
On quantitative Analysis of Time Open
Workflow Nets and Parametric Extension

Zohra Sbaï
Université de Tunis El Manar

Ecole Nationale d’Ingénieurs de Tunis
BP. 37 Le Belvédère
1002 Tunis, Tunisia

zohra.sbai@enit.rnu.tn

Kamel Barkaoui
Laboratoire CEDRIC

Conservatoire National des Arts et Métiers
292 rue Saint Martin

Paris Cedex 03, France
kamel.barkaoui@cnam.fr

Collaborative systems design is today a complex process especially where constraints such as tasks delays
or resources handling have to be considered. In addition to a well constructed model of a workflow system,
a prior and rigorous verification phase is important to ensure a correct execution of the system. In this
direction, we are interested in this paper by the modeling and the analysis of interacting processes in
particular those constrained by timing delays. First, we present the Time open Workflow nets (ToWF-nets)
which stand for a sub-class of Petri nets dedicated to model any business process which interact with other
partners via interface places in order to meet a common goal. Then, after recalling the semantics of ToWF-
nets, we investigate in presenting our recent results in quantitative verification of properties related to the
correct communication of various ToWF-nets. We show how to make a TCTL based model checking of the
studied properties. Finally, we extend our analysis approach of ToWF-nets to cover concurrent processes
leading thus to propose a parametric verification of ToWF-nets.

Time Open Workflow Nets, Collaborative Systems, Quantitative Analysis, Timed Computational Tree Logic,
Parametric Verification

1. INTRODUCTION

Nowadays, collaboration in organizations is more
and more sought since it allows to end users to
benefit from more enhanced and complex services.
Although it is possible to allow complex services
with a single organization, it is almost impossible to
provide, in this case, simple services nor to reuse
them. So, it is important to provide simple services
and to allow their composition, if necessary, for
more complex tasks. For instance, manufacturing
systems can be seen as a network of servers and
queues. This system process can be seen as a
composition of multiple services interacting together
to fulfill a unique goal. As an example, we mention
a factory which make shirts. The first stage in
shirt manufacturing is the cutting of the material to
different shapes. Then, the next stage is to sew
the pieces together. Finally buttons and a quick
iron are added. This composition is more and more
studied when treating inter organizational processes.
We mention for example a manufacturing enterprize
which has to communicate with clients, suppliers,
etc. in order to fulfill the manufacturing task. Thus
the notion of services composition is of great need

and that’s why it is very studied in academic as well
as industrial environment.

In collaborative systems in general, different part-
ners, having their own processes, interact together
in order to achieve a common goal. We focus in this
paper on the modeling and the analysis of such sys-
tems involving multiple communicating processes. In
the modeling phase, we propose to use Time Open
Workflow Nets (ToWF-nets), a sub class of Time
Petri Nets (TPN) to model workflow processes with
timing delays and with ability to communicate with
partners. A ToWF-net consists of an open workflow
net (oWF-net) in which we associate with each
transition a minimum and a maximum amount of time
needed to its execution. An oWF-net is a workflow
net augmented with special places called interface
places and used to interact with other processes.

For the purpose of analysis, we propose to enhance
a formal verification due to solid theoretical basis
of formal methods. More precisely, we adopt an
analysis method based on the well known model
checking techniques. In fact, Model checking is an
automated verification technique for proving that
a model satisfies a set of properties specified in

©

•

temporal logic. Given a concurrent system Σ and
a temporal logic formula ϕ, the model checking
problem is to decide whether Σ satisfies ϕ. Hence,
we have to formulate in temporal logic the properties
to be verified. This kind of verification is situated
at the design phase, allowing thus to find bugs as
early as possible and therefore to reduce the cost of
failures. This, especially, permits us to check as early
as possible if two or more processes are compatible
before their composition. We express the proposed
properties in Timed Computation Tree Logic (TCTL).

The rest of the paper is organized as follows.
Section 2 is dedicated to the presentation of ToWF-
nets for modeling interacting processes which are
constrained by timing delays. In this section, we
present the semantics of the model in terms of states
and the states evolution. In section 3, we highlight
quantitative analysis results of ToWF-nets. We recall
first the principle of TPN-TCTL temporal logic, then
we characterize some properties of interest and
express them in this temporal logic and finally,
we detail how to model check these properties
via several examples. We focus in section 4 on
a parametric verification of ToWF-nets composition
and on some experiments in Romeo model checker.
Finally, section 5 presents related work and section
6 concludes the paper with a discussion and a
proposition of future work.

2. TIME OPEN WORKFLOW NETS

This section is dedicated to present Time open
Workflow nets (ToWF-nets) : a Petri nets sub class
allowing to model workflow processes communicat-
ing with partners via interface places. After defining
ToWF-nets model and semantics, we expose some
results on reachability analysis.

2.1. ToWF-nets to model communicating
processes

To model a composition of interacting processes,
we refer to Petri nets due to their expressive
power as well as their theoretical basis. The well
known Petri net class used in this modeling is
named open workflow nets (oWF-nets) (Karsten and
Schmidt (2005); Sbaï and Barkaoui (2013); Martens
(2005); Massuthe et al. (2005)). Each involved
process is modeled by an oWF-net possessing
interface places which serve for the communication
with other processes. In this way, the interaction
and conversation between the different processes
are guaranteed. The interaction considered here is
ensured through operational and control behaviors.
The operational behavior is specific to each process
according to its business logic and the control
behavior is ensured by the general behavior of any
partner in the composite process.

