 
majority of the gene interaction sentences from the LLL and vaccine datasets 
were found to use multiple keywords to represent interaction types. A 
comprehensive analysis of the LLL dataset identified 27 gene regulation 
interaction types each associated with multiple keywords. Special patterns were 
discovered from the hierarchical structure of these 27 INO types.   
 
Keywords: Interaction Network Ontology, Literature mining, Gene-gene 
interaction, SciMiner  

1   Introduction 

Literature mining methods for extracting interactions among biomedical entities 
including genes and proteins typically formulate the problem as a binary classification 
task, where the goal is to identify the pairs of entities that are stated to interact with 
each other in text [1, 2]. Several different methods have been proposed to tackle this 
problem ranging from relatively simpler co-occurrence based methods [3] to more 
complex methods that make use of the syntactic analysis of the sentences [4-6], 
mostly in conjunction with machine learning methods [7-9]. 
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Besides, extracting the existence of interactions among biomolecules, identifying 
the types of these interactions are vital for a better understanding of the underlying 
biological processes and for the creation of more detailed and structured models of 
interactions such as biological pathways. In order to improve the performance of 
extracting biomolecular events and entities with varying roles (e.g. theme, causes, and 
etc.), the literature mining community has established collaborative but competitive 
challenges such as the BioNLP Shared Tasks on Event Extraction [10, 11]. 

The types of interactions (or events) among biomolecules are in general signaled 
with specific interaction keywords (trigger words). For example, the interaction 
keyword “up-regulates” signals an interaction of type positive regulation, whereas the 
keyword “inhibits” signals an interaction of type negative regulation. We have 
previously collected over 800 interaction keywords, which we used with support 
vector machines (SVM) [12] to classify pairs of genes or proteins as interacting or not 
[13]. We have also shown that the usage of ontologies, such as the Vaccine Ontology 
(VO), can enhance the mining of gene-gene interactions under a specific domain, for 
example, the vaccine domain [13] or vaccine induced fever domain [14]. The over 
800 interaction-associated keywords provide us tags for mining interactive relation 
between two genes/proteins.  

However, this is basically a binary result of an interaction between two molecules 
or entities. To extend from the binary yes/no results, we further hypothesized that the 
ontological classification of these and more keywords would allow us to further 
identify and classify the types of interactions (e.g., regulation of transcription). Based 
on this hypothesis, we ontologically classified these interaction-related keywords in 
the Interaction Network Ontology (INO), a community-driven ontology of biological 
interactions, pathways, and networks [13, 15]. INO classifies and represents different 
levels of interaction keywords used for literature mining of genetic interaction 
networks. Its development follows the Open Biological/Biomedical Ontology (OBO) 
Foundry ontology development principles (e.g., openness and collaboration) [16]. We 
also showed the utility of using INO and a modified Fisher's exact test to analyze 
significantly over- and under-represented enriched gene-gene interaction types among 
the vaccine-associated gene-gene interactions extracted using all PubMed abstracts 
[15]. Our study showed that INO would provide a new platform for efficient mining 
and analysis of topic-specific gene interaction networks. 

Nevertheless, there still exist two more challenges in regards to the INO-based 
classification method. The first is that the INO-based data standardization is not easy 
for tool developers to deploy. The second is that current INO-based classification 
focuses on the classification of interaction types signaled with one keyword in a 
sentence. However, it is quite frequent that two or more interaction-related keywords 
collectively signal an interaction type in a sentence. Such combinations of keywords 
were discussed in the Discussion section of our previous paper without further 
exploration [9]. In this article, we report our effort to address these two challenges, 
including the further development and standardization of INO-based classification 
method and INO-based classification of multiple interaction keywords representing 
interaction types in sentences. We have also applied these in two use case studies.  



2   Methods  

2.1   INO ontology modeling and editing  

INO was formatted using the Description Logic (DL) version of the Web Ontology 
Language (OWL2) [17]. The Protégé OWL Editor [18] was used to add and edit INO 
specific terms. To identify INO interaction types containing two or more keywords 
used for literature mining of gene-gene interactions, we manually annotated sentences 
from selected PubMed abstracts as described later and ontologically modeled each 
interaction types in INO.  

