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Abstract. In pattern mining, one of the most important problems is
fighting exponential explosion of the set of patterns. A typical solution is
generating only a part of all patterns satisfying some criteria. The most
well-known criterion is support of a pattern, which has the monotonic-
ity property allowing one to generate only frequent (highly supported)
patterns. Many other useful criteria are not monotonic, which makes it
difficult to generate best patterns efficiently. In this paper we introduce
the notion of “generalized monotonicity” and Σοφια algorithm that al-
low to generate top patterns in polynomial time modulo basic operations,
e.g., measure computation, for criteria that are not monotonic. This ap-
proach is applicable not only to itemsets, but to complex descriptions
such as sequences, graphs, numbers or interval tuples, etc. In this paper
we consider stability and Δ-measures which are not monotonic. In the
experiments, we compute top best patterns w.r.t. these measures and
obtain very promising results.

1 Introduction

To solve the problem of exponential explosion of patterns valid in a dataset
many kinds of interestingness measures were proposed [1]. For example, pattern
support, i.e., the number of objects covered by the pattern, is one of the most
well-known measures of pattern quality. Among others stability of a formal con-
cept [2] can be mentioned. Unlike support this measure is not monotonic w.r.t.
the order of pattern inclusion and it is hard to generate only most interesting
patterns w.r.t. these measures, so one has to find a large set of patterns and then
postprocess it, choosing the best ones.

Due to the increasing importance of pattern mining, efficient approaches of
finding best patterns are appearing. In [3] authors introduce an approach for
efficiently searching the most interesting associations w.r.t. lift or leverage of a
pattern. Another approach is searching for cosine interesting patterns [4]. The
cosine interestingness of a pattern is not a monotonic measure but the authors
take advantage of a conditional anti-monotonic property of cosine interestingness
to efficiently mine interesting patterns. However, all of the mentioned approaches
are not polynomial in the worst case.

In this paper we introduce a new algorithm Σοφια (Sofia, for Searching for
Optimal Formal Intents Algorithm) for extracting top best patterns of different



kinds, i.e., itemsets, string, graph patterns, etc. Σοφια algorithm is applicable to a
class of measures, including classical monotonic measures, stability, δ-freeness [5],
etc. For itemset mining, our algorithm can find top best patterns w.r.t. a measure
from this class in polynomial time, modulo complexity of measure computation.
For more complex description the time is polynomial modulo complexity of basic
operations (intersecting and testing containment on descriptions, computation
of a measure).

2 Preliminaries

FCA is a formalism convenient for describing models of itemset mining and
knowledge discovery [6]. Here we briefly define pattern structures and the corre-
sponding notations [7]. A pattern structure is a triple P = (G, (D,u), δ), where
G is a set of objects, (D,u) is a meet-semilattice of descriptions such that
(∀X ⊆ G)

d
X ∈ D and δ : G → D maps an object to a description. The

intersection u gives similarity of two descriptions.
Let us denote the derivative operators of the Galois connection between 2G

and D by (·)� (see [7]). A pattern concept of a pattern structure (G, (D,u), δ)
is a pair (A, d), where A ⊆ G, called pattern extent and d ∈ D, called pattern
intent, such that A� = d and d� = A. The set of all pattern concepts is partially
ordered w.r.t. inclusion on extents, i.e., (A1, d1) ≤ (A2, d2) iff A1 ⊆ A2 (or,
equivalently, d2 v d1), making a lattice, called pattern lattice.

For real datasets, the number of patterns can be large. In order to reduce
the most interesting concepts different measures can be used. In this paper we
rely on stability [2], which measures the independence of a concept intent w.r.t.
randomness in data. Because of limited space we do not discuss this measure in
details here. Moreover, since concept stability is hard to compute, we rely on an
estimate of concept stability which can be computed in polynomial time for a
single concept [8].