As mentioned above, oWF-nets nets are mainly
the extension of workflow nets (WF-nets) to
model workflow processes which interact with other
processes via interface places. Simple WF-nets
(Sbaï and Barkaoui (2013, 2012)) is a result of
Petri nets’ application to workflow management. The
choice of Petri nets is explained by the fact that they
form a powerful formalism expressing the control
flow in business processes (van der Aalst (1996);
Esparza et al. (1989); Ellis et al. (1995); De Michelis
et al. (1994)).

Commonly, a Petri net is a 4-tuple N = (P, T, F,W)
where P and T are two finite non-empty sets of
places and transitions respectively, P ∩ T = ∅ ,
F ⊆ (P × T) ∪ (T × P) is the flow relation, and
W : (P × T) ∪ (T × P) → N is the weight function
of N satisfying W (x, y) = 0 ⇔ (x, y) /∈ F . If
W (u) = 1 ∀u ∈ F then N is called an ordinary net
and it is denoted by N = (P, T, F). For every node
x ∈ P ∪ T , the set of input nodes of x is defined by
•x = {y|(y, x) ∈ F} and the output nodes of x form
a set denoted by x• = {y|(x, y) ∈ F}. We refer the
reader to (Barkaoui et al. (2007)), for more Petri nets
notations used in this paper.

A Petri net which models a workflow process is called
a WF-net (van der Aalst (1997)). An ordinary Petri
net N = (P, T, F) is a WF-net iff N has one source
place i named initial place (containing initially one
token) and a sink place f named final place. In
addition to this characteristic, every node in a WF-
net n ∈ P ∪ T exists in a path from i to f .

For processes composition, we propose to model
each process by a WF-net describing the tasks
to be performed as well as their routing. Then,
the conversation between the involved processes
is ensured by the communication places used for
the conversation and/or the messages sending.
Thus, we are using open WF-nets (oWF-nets) which
extend the classical WF-nets by integrating interface
places to ensure asynchronous communication with
the different partners. Hence, a composition is
modeled by a set of oWF-nets interacting via
interface places. Note that these places are used to
connect only transitions from different processes.

Now when we focus on incorporating time con-
straints, we find different proposals which are based
on extensions of Petri nets. In general, the time con-
straints are modeled either by durations or delays.
When they are specified by durations (constants),
the extension associated is said to be Timed Petri
nets. These constant durations are either attached
to places (the subclass is known as P-Timed Petri
nets) or to transitions (T-Timed Petri nets). In case
of delays adoption, the constraints are specified by
means of intervals specifying the minimum and the

•

maximum amounts of time representing the transi-
tions firing delays, the associated extension is called
Time Petri nets. These intervals are attached to
places (P-Time Petri nets), transitions (T-Time Petri
nets) or arcs (A-Time Petri nets) leading thus to
different extensions with variant semantics.

In the case of workflow processes, several studies
(van der Aalst (1993); Atluri and Huang (1996);
Ling and Schmidt (2000); MarteGou et al. (2001))
have shown the importance of temporal reasoning
in the specification of workflow systems. In (Ling
and Schmidt (2000)), the authors extend the simple
WF-net presented by van der Aalst (van der Aalst
(1997)) by associating with each transition a time
amount representing the task duration. A temporal
extension of the WF-net, called Timed WF-net is
proposed. The semantic adopted here is that each
enabled transition must fire immediately, otherwise
the transition will be disabled. In case of firing, its
duration should be respected, i.e. this transition can
not be delayed. Although this approach is simple, it is
strict in the sense that it requires fixed durations. To
deal with this limitation, Time Workflow nets (TWF-
nets) are proposed allowing to associate time delays
with the activities by incorporating to each transition
a time interval specifying its firing delay (Boucheneb
and Barkaoui (2012); Camerzan (2007); Ling and
Schmidt (2000)).

Since this time consideration is flexible and given
that we are interested by modeling the composition
of workflow processes with time constraints, we
propose the Time open Workflow Net model (ToWF-
net) (Sbaï et al. (2014)). This model associates
to each transition a static time interval which refers
to the execution time or delay of the corresponding
activity. The formal definition of a ToWF-net model is
the following:

Definition 1 (ToWF-net)

A Time open Workflow net N is a tuple
(P, T, F, FI, I, O) with:

• P is a set of places,

• T is a set of transitions,

• I is a set of places which represent input
interfaces that are responsible of messages
receiving from other processes: •I = ∅.

• O is a set of places which represent output
interfaces responsible of messages sending to
other partners: O• = ∅.

• I, O and P are disjoint. I and O connect
transitions of different processes.

• F ⊆ ((P ∪ I) × T) ∪ (T × (P ∪ O)) is the flow
relation,

• FI : T → Q+ ×Q+ ∪ {∞} is the function which
associates to each transition t ∈ T a static firing
interval, i.e. FI(t) = [minFI(t),maxFI(t)]
where minFI(t) and maxFI(t) are rational
numbers representing the minimal and the
maximal firing time respectively,

The marking of N is a vector of NP such that for
each place p ∈ P , M(p) is the number of tokens in
p. The initial marking of N is Mi knowing that Mp is
used to denote a marking for which M(p) = 1 and
M(q) = 0 ∀q ∈ (P ∪ I ∪O) \ {p}.