2.2   SPARQL query of the INO subset of interaction keywords used for 
literature mining of gene-gene interactions  

The Ontobee SPARQL endpoint (http://www.ontobee.org/sparql) was used to obtain 
the literature mining keywords by querying the INO ontology content stored in the He 
Group RDF triple store [19]. This triple store was developed based on the Virtuoso 
system. The data in the triple store can be queried using the standard Virtuoso 
SPARQL queries. 

2.3 OntoFox extraction of an INO subset of interaction terms that can be 
classified by two or more keywords in one sentence   

All the INO terms containing literature mining keywords composed of multiple words 
were identified, and a subset of INO containing these terms and related terms was 
extracted using the OntoFox tool [20].  

2.4   Gold standard LLL data analysis  

In order to analyze the characteristics of interactions which are signaled with more 
than one keywords, we manually annotated the gene/protein interaction data set from 
the Learning Logic in Language (LLL) Challenge [21] for the interaction types and 
the keywords that signal them. Two experts reviewed the output of the single-word 
interaction keywords identified by SciMiner, then carefully examined for multi-
keyword interactions. Discrepancy was resolved by agreement between two experts.  

2.5   Vaccine gene-gene interaction literature mining use case   

In our previous paper, we used ontology-based SciMiner [22] to extract and analyze 
gene-gene interactions in the vaccine domain using all PubMed abstracts [15]. In this 
paper, we further annotated those sentences including two or more interaction-related 
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keywords for annotating gene-gene interactions. The results were then systematically 
analyzed.  

3   Results  

3.1   INO representation of interaction terms and literature mining keywords   

As defined previously, INO is aligned with the upper level Basic Formal Ontology 
(BFO) [16]. In INO, a biological interaction is defined as a processual entity that has 
two or more participants (i.e., interactors) that have an effect upon one another. To 
support ontology reuse and data integration, INO imports many terms from existing 
ontologies [15], such as the Gene Ontology (GO) [23], and PSI Molecular 
Interactions (PSI-MI) [24]. As of August 12th, 2015 INO has 571 terms including 153 
terms with INO prefix and 418 terms imported from 10 other ontologies 
(http://www.ontobee.org/ontostat.php?ontology=INO).  

In the present study, we focused on the branch of gene-gene regulation, 
particularly gene expression regulation. For the INO term ‘gene expression 
regulation’, the input interactor is a gene, the output interactor is a gene product 
including a RNA or protein, and the regulator is typically a protein. There exist 
different subtypes of ‘gene expression regulation’, for example, positive or negative 
regulation of gene expression, and regulation of transcription or translation.    

Fig. 1 shows an example of how INO defines the term ‘regulation of 
transcription’. In addition to its text definition, INO also generates many logic 
axioms. An equivalent class definition of the term is defined: regulates some ‘gene 
transcription’, where ‘regulates’ is an object property (or called relation) and ‘gene 
transcription’ is a gene expression process that transcribes a gene to RNA. In addition 
to asserted axioms, many axioms are also inherited for the parents of the term 
‘regulation of transcription’ (Fig. 1).  

Various subtypes of ‘regulation of transcription’ exist. For example, there are 
different subtypes of positive or negative regulation of transcription. One commonly 
seen subtype of regulation of transcription is via a promoter. A promoter is a region of 
DNA located near the transcription start site of a gene, and the binding between a 
promoter sequence and a transcription factor is required to initiate a transcription. The 
phrase of a sentence “sigmaB- and sigmaF-dependent promoters of katX” [25] 
indicates that sigmaB and sigmaF regulate katX through the katX promoters.  

Some interactions are characterized with a single interaction keyword. For 
example, in the sentence “Dephosphorylation of SpoIIAA-P by SpoIIE is strictly 
dependent on the presence of the bivalent metal ions Mn2+ or Mg2+” [26], the type of 
interaction between SpoIIAA-P and SpoIIE is dephosphorylation reaction, which is 
characterized with the interaction keyword “dephosphorylation”.  