The approach proposed in this paper is based on projections introduced for
reducing complexity of computing pattern lattices [7]. A projection operator ψ :
D → D is an “interior operator”, i.e. it is (1) monotonic (x v y ⇒ ψ(x) v ψ(y)),
(2) contractive (ψ(x) v x) and (3) idempotent (ψ(ψ(x)) = ψ(x)).

An o-projected pattern structure (projected pattern structure for simplicity)
ψ((G, (D,u), δ)) is a pattern structure ψ(P) = (G, (Dψ,uψ), ψ ◦ δ), where Dψ =

ψ(D) = {d ∈ D | ∃d̃ ∈ D : ψ(d̃) = d} and ∀x, y ∈ D,x uψ y := ψ(x u y) [9].
Given a projection ψ we say that the fixed set of ψ is the set of all elements
from D which are mapped to themselves by ψ. The fixed set of ψ is denoted
by ψ(D) = {d ∈ D | ψ(d) = d}. Any element outside of the fixed set of ψ is
pruned from the description space. We say that a projection ψ1 is simpler than
a projection ψ2, denoted by ψ1 < ψ2, if ψ1(D) ⊂ ψ2(D), i.e., ψ2 prunes less
descriptions than ψ1.

Our algorithm is based on this order on projections. The simpler a projection
ψ is, the less patterns we can find in ψ(P), and the less computational efforts one
should take. Thus, we compute a set of patterns for a simpler projection, then



we remove unpromising patterns and extend our pattern structure and the found
patterns to a more detailed projection. This allows to reduce the size of patterns
within a simpler projection in order to reduce the computational complexity of
more detailed projection.

3 Σοφια Algorithm

3.1 Monotonicity w.r.t. a Projection

Our algorithm is based on the projection monotonicity, a new idea introduced
in this paper. Many interestingness measures for patterns, e.g., stability, are not
monotonic w.r.t. subsumption order on patterns, i.e., given patterns X and Y
such that X v Y , and a nonmonotonic measureM, one does not necessarily have
M(X) ≥ M(Y ). For instance, support is a monotonic measure w.r.t. pattern
order and it allows for efficient generation of patterns with support higher than
a threshold [10]. The projection monotonicity is a generalization of standard
monotonicity and allows for efficient work with a wider set of interestingness
measures.

Definition 1. Given a pattern structure P and a projection ψ, a measureM is
called monotonic w.r.t. the projection ψ, if

(∀p ∈ ψ(P))(∀q ∈ P, ψ(q) = p)Mψ(p) ≥M(q), (1)

whereMψ(p) is the measureM of pattern p computed in ψ(P).

Here, for any pattern p of a projected pattern structure we check that a
preimage q of p for ψ, e.g. p = ψ(q), has a measure smaller than the measure
of p. It should be noticed that a measure M for a pattern p can yield different
values if M is computed in P or in ψ(P). Thus we use the notation Mψ for the
measure M computed in ψ(P).

An important example is given by binary data or formal contexts (G,M, I).
In this case, a projection ψm corresponds to the removal of an attribute m ∈M ,
i.e., ψm(B) = B ∩ (M \ {m}) for any B ⊆ M . So Definition 1 means that the
interestingness of an itemset p w.r.t. a measureM computed in (G,M \{m}, I \
G×{m}) should be higher than the interestingness of the itemsets p and p∪{m}
(the preimages of p for ψm) w.r.t. the measureM computed in (G,M, I). If the
value of a measure for a pattern does not depend on a projection this definition
is related to a classical monotonic measure. Indeed, because of contractivity of
ψ (ψ(p) v p), for any monotonic measure one has M(ψ(p)) ≥M(p).

Thus, given a measure M monotonic w.r.t. a projection ψ, if p is a pattern
such that Mψ(p) < θ, then M(q) < θ for any preimage q of p for ψ. Hence, if,
given a pattern p of ψ(P), one can find all patterns q of P such that ψ(q) = p, it
is possible to find the patterns of ψ(P) and then to filter them w.r.t. Mψ and a
threshold, and finally to compute the preimages of filtered patterns.