A transition t is enabled in a marking M if the
required tokens are present in the input places of t.
We denote by En(M) the set of all the transitions
enabled in the marking M . A transition t is said
disabled by the firing of t′ in M if it is enabled in
M but it isn’t in M − •t′. When focusing of newly
enabled transitions after firing a transition t from M
and leading to M ′, we denote by NEn(M, t) the set
of transitions enabled after this firing.

NEn(M, t) = {t′ ∈ En(M ′)|t′ = t ∨ ¬M ≥• t+• t′}.

When a transition t becomes enabled, its firing
interval is set to its static firing interval FI(t).
The upper and lower bounds of FI(t) decrease
synchronously with time, until t is fired or disabled
by another firing. t can fire, if the lower bound of its
firing interval reaches 0, but when upper bound of its
firing interval reaches 0, t must be fired without any
additional delay (strong semantic). The firing takes
no time but may lead to another marking.

Let us define first the state of a ToWF-net and then
the transition relation.

Definition 2 A state in a ToWF-net is the state of
the process that is modeled with ToWF-net after the
occurrence of an event. Formally, we characterize a
state in a ToWF-net by a pair (M, Int) where:

• M is a marking,

• Int is a firing interval function, Int : En(M) →
Q+ × Q+ ∪ {∞}. We denote Int(t) =
[minInt(t),maxInt(t)].

The initial state of a ToWF-net is (M0, Int0) where
M0 = Mi (since in a ToWF-net, only i contains
initially one token) and Int0(t) = FI(t) ∀t ∈ En(M0).

Starting from the initial state (M0, Int0), the net
evolves following the occurrence of events. An event
corresponds to either a transition firing or a time
progression. Hence, we define the transition relation

•

between states s1 = (M1, Int1) and s2 = (M2, Int2)

by d→ in case of time progression and by t→ in case
of a firing. We explicit in the following the conditions
of state evolution and how to compute the resulting
state after an event occurrence.

1. s1
t→ s2 if and only if s2 is immediately reachable

from s1 by firing the transition t, i.e.
t ∈ En(M1) and minInt1(t) = 0,
M2 = M1 −• t+ t•, and
∀t′ ∈ En(M2), Int2(t′) ={

FI(t′) ift′ ∈ NEn(M1, t)
Int1(t′) otherwise

2. s1
d→ s2 ∀d ∈ R if and only if state s2 is reachable

from s1 by a time progression with d time units,
i.e.
minInt1(t) + d ≤ maxFI(t),
M2 = M1, and
∀t ∈ En(M1), Int2(t) = [Max(0,minInt1(t) −
d),maxInt1(t)− d]

We can now define the semantics of a ToWF-net N
by a transition system (S, s0,→) with S the set of all
the reachable states from the initial state s0 by→ the
transition relation defined above.

We present in the following subsection some results
of reachability analysis of ToWF-nets composition.

2.2. Reachability analysis of ToWF-nets

After the formal definition of ToWF-nets, we focus
now on their reachability analysis. This analysis
is based on the efficient construction of the state
space.

By analogy with the marking graph defined in the
context of an ordinary Petri net, we define a state
space by a graph containing all accessible states
of a ToWF-net from the initial state. Therefore, to
calculate the state space of a ToWF-net, we must be
able to calculate the reachable states by activating
the enabled transitions.

Definition 3 The state space of a ToWF-net has
the following structure: SS = (S,→, s0); where S is
the set of nodes in form (M, Int) representing the
reachable states from the initial one s0 = (Mi, Int0)
; → represents the transition relation which defines
the evolution from one state to another.

S = {s|s0
∗→ s} is the set of reachable states of the

model, and ∗→ is the reflexive and transitive closure
of→.

The reachability analysis (Boucheneb and Barkaoui
(2012)) in timed models (such as time extensions

of Petri nets as well as timed automata) is
based in general on abstraction, which preserves
reachability properties. Such an abstraction for
timed models, consists in considering only one
node for all states reachable from the same firing
sequence while abstracting from their firing times.
The grouped states, known as state classes, are
then considered modulo some equivalence relation
preserving properties of interest.

In return, the state class method is intended to
provide a finite representation of the infinite state
space of any bounded time Petri net.

Technical classes produce for a large class of time
nets a finite representation of their behavior states,
which allows a reachability analysis similar to that
permitted for Petri nets by the technique of marking
graph.

The state classes can be represented by a marking
and a firing domain. Formally, a state class is a
couple (M,D) where M is a marking and D is
characterized by a set of atomic constraints over the
firing delays of enabled transitions: minFI(t) ≤ t ≤
maxFI(t) ∀t ∈ En(M).

Note that the initial class coincides with the initial
state of the network. This initial class is (M0, D0)
where M0 = Mi and D0 corresponds to the firing
domains of transitions enabled in M0.