On the other hand, there are also more complex interactions that are characterized 
with two or more interaction keywords. Consider the sentence “In the mother cell 
compartment of sporulating cells, expression of the sigE gene, encoding the earlier-
acting sigma factor, sigmaE, is negatively regulated by the later-acting sigma factor, 
sigmaK” [27]. The relation between the SigE and SigmaK genes is characterized with 
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the interaction keywords “expression” and “negatively regulated”. The type of 
relation is negative regulation of gene expression. SigmaK negatively regulates the 
expression of SigE. Such relations are represented as complex events in the Genia 
event corpus [28] used in the BioNLP Shared Tasks, where the expression of SigE is 
considered as the first event and the negative regulation of this event by the SigmaK 
gene is considered as the second event. In contrast, INO represents such complex 
events using a different strategy as described below.   

BFO upper 
level terms

 
Fig. 1. INO representation of ‘regulation of transcription’. Axioms are defined for this class 
or inherited from its parent terms including its direct parent term ‘gene expression regulation’. 
As shown in the figure, INO is aligned with BFO as its upper level ontology. The annotated 
literature mining keywords for the INO class are highlighted with oval circle.  

3.2   INO-based standardization of literature mining of gene-gene interactions  

As shown in Fig. 1, the literature mining keywords for an INO term are defined as an 
annotation using the annotation property ‘has literature mining keywords’. To provide 
a reproducible strategy of representing the literature mining keywords, we used the 
sign “//” to separate two keywords, which indicates that these two keywords do not 
have to be next to each other in a sentence (Fig. 1). For example, many keywords are 
added for the INO term ‘regulation of transcription’ (INO_0000032), including 
“transcription // dependent, regulated // transcription, requires // transcription”. 
These terms mean that the two keywords such as “requires” and “transcription” can 
be separate in one sentence, for example, “sspG transcription also requires the DNA 
binding protein GerE” [29].     

Different ways can be used to get the information of keywords. One way is to 
query INO using SPARQL. To show how we can quickly obtain the INO literature 
mining keywords, we have shown the usage of a SPARQL query to automatically 
generate the INO subset for literature mining (Fig. 2).  

Before the SPARQL can be executed, the INO ontology content should be first 
deposited in RDF triple store. Indeed, the INO is included in the Hegroup RDF Triple 



Store [19], which is the default RDF triple store for the ontologies in the Open 
Biological and Biomedical Ontologies (OBO) library (http://www.obofoundry.org/).   

 

Fig. 2. SPARQL query of interaction keywords for INO interaction class terms. This query was 
performed using the Ontobee SPARQL query website (http://www.ontobee.org/sparql/).  This 
figure is a screenshot of the SPARQL code and a portion of the results.   

3.3  Incorporation of INO literature mining system to a software program  

SciMiner [22] is our in-house literature mining software program for identifying 
interactions among genes/proteins/vaccines and analyzing their biological 
significance. We recently incorporated INO into SciMiner and demonstrated its 
successful application to the identification of specific interaction types significantly 
associated with gene-gene interactions in the context of vaccine [15]. SciMiner can 
also be utilized in identifying and modeling two interaction keywords, which will be 
eventually used to improve the final literature-mined interaction network. 

Fig. 3 illustrates the overall workflow of INO modeling and its application in 
literature mining for gene-interaction analysis. Briefly, the INO modeling procedure 
aims at identifying and classifying the interaction patterns of two INO keywords. 
Sentences with potential multiple interaction keywords (from gold standard sets) are 
first scanned to identify individual single-word INO keywords and biological entities. 
For any sentences with two or more interaction keywords identified, combinations of 
two keywords are queried against the dictionary of keywords associated with existing 
INO interaction classes. For any two keyword patterns that are not included in the 
current dictionary, INO experts manually examine the sentences and two-keyword 
patterns to confirm their valid interactions, update the INO annotations accordingly 
with new entries, and upload the updated INO to a RDF triple store. Then, SPARQL 
can be used to create new INO keyword dictionary for literature mining.  