3.2 Monotonicity w.r.t. a Chain of Projections

However, given just one projection, it can be hard to efficiently discover the
patterns, because the projection is either hard to compute or the number of
unpromising patterns that can be pruned is not high. Hence we introduce a chain
of projections ψ0 < ψ1 < · · · < ψk = 1, where the whole pattern lattice for ψ0(P)
can be easily computed and 1 is the identity projection, i.e., (∀x)1(x) = x. For
example, to find frequent itemsets, we typically search for small itemsets and,
then, extend them to larger ones. It corresponds to extension to a more detailed
projection.

Let us discuss what is a chain of projections in the case of a binary context
K = (G,M, I) with M = {m1, · · · ,mN}. It can be seen that any subcontext
Ks = (G,N, I ∩G×N), where N ⊆M , corresponds to a projection ψ such that
ψ(B ⊆M) = B∩N . If we put Mi = {m1, · · · ,mi}, then we can consider a chain
of projections corresponding to the subset of attributes M1,M2, · · · ,M . The
corresponding projections are properly ordered. Now we define the projection
monotonicity of M w.r.t. a chain of projections.

Definition 2. Given a pattern structure P and a chain of projections ψ0 < ψ1 <
· · · < ψk = 1, a measure M is called monotonic w.r.t. the chain of projections
ifM is monotonic w.r.t. all ψi for 0 ≤ i ≤ k.

3.3 Algorithms

Given a measure monotonic w.r.t. a chain of projections, if we are able to find
all preimages of any element in the fixed set of ψi that belong to a fixed set
of ψi+1, then we can find all patterns of P with a value of M higher than a
given threshold θ. We call this algorithm θ-Σοφια and its pseudocode is given in
Fig. 1. In lines 11-12 we find all patterns for ψ0(P) satisfying the constraint that
a value ofM is higher than a threshold. Then in lines 13-15 we iteratively extend
projections from smaller to bigger ones. The extension is done by constructing
the set Pi of preimages of the set Pi−1 (lines 2-5) and then by removing the
patterns that do not satisfy the constraint from the set Pi (lines 6-9).

The algorithm is sound and complete, because first, when we compute the set
of preimages of a pattern p, the pattern p is a preimage of itself (ψ(p) = p) and
second, if we remove a pattern p from the set P, then the value M(p) < θ and,
hence, the measure value of any preimage of p is less than θ by the projection
chain monotonicity of M.

The worst-case time complexity of θ-Σοφια algorithm is

T(θ-Σοφια) = T(FindPatterns(ψ0))+

+ k · max
0<i≤k

|Pi| · (T(Preimages) + T(M)), (2)

where T(X) is time for computing operationX. Since projection ψ0 can be chosen
to be very simple, in a typical case the complexity of FindPatterns(θ, ψ0) can
be low or even constant. The complexities of Preimages and M depend on the



Data: A pattern structure P, a chain of projections Ψ = {ψ0, ψ1, · · · , ψk}, a
measure M monotonic for the chain Ψ , and a threshold θ for M.

1 Function ExtendProjection(i, θ, Pi−1)
Data: i is the projection number to which we should extend (0 < i ≤ k), θ

is a threshold value for M, and Pi−1 is the set of patterns for the
projection ψi−1.

Result: The set Pi of all patterns with the value of measure M higher
than the threshold θ for ψi.