All states within the same node share the same
untimed information and the union of their time
domains is represented by a set of atomic
constraints handled efficiently by means of a
Difference Bound Matrix (DBM) (Ridi et al. (2012)).
A DBM form a system of linear inequalities
which constrain single variables (v1...vn) and their
differences within limits identified by coefficients bij .
This is formally expressed as:{
vi − vj ≤ bij i, j ∈ [0..n], bij ∈ Q
v0 = 0

In terms of behavior, this state classes group
preserves highly the states traces, and thus the
safety properties.

The computation of the state class graph is neces-
sary at this point to perform the various reachability
analysis. Among the abstractions proposed in the
literature (Berthomieu and Diaz (1991); Berthomieu
and Vernadat (2003); Yoneda and Ryuba (1998)),
we consider here the state class graph method
(Berthomieu and Diaz (1991)) for its advantage,
over the others, which is the finiteness property
for all bounded time Petri nets (while using some
approximations).

•

3. QUANTITATIVE ANALYSIS OF TOWF-NETS

The analysis of the state space is very significant to
the extent that it can reveal important characteristics
of the modeled system, about its structure and
dynamic behavior. However, for a more accurate
verification, we should not be limited to this type
of checking rather than other specific properties.
Indeed, we focus in this section on the formal
verification of compatibility properties of ToWF-nets
as an extension of our results of compatibility
analysis while abstracting time information (Sbaï
and Barkaoui (2014); Sbaï et al. (2014)).
These properties focus on the correctness of the
interactions between the different partners.

We propose to adopt model checking method to
verify these properties since this method permits
an exhaustive verification over all the possible
executions. Given a concurrent system Σ and
a temporal logic formula ϕ, the model checking
problem is to decide whether Σ satisfies ϕ. Hence,
we have to formulate in temporal logic the properties
to be verified.

3.1. Model checking TPN-TCTL

Real systems often have behaviors that depend
on time. The ability to manipulate and model the
temporal dimension of the events that take place in
the real world is fundamental in many applications.
These applications may involve banking, medical, or
multimedia applications. The variety of applications
motivate many recent studies that aim to integrate
all the features necessary to take into account the
time during verification.

TCTL (Timed Computational Tree Logic) is a timed
extension of the temporal logic CTL. TCTL added
to CTL a quantitative information on the delays
between actions. It is built from atomic propositions,
logical connectors and temporal operators (U, F, G,
X, etc.). The TCTL temporal logic can be used to
check the properties of a time Petri net.

The syntax of TCTL formulas is inductively defined
by:

ϕ ::= false | ¬ϕ | ϕ ∧ ϕ | A(ϕ UI ϕ)| E(ϕ UI ϕ)

where p denotes a proposition, ϕ denotes a formula
and I = [a, b] or [a,∞[with a ∈ N and b ∈ N.

A and E are temporal quantifiers over the set of
executions. Aϕ announces that all the executions
from the current state satisfy the property ϕ. Eϕ
states that from the current state, there exists an
execution which satisfies ϕ. Finally ϕ UIψ means
that the property ϕ is true until ψ is true, and ψ will
be true in the time interval I.

We can use other compositional temporal operators
(Alur et al. (1993)): EFI ϕ = E(true UI ϕ)
(Possibility), EGI ϕ = ¬ AF I ¬ϕ (All locations along
an execution), AFI ϕ = A(true UI ϕ) (Locations along
all executions), AGI ϕ = ¬ EF I ¬ϕ (All locations
along all executions).

Semantically, TCTL formulas are interpreted on
states and execution paths of a model M = (S, V)
where S is a transition system and V is a valuation
function that associates with each state the set of
atomic propositions it satisfies. (Konur et al. (2013))

To interpret a TCTL formula on an execution path,
we introduce the notion of dense execution path. Let
s ∈ S be a state of S, π(s) the set of all execution
paths starting from s, and ρ = s0

d0t0→ s1
d1t1→ s2... an

execution path of s. The dense path of the execution
path ρ is the mapping ρ̂ : R+ → S defined by:
ρ̂(r) = si + δ such that r =

∑i−1
j=0 dj + δ, i ≥ 0 and

0 ≤ δ ≤ di.

The formal semantics of TCTL is given by the
satisfaction relation defined as follows:

• M , s 2 false,

• M , s � φ iff φ ∈ V (s),

• M , s � ¬ϕ iff M , s 2 ϕ,

• M , s � ϕ ∧ ψ iff M , s � ϕ and M , s � ψ,

• M , s � ∀(ϕ∪Iψ) iff ∀ρ ∈ π(s) ∃r ∈ I,M , ρ̂(r) � ψ
and

∀0 ≤ r′ ≤ r M , ρ̂(r′) � ϕ,

• M , s � ∃(ϕ∪Iψ) iff ∃ρ ∈ π(s) ∃r ∈ I,M , ρ̂(r) � ψ
and

∀0 ≤ r′ ≤ r M , ρ̂(r′) � ϕ,

When interval I is omitted, its value is by default
[0,∞[.

The Time Petri net model is said to satisfy a TCTL
formula ϕ iff M, s0 � ϕ.

The logic TCTL allows writing temporal properties
with a quantification of the time. We chose this
approach because it is decidable and PSPACE-
complete for bounded Petri nets (Boucheneb et al.
(2009)).