Once INO-interaction keyword dictionary is established, it can be applied to 
constructing interaction networks of biological entities from any set of biomedical 
literature using SciMiner (as shown in the right part of Fig. 3). Briefly, SciMiner 
accepts PubMed abstracts or sentences as input. After internal preprocessing of the 
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abstracts/sentences, SciMiner identifies biological entities such as gene/protein or any 
ontologies (e.g. vaccine ontology) as well as single-word level INO terms. From the 
sentences with at least two identified entities and one or more INO terms are used in 
the interaction modeling. Sentences with two interaction keywords will further go 
through multi-keyword interaction modeling, and a final interaction network will be 
generated and subjected to down-stream functional analysis. A standalone command-
line based SciMiner, rather than the web version, was used in the current study and 
the complete standalone pipeline will be available upon completion of the 
development.  

 

Fig 3. INO modeling and application workflow. 

3.4   Annotation of the LLL data set for interaction types 

The LLL data set contains gene/protein interactions in Bacillus subtilis, which is a 
model bacterium [6]. The data set contains 77 sentences and 164 pairs of 
genes/proteins that are described as interacting in these sentences. As an example, 
consider the sample sentence “Transcriptional studies showed that nadE is strongly 
induced in response to heat, ethanol and salt stress or after starvation for glucose in a 
sigma B-dependent manner.” [30] from the LLL data set. The interacting protein/gene 
pairs (i.e., nadE and sigma B) have already been annotated in the data set. Given the 
sentence and the interacting pair of proteins/genes, we annotated the type of relation 
between them and the interaction keywords signaling this relation. The type of 
interaction between nadE and Sigma B is “positive regulation of gene transcription”, 
in other words Sigma B positively regulates the transcription of nadE. The relevant 
interaction keywords are “transcriptional”, “induced”, and “dependent”. Our 



interaction type and keyword annotation of the data set will be made publicly 
available for future studies. 

Our annotation of the LLL data set for interaction types showed that many 
regulatory relations between gene/protein pairs are represented with multiple 
keywords. While the interactions among 43 pairs of genes/proteins were represented 
with a single keyword, the interactions among 116 pairs were signaled using multiple 
keywords. These interactions correspond to 27 different classes of regulation in INO. 
Fig. 4 shows the hierarchical structure of these 27 classes, their related classes, and 
the number of gene/protein pairs in the sentences identified for each class.  
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Fig. 4. The hierarchical display of 27 interaction classes and the numbers of sentences 
associated with these classes in the LLL Data Set. OntoFox was used to generate the INO 
subset, and the Protégé OWL editor was used to visualize the hierarchical structure.  

Our study of the LLL dataset indicated that the majority of the sentences are 
related to the gene expression regulation, especially in the area of transcriptional 
regulation. More sentences describe positive regulation rather than negative 
regulation. An interesting observation is the presence of many sentences focusing on 
the domain of promoter-based regulation of transcription (Fig. 1). In addition to gene 
expression regulation, this data set also includes other types of gene regulation, for 
example, regulation of protein location, regulation of gene activation, and regulation 
of protein activity. It is noted that protein activity is different from gene expression. 
Protein activity depends on many factors other than expression, such as correct 
folding of the protein and the presence of any required cofactors.  

Our analysis showed that most multi-keyword interactions are represented with 
two keywords. Consider the interaction between KinC and Spo0A~P in the sentence 
“KinC and KinD were responsible for Spo0A~P production during the exponential 
phase of growth in the absence of KinA and KinB” [31]. This sentence states that 



KinC is responsible for Spo0A~P production. The interaction type between these 
genes is classified as “regulation of translation” in INO. The two keywords signaling 
this interaction are “responsible” and “production”. The keyword “responsible” 
signals that this is an interaction of type “regulation”, whereas the keyword 
“production” signals that this is a specific type of regulation, namely “regulation of 
translation”. We can consider “responsible” as the main type signaling keyword and 
“production” as the secondary (sub) type signaling keyword.  

There are also more complex interactions, which are represented with more than 
two keywords. For example, in the sentence “A low concentration of GerE activated 
cotB transcription by final sigma(K) RNA polymerase, whereas a higher 
concentration was needed to activate transcription of cotX or cotC.” [32], the 
interaction between GerE and cotB is signaled with the three keywords “low 
concentration”, “activated”, and “transcription”. The type of interaction corresponds 
to the INO class “activation of gene transcription by low level protein”. In another 
sentence “sigmaH-dependent promoter is responsible for yvyD transcription” [33], 
four keywords are used: “dependent”, “promoter”, “responsible”, and “transcription”. 
Such a complex interaction is labeled as “promoter-based regulation of transcription” 
in INO. 