2 Pi ←− ∅;
3 /* Put all preimages in ψi(P) for any pattern p */

4 foreach p ∈ Pi−1 do
5 Pi ←− Pi ∪ Preimages(i,p)
6 /* Filter patterns in Pi to have a value of M higher than θ */

7 foreach p ∈ Pi do
8 if Mψi(p) ≤ θ then
9 Pi ←− Pi \ {p}

10 Function Algorithm θ-Σοφια
Result: The set P of all patterns with a value of M higher than the

threshold θ for P.
11 /* Find all patterns in ψ0(P) with a value of M higher than θ */

12 P ←− FindPatterns(θ, ψ0);
13 /* Run through out the chain Ψ and find the result patterns */

14 foreach 0 < i ≤ k do
15 P ←− ExtendProjection(i, θ,P);

Algorithm 1: The θ-Σοφια algorithm for finding patterns in P with a value
of a measure M higher than a threshold θ.

measure in use and on the instantiation of the algorithm. In many cases max
0<i≤k

|Pi|
can be exponential in the size of the input, because the number of patterns can
be exponential. It can be a difficult task to define the threshold θ a priori such
that the maximal cardinality of Pi is not higher than a given number. Thus,
we introduce Σοφια algorithm, which automatically adjusts threshold θ ensuring
that max

0<i≤k
|Pi| < L. Here L can be considered as a constraint on the memory

used by the algorithm. It can be seen from Eq. (2) that Σοφια algorithm has
polynomial time complexity if M and Preimages are polynomial. In the next
subsection we consider an important partial case where Σοφια has polynomial
complexity.

3.4 Σοφια Algorithm for Binary Data

In this subsection we have a formal context K = (G,M, I) withM = {m1, · · · ,mN}
and we want to find itemsets X ⊆M interesting w.r.t. a measure M. First, we
instantiate a chain of projections. In the case of binary data it corresponds to
the chain of contexts Ki = (G,Mi, I ∩G×Mi), where Mi = {m1, · · · ,mi}, i.e.,
Mi contains the first i attributes from M . It means that ψi(X) = X ∩Mi.



Then we define how the function Preimages works for this kind of chains
of projections. A set X ⊆ Mi−1 has two preimages in the powerset of Mi, i.e.
X and X ∪ {mi}. Hence, the computation complexity of finding preimages for
any itemset X is constant. For the projection ψ0 corresponding to the context
(G, ∅, ∅) there is only one itemset ∅. Thus, the worst case complexity for θ-Σοφια
algorithm is

T(θ-Σοφιαbinary) = |M | · max
0<i≤N

|Pi| · T(M). (3)

In particular, the complexity of Σοφια for binary data is |M | · L · T(M), i.e., it
is polynomial modulo complexity of the measure.

3.5 Σοφια Algorithm for Closed Patterns

Closed frequent itemsets are widely used as a condensed representation of all
frequent itemsets since [10]. Here we show how one can adapt our algorithm for
closed patterns. A closed pattern in ψi−1(P) is not necessarily closed in ψi(P).
However, the extents of ψ(P) are extents of P [7]. Thus, we associate the closed
patterns with extents, and then work with extents instead of patterns, i.e., a
pattern structure P = (G, (D,u), δ) is transformed into PC = (G, (DC ,uC), δC),
where DC = 2G. Moreover, for all x, y ∈ DC we have xuC y = (x� u y�)�, where
diamond operator is computed in P and δC(g ∈ G) = {g}. Hence, every pattern
p in DC corresponds to a closed pattern p� in D.

A projection ψ of P induces a projection ψC of PC , given by ψC(X ⊆ G) =
ψ(X�)�, where diamond is computed in P. The function ψC is a projection
because of the properties of (·)� operators and ψ mappings. We use this approach
for representing closed patterns in our computer experiments.

4 Experiments and Discussion

Datasets
Decreasing order Increasing order Random order

L = 103 L = 104 L = 105 L = 103 L = 104 L = 105 L = 103 L = 104 L = 105

t # θ t # θ t # θ t # θ t # θ t # θ t # θ t # θ t # θ

Mushrooms < 1 0.99 181 2 0.87 49 39 0.89 7 1 0.99 181 6 0.87 49 38 0.89 7 < 1 0.99 181 3 0.87 49 117 0.89 7
Chess < 1 0.997 97 2 0.92 69 17 0.94 46 1 0.88 144 4 0.24 84 38 0.68 49 < 1 0.65 103 2 0.92 69 19 0.94 46
Plants 1 1 147 14 0.96 70 146 0.94 37 3 1 147 29 0.96 70 263 0.94 37 1 1 147 14 0.96 70 143 0.94 37
Cars < 1 0.94 19 < 1 0.61 0 < 1 0.06 0 < 1 0.86 22 < 1 0.61 0 < 1 0.06 0 < 1 0.94 19 < 1 0.6 0 < 1 0.06 0

Table 1: Evaluation results of Σοφια algorithm for Δ-measure.