The authors of (Hadjidj and Boucheneb (2009))
have gone further by defining a sub-class of TCTL
for time Petri nets in dense time, called TPN-TCTL.
They proved the decidability of model-checking
of TPN-TCTL on Petri nets and showed that its
complexity is PSPACE.

•

Definition 4 The temporal logic TPN-TCTL is
defined inductively by:

TPN-TCTL ::= false | ϕ | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ⇒ ψ |
EϕUIψ | AϕUIψ

| EGIϕ | AGIϕ | AFIϕ | EFIϕ | AG(φ1 ⇒
AF[0,d]φ2).

Where ϕ and ψ ∈ TPN-TCTL,

I = [a, b] or [a, b[with a ∈ N and b ∈ N ∪ {∞}.

φ1 and φ2 are propositions on markings.

∀G(φ1 ⇒ ∀F[0,d]φ2) means that from the current
state, any occurrence of marking φ1 is followed by
an occurrence of marking φ2 less of d units of time
later.

Romeo permits a practical implementation of the
verification of properties described in TPN-TCTL.
It is therefore possible to model check on the
fly temporal quantitative properties. That’s why
we investigate in the following section the TCTL
expression of the compatibility property and hence
its verification in Romeo.

Before this, let us recall the notation used by Romeo
to implement a TPN-TCTL property:

TPN-TCTLRomeo = E(p)U [a, b](q) | A(p)U [a, b](q) |
EF [a, b](p) | AF [a, b](p) | EG[a, b](p) | AG[a, b](p) |
EF [a, b](p) | (p)→ [0, b](q).

where p, q: GMEC; U : until; E: exists; A: forall; F :
eventually; G: always; →: response; a: integer; b
integer or inf (to denote∞).

GMEC = a∗M(i){+,−}b∗M(j){<,<=, >,>=,=}k
| deadlock | bounded(k) | p and q | p or q | p ⇒ q |
not p.

M : keyword (marking); deadlock, bounded: keywords;
i, j:place indexes; a, b, k :integers ; ∗,+,−, and, or,⇒
, not: usual operators ; p, q: GMEC

The syntax (p) → [0, b](q) denotes a leads to
property meaning AG((p) imply AE[0, b](q)). E.g.
(p) → [0, b](q) holds iff whenever p holds eventually
q will hold as well in [0, b] time units.

3.2. TCTL characterization of ToWF-nets
compatibility

In a composition of two or more processes,
the correctness of the composite process refers
in general to the compatibility of the different
processes. From a behavioral point of view, the
involved processes are compatible if they can
interact properly. This means that composite process

does not suffer from any deadlock problem. There
is a distinction between syntactic compatibility which
refer to the conformance of interfaces (number of
interfaces, names, input, ouptut, etc.) and semantic
compatibility which refer to the absence of deadlocks
in the global system. In this paper, we focus only on
defining and verifying the semantic compatibility.

Before this, let us characterize the composite system
obtained by superposing a number of ToWF-nets
which are supposed syntactically compatible. The
composite net N of nbX ToWF-nets N1... NnbX

consists of all ToWF-nets sharing interface places. In
this composite net, every input interface of a TWF-
net has to be an output interface place of another
TWF-net of N . Trivially, N form a time Petri net with
nbX output places and nbX input places. The initial
marking of N is M0 =

∑nbX
s=1 is.

In (Bordeaux et al. (2005); Foster et al. (2004);
Martens (2003)), the authors characterized the
compatibility of non timed services as the absence of
deadlock in the composite service. They considered
that two or more oWF-nets are compatible if they
can (all) reach their final states. By analogy, we
consider that two or more ToWF-nets are compatible
if they reach their final states as well as the timing
constraints are respected.

In order to relax this definition, we propose different
categories of the compatibility property.

• Partial compatibility: A composite netN satisfies
the partial compatibility if it is deadlock-free.

• Total Compatibility: A composite net N is totally
compatible if it is deadlock-free and furthermore,
the overall process terminates properly.

• Perfect compatibility: A composite net N is
perfectly compatible if it is totally compatible and
the deadline constraints are satisfied.

• Incompatibility: A composite net N is incompati-
ble if it is neither partially nor totally compatible.

We focus in what follows on formulating the four
types of compatibility properties. Let us consider the
following notation:

• nbX: the number of processes;

• nbp: the number of places in a given process;

• nbi: the number of interface places in a
composition;

• is: the input place of the process number s.

• fs: the output place of the process number s.

Partial compatibility

•

Partial compatibility of nbX processes refers to the
absence of deadlock in their composition. A net
is deadlock-free if and only if there is at least a
transition allowed in every marking except the final
one Mfin which refer to the marking of all the final
places fs (s = 1..nbX). This property is expressed
as follows:

∀M ∈ [M0〉, Mfin ∈ [M〉

Logically, this deadlock-freeness property can be
expressed as follows: "for all the executions made
possible from the initial state, no deadlock is
encountered until the final state is reached". The
final state is characterized by the marking of the
final places. Then, we can express the partial
compatibility by the following TCTL formula:

AG[0,∞[((not MF) ⇒ not deadlock)

In this formula, deadlock is a proposition supposed to
return true if and only if there is no enabled transition
in the current state. MF is a proposition on marking
Mfin assuring that each final place is marked with at
least one token.

MF =
nbX
∧

s=1
M(fs) >= 1

Here we check only the marking of final places.