3.5   Analysis of vaccine-based gene-gene interaction literature mining results  

Our previous INO-based literature mining study used an INO-based SciMiner 
program to identify many gene-gene interactions in the vaccine domain using all 
PubMed abstracts [15]. A statistical method based on the results was also developed 
to classify significantly over- and under-represented interaction types. Our manual 
examination of randomly selected 50 sentences identified by SciMiner, a small 
portion of the whole vaccine corpus, suggested that similar to the LLL data set, over 
50% of sentences use two or more keywords to represent specific gene-gene 
interaction types.  

4   Discussion  

In this paper, we investigated the interaction types that are characterized with 
multiple keywords used in combination. The main contributions are: (1) Extending 
INO by modeling interaction types (classes) each signaled with multiple keywords in 
literature sentences and adding many new terms by analyzing the LLL and vaccine 
data sets, (2) Standardizing INO-based literature mining for easy use and testing by 
future studies. (3) Characterizing and demonstrating multi-keyword interaction type 
ontology modeling of literature sentences by analyzing the LLL and vaccine-gene 
interaction data sets.  

Multi-keyword interactions have been represented as complex events in the Genia 
corpus [28], which has also been used in the BioNLP Shared Tasks on Event 
Extraction. In this representation, in order to identify the complex events, first the 
simple events (e.g. gene expression, regulation) signaled with individual keywords 
need to be identified. Next, the simple events are combined to form a complex event. 



For instance, given a sentence that states that gene A regulates the expression of gene 
B, the expression of gene B is represented as Event 1 (i.e., expression of gene B), and 
Event 2 is a complex event where gene A regulates Event 1. Therefore, we could infer 
a possible relation between gene A and gene B, by the association of Event 1 – gene 
B – Event 2 – gene A. Such recognition of the gene A-B interaction is indirect, and 
may become even more complex when multiple events (with multiple keywords) are 
applied. Compared to the Genie approach, INO provides a more fine-grained and 
direct classification of interaction types and can directly model the relation between 
two biomolecules (e.g., genes or proteins). For instance, the interaction between gene 
A and gene B in the above example is directly modeled as the interaction type 
“regulation of gene expression” in INO.   

The Gene Regulation Ontology (GRO) [34] models complex gene regulatory 
events similarly to INO. GRO has recently been used in the Corpus Annotation with 
Gene Regulation Ontology Task in the 2013 edition of BioNLP Shared Task [35]. 
The domains of GRO and INO differ. GRO focuses on only gene regulations. 
However, INO targets the broader scope of interactions and interaction networks. 
Similar to INO, GRO is also aligned with the Basic Formal Ontology (BFO) and 
many other ontologies such as the Gene Ontology (GO). However, for the ontology 
alignments, GRO uses its own identifiers and references back to the original 
ontologies; in contrast, INO directly imports related terms from other ontologies. 
Technical representations of entities in INO and GRO also differ in many aspects. 
Compared to GRO, one of the main advantages of INO is that the interaction types 
and sub-types are associated with manually compiled comprehensive lists of literature 
mining keywords. These keywords can be incorporated in dictionary-based or 
statistical taggers for tagging the interaction keywords in text, which can then be used 
to map the interactions to their corresponding types in INO.  

Future work includes automatic identification and modeling of novel two keyword 
interactions by SciMiner, and a new notation of multi-keyword interactions using 
regular expressions to be more systematic rather than the current ‘//’-based strategy. 
In this paper we demonstrated our strategy of integrating INO with the SciMiner 
tagger for ontology-based literature mining. Currently, the integrated INO-SciMiner 
works as a standalone package, and it can be easily incorporated into other literature 
mining pipelines, if desired. The current SciMiner system can identify gene/protein 
and vaccine, but is being upgraded to be able to identify other entities such as drug, 
tissue, and etc., thus, the future version of INO-integrated SciMiner can be applied to 
not only the typical gene-gene interaction, but also other interactions such as gene-
drug interaction, drug-chemical, drug-tissue and various types of interaction.  
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