In the experiment we show how our algorithm in conjunction with stability
estimate behaves on different datasets from UCI repository [11]. Here we should
note that stability and its estimate is monotone w.r.t. any projection [12] and,



thus, we can combine it with Σοφια. The datasets Mushrooms1 and Cars2 are
datasets having a relatively small number of closed patterns, which can be found
in some seconds, while the datasets Chess3 and Plants4 have a lot of closed
patterns, which can be hardly found.

There are two obvious orders for adding an attribute in Σοφια algorithm: the
decreasing and increasing orders of attribute support. We consider also a random
order of attributes allowing one to discard any bias in the order of attributes.
Another point about our algorithm is that it does not ensure finding L-top best
patterns. It finds no more than L patterns allowing to compute the result in
polynomial time by adjusting the threshold θ of stable patterns.

Thus, in our experiment we have checked which order is better for the at-
tributes and how many patterns we can find for a given L. Table 1 shows the
results and is divided into three parts corresponding to the order in which at-
tributes were added to the context. Then all parts are divided into three subparts
corresponding to a value of L ∈ {103, 104, 105}. Hence, we have 9 experiments
and for every experiment we measure the computation time in seconds (t), the
ratio of found patterns to L (#) and the final θ corresponding to the found
patterns. For example, in the Mushrooms dataset, adding the attributes in the
decreasing order of their support for L = 10000, the total computational time
is equal to 2 seconds; the algorithm found around 0.87 ∗ L = 8700 patterns
representing all patterns with stability higher than 49.

In Table 1 we can see that our algorithm is efficient in the big and small
datasets however the computational time and the number of found patterns
depend on the order of attribute addition, i.e., on a projection chain. We can
see that the computational time and the number of patterns for increasing order
are never better than those of decreasing order and random order. Decreasing
order and random order have nearly the same behavior, but in some cases the
random order gives slightly worse results than the decreasing order. In fact, in
the case of decreasing order we generate more patterns on earlier iterations of
our algorithm, i.e., we have more chances to find an unstable pattern and filter
it as earlier as possible. Since concepts are filtered earlier, we have more space
for the computation, thus having smaller threshold θ and larger number of found
patterns, and we should process less patterns, thus saving the computation time.
We see that for the decreasing order of attributes the number of found patterns
is always around or higher than 0.9 ∗L, i.e., we find nearly as many patterns as
the requested limit L.

1 https://archive.ics.uci.edu/ml/datasets/Mushroom
2 https://archive.ics.uci.edu/ml/datasets/Car+Evaluation
3 https://archive.ics.uci.edu/ml/datasets/Chess+(King-Rook+vs.

+King-Knight)
4 https://archive.ics.uci.edu/ml/datasets/Mushroom



5 Conclusion

In this paper we have introduced a new kind of interestingness measures of
patterns monotonic w.r.t. a chain of projections. Based on this monotonicity we
introduce a new algorithm called Σοφια that finds the top best patterns for such
kind of measures in polynomial time. Our experiments justified the efficiency
of our algorithms. Many directions for future work are promising. First, we
should work on adaptation of Σοφια for finding different kinds of patterns, e.g.,
itemset generators, sequences, graphs. Second, we should study the best chains
of projections and the best order of attributes for Σοφια algorithm. Finally, the
study of new measures that can be used with Σοφια is also very important.
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