Total compatibility

The proper termination of a process refers to check if
this latter complete its execution in any case, and at
the time of termination, all the places of the involved
ToWF-nets are empty except the final places which
must be marked with exactly one token. Hence, we
have to check if there exists a marking M for which
all the places are empty except the output ones.
Formally, this property can be expressed as follows:

∀M ∈ [M0〉 :
M(fs) ≥ 1 ∀s ∈ {1, .., nbX} ⇒ M =

∑nbX
s=1 fs

We can formulate the proper termination in TCTL as
follows:

AF[0,∞[StrictMF

With StrictMF a proposition on the marking with a
token in every final place fs but no tokens in the other
places including the interface ones.

StrictMF =
nbX
∧

s=1
(
nbip
∧

p=1
(M(p) = 0)

∧ (M(fs) = 1)) ∧ (
nbi
∧
i=1
M(Ii) = 0)

where nbip is used to denote the number of places
other than the final place in a process.

Perfect compatibility

When we have a strict overall deadline that the
system should respect, we can enforce the total
compatibility by adding this constraint. We define, in
this sense, the perfect compatibility which refers to
both deadlock-freeness and proper termination while
taking into account the deadline verification.

Let us suppose that the deadline constraint is
considered, this can be checked by verifying that a
process has to terminate (reach its final state) in Tm
time units. Which lead to the expression of the proper
termination within this delay as follows:

AF[0,Tm] StrictMF

Hence, these two TCTL formulas can be used
to express the perfect compatibility of ToWF-nets
composition:

• AG[0,Tm]((not MF) ⇒ not deadlock)

• AF[0,Tm] StrictMF

Incompatibility

The incompatibility is a situation in which neither
deadlock-freeness nor proper termination is verified.
In other words, a set of ToWF-nets are incompatible
if all the possible executions don’t lead to final
states of the different processes. We may distinguish
here between strong incompatibility checked in the
interval [0,∞[and weak incompatibility which refers
to incompatibility in a limited interval [a, b].

If we consider that the interval [x, y] may correspond
to [0,∞[or [a, b], the expression of the incompatibility
in TCTL leads to the following formula:

AG[x,y]((not MF))

3.3. Model checking ToWF-nets composition

We present in this subsection some results related
to the analysis of the compatibility and soundness
properties for a ToWF-nets composition. This
verification is ensured by Romeo (Gardey et al.
(2005)) which is a software studio dedicated to time
Petri nets analysis. Romeo is developed by the
Real-Time Systems Team at IRCCyN. It performs
analysis on Transition Time Petri Nets as well as
on one of their extensions dedicated to scheduling.
Romeo is chosen because it assures, among other
features, a State Class Graph (SCG) computation
and a graphical simulation of Transition Time Petri
Nets. Moreover, Romeo is used here because it

•

implements an on the fly model checking algorithm
of TPN-TCTL formulas.

We propose to study a simple composition of ToWF-
nets (figure 1). We can easily verify that no deadlock
will be encountered until final places are marked.
Then the partial compatibility is satisfied (see figure
2). However, the firings of transitions T4 and T5 of the
second ToWF-net lead to two tokens in its final place
f2; this violates the total compatibility property. In the
figure 3, we show the result for this property and an
execution trace. After that, we propose a correction
in figure 4 for which the total compatibility is verified
(see figure 5).

Figure 1: Example 1 of ToWF-nets composition

Figure 2: Partial compatibility is verified

4. PARAMETRIC ANALYSIS OF TOWF-NETS

In this section, we tackle with a parametric
quantitative analysis of the composition of ToWF-
nets. This suppose to consider k instances of each
ToWF-nets ready to be executed.

For sake of covering the maximum number of real
world processes, we tackle with time processes
which share resource places. This places possess

Figure 3: Total compatibility is not verified

Figure 4: Example 2 of ToWF-nets composition

Figure 5: Total compatibility is verified

tokens in the beginning of each process and these
tokens will be used and released after their use,
i.e. at the end of execution, the resource places will
regain their same initial markings.

For this, we define the time open WF-nets with
shared resources (ToWFR-nets) which stand for a

•

class of Petri nets dedicated to model workflow
processes with: time delays, resource places as well
as interface places.

Definition 5 (ToWFR-net)

A ToWFR-net N is a tuple
(P,RP, T, F,RF, FI, I, O,WRP ,M0) with:

• (P, T, F, FI, I, O) is a ToWF-net,

• RP is a set of resource places,

• I, O, P and RP are disjoint,

• RF ⊆ (RP × T) ∪ (T × RP) is the flow relation
for resources,

• WRP : RF 7→ N is the weight function defining
the weight of arcs linking the resource places. To
ensure the use of resource places, we require:
WRP (u) ≥ 1∀u ∈ RF

• M0 is the initial marking: M0 = k.i+MRP where
k is the number of tokens in the initial place i
and MRP is the marking of resource places.

For the interaction of ToWFR-nets, we use only
interface places; resource places are used to model
resources sharing between activities of the same
process.

In the sequel, we will use these notations:

• IOj refers to interface place number j

• RPj refers to resource place number j.

As an example of ToWFR-nets composition, we
study a manufacturing lane of three machines which
collaborate together to manufacture some product.
The composite net describing the manufacturing
workflow is given in figure 6.

In this example, each machine will be launched twice
(2 tokens in each initial place ij) and share an
internal resource modeled by RPj with j the number
of machines. The three machines communicate via
the two interface places IO1 and IO2.

Now, to verify if the interacting ToWF-nets commu-
nicate correctly and if their collaboration process is
sound, we propose to extend the above classes of
compatibility properties with the consideration of the
concurrent instances ready for execution.

4.1. K-compatibility analysis

We define the following formulas: the k-partial
compatibility and the k-total compatibility.

k-partial compatibility

Figure 6: Composition of three machines’ processes

The k-partial compatibility refers to verify if all
the instances of the involved processes terminate
without encountering a deadlock. This is possible
by extending the deadlock-freeness specified in the
previous section with a test of the termination of the
k instances. This can be specified by the following
TCTL formula:

AG[0,∞[(not(
nbX
∧

s=1
(M(index_of_fs) >=

k)) => not deadlock)

Where nbX is the number of involved processes

For the three machines example (6) this formula is
written in Romeo as follows:

AG[0, inf](not(M(4) >= 2 and M(7) >=
2 and M(26) >= 2) => not deadlock)

Where 4,7 and 26 are the indexes attributed by
Romeo to the three final places.

•

The figure 7 shows that the two-partial compatibility
is guaranteed for the three machines example.

Figure 7: Analysis example of the two-partial compatibility

k-total compatibility

The k-total compatibility refers to verify if all
the instances of the involved processes terminate
properly. This means that we have to verify if
we reach the state in which final places have k
tokens and resource places regain exactly their initial
marking and all the other places are empty. This can
be specified by the following TCTL formula:

AF [0,∞[(
nbX
∧

s=1
(M(index_of_fs) =

k) ∧
nbR
∧

j=1
(M(index_of_RPj) =

mRPj) ∧
nbop
∧

j=1
(M(index_of_Pj) = 0))

Where nbX refers to the number of interacting
processes, nbR refers to the number of resource
places, mRPj

refers to the initial marking of resource
place RPj and nbop refers to the number of places
which are neither final places nor resource places.

For the three machines example (6) this formula is
written in Romeo as follows:

AF [0, inf](M(4) = 1 and M(7) = 1 and M(26) =
1 and M(27) = 1 and M(16) = 1 and M(3) =

1 and M(1) = and M(2) = 0 and M(5) =
0 and M(6) = 0 and M(8) = 0 and M(9) =

0 and M(10) = 0 and M(11) = 0 and M(12) =
0 and M(13) = 0 and M(14) = 0 and M(15) =
0 and M(17) = 0 and M(18) = 0 and M(19) =
0 and M(20) = 0 and M(21) = 0 and M(22) =

0 and M(23) = 0 and M(24) = 0 and M(25) = 0)

The figure 8 shows that the two-total compatibility is
guaranteed for the three machines example.

After these tests, we highlight some results on
the characterization of quantitative properties of

Figure 8: Analysis example of the two-total compatibility

ToWF-nets composition. Let us consider N the time
workflow net obtained by composing the involved
ToWF-nets and the adding of two special places
pstart and pend and two transitions tstart and tend
which connect respectively pstart to the the input
places of the different ToWF-nets and the different
final places to pend.

We can easily prove that if the involved ToWF-nets
are totally compatible then N is sound. In addition if
the ToWF-nets are k-totally compatible then N is k-
sound. But the reverse is incorrect, i.e. N is k-sound
9 the ToWF-nets are k-totally compatible.

5. RELATED WORK

Several works dealt with the analysis of compatibility
properties of processes modeled by open workflow
nets or by other formalisms. Wil M. P. van der Aalst
and al. (van der Aalst et al. (1998)) showed that two
or more processes are compatible if their interfaces
are compatible and there are no deadlocks. In
addition, other concepts were formulated in relation
with compatibility such as strategy and controllability.

Marlon Dumas and al. (Dumas et al. (2008)) studied
the incompatibility of Web services and classified
it into two types such that the incompatibility of
signatures and the protocol incompatibility. The
former occurs when a service requests an operation
which is not possible from another service. The
latter occurs when a service enters in a series of
interactions with an other service, but there is no
compatibility in the two services orders.

Lucas Bordeaux and al. (Bordeaux et al. (2005))
tackled the verification of Web services compatibility
while assuming that not only the exchanged
messages are semantically of the same type but
also they have the same name. For the modeling
of Web services, their work is based on labeled
transition systems (LTS). The authors defined three

•

types of compatibility: absence of deadlock, opposite
behavior and unspecified reception.

Wei Tan and al. (Tan et al. (2009)) proposed an
approach that checks interface compatibility of Web
services described by BPEL, and corrects these
services if they are not compatible. To do this, they
modeled the composition by SWF-nets, a subclass
of CPN (Colored Petri Nets). Then they checked the
compatibility of interfaces.

While these approaches dealt with non time
processes, we focused on those constrained by time
information. To check the compatibility of interacting
processes, we chose to extend oWF-nets with delays
associated to activities. In addition, we were based
on the formal verification in our approach. We mainly
used the model checking formal method to check
the compatibility classes of ToWF-nets, which shows
a counter example in case a property is violated
allowing thus to recognize and correct the eventual
errors as early as possible.

6. CONCLUSION

Nowadays, technological progress plays a funda-
mental role in the optimization of production pro-
cesses in different sectors, especially facing the va-
rieties produced and the constraints of productivity,
capability, quality and competitiveness. For this, a
prior verification of such processes and their inter-
action is tremendous.

We proposed first in this paper a model for
processes interaction based on Petri nets. Then,
we studied the compatibility of these processes by
model checking techniques. In particular, we applied
a TCTL model checking of these properties and
simulated some examples on the Romeo model
checker. Finally, we enhanced these results by taking
into account several instances ready for execution
as well as a possibility of sharing resources. Hence,
we introduced to parametric verification of interacting
processes. In future, we propose to strengthen this
parametric analysis of ToWF-nets and ToWFR-nets.

REFERENCES

Alur, R. and Courchoubetis, C. and Dill, D. (1993)
Model checking in dense real time. Information
and computation (104). pp 2-34.

Atluri, V. and Huang, W. (1996) An authorization
model for workflows. Proceedings of the 4th
European Symposium on Research in Computer
Security, London, Springer-Verlag. pp 44-64.

Barkaoui, K. and Ben Ayed, R. and Sbaï, Z.
(2007) Workflow Soundness Verification based

on Structure Theory of Petri Nets. International
Journal of Computing and Information Sciences
(IJCIS), pp. 51-61.

Berthomieu, B. and Diaz, M. (1991) Modeling and
verification of time dependent systems using
time Petri nets. IEEE Transactions on Software
Engineering, 17(3).

Bordeaux, L. and Salaun, G. and Berardi, D. and
Mecella, M. (2005) When are two web services
compatible ?. Sapienza University, 3324.

Boucheneb, H. and Barkaoui, K. (2013) Reducing
interleaving semantics redundancy in reachability
analysis of time Petri nets. ACM Transactions in
Embedded Computing Systems (TECS), 12(1), pp
1-24.

Boucheneb, H. and Barkaoui, K. (2012) Paramet-
ric Verification of Time Workflow Nets. 24th In-
ternational Conference on Software Engineering
(SEKE), pp 375-380.

Berthomieu B. and F. Vernadat F. (2003) State class
constructions for branching analysis of time Petri
nets. TACAS 2003, volume 2619 of Lecture Notes
in Computer Science, pp 442-457.

Dumas, M. and Benatallah, B. and Motahari
Nezhad, H. (2008) Web Service Protocols :
Compatibility and Adaptation. Institute of Electrical
and Electronics Engineers.

Guermouche, N. and Perrin, O. and Ringeissen,
C. (2008) Timed Specification For Web Services
Compatibility Analysis. Theoretical Computer Sci-
ence.

Hadjidj, R. and Boucheneb, H. (2009) On-the-
Fly TCTL Model-Checking for Time Petri Nets.
Theoretical Computer Science, 410(42), pp 4241-
4261.

Camerzan, I. (2007) On Soundness for Time
Workflow Nets. Computer Science Journal of
Moldova, 15(1), pp 74-87.

De Michelis, G. and Ellis, C. and Memmi, G.
(1994) Proceedings of the second Workshop
on Computer-Supported Cooperative Work, Petri
nets and related formalisms, Zaragoza, Spain..

Foster, H. and Uchitel, S. and Magee, J. and Kramer,
J. (2004) Compatibility Verification for Web Service
Choreography. Proceedings of IEEE International
Conference on Web Services, pp 738-741.

Ellis, C. and Keddara, K. and Rozenberg, G.
(1995) Dynamic change within workflow systems.
Proceedings of conference on Organizational
computing systems, pp 10-21.

•

Esparza, Javier and Silva, Manuel (1989) Circuits,
handles, bridges and nets. Applications and
Theory of Petri Nets, Lecture Notes in Computer
Science, 483, pp 210-242.

Martens, A. (2003) On Compatibility of Web
Services. Petri Net Newsletter, pp 12-20.

Gardey, G. and Lime, D. and Magnin, M. and Roux,
O.H. (2005) Romeo: A Tool for Time Petri Nets
Analysis. Proceeding of 17th International Confer-
ence on Computer Aided Verfication (CAV’05), vol-
ume 3576 of Lecture Notes in Computer Science,
pp 418-423.

Gou, H. and Huang, B. and Liu, W. and Li, Y.
and Ren, S. (2001) Modeling distributed business
processes of virtual enterprises based on the
object-oriented approach and petri nets. Systems
Man and Cybernetics.

Konur, S. and Fisher, M. and Schewe, S. (2013)
Combined model checking for temporal, proba-
bilistic, and real-time logics. Theoretical Computer
Science, 503, pp 61-88.

Ling, S. and Schmidt, H. (2000) Time Petri
Nets for Workflow Modelling and Analysis. IEEE
International Conference on Systems, Man, and
Cybernetics, pp 3039-3044.

Martens, A. (2005) Analyzing Web service based
business processes. Proceeding of International
Conference on Fundamental Approaches to
Software Engineering, Part of the European Joint
Conferences on Theory and Practice of Software,
Lecture Notes in Computer Science vol. 3442.

Massuthe P. and Reisig W. and Schmidt K. (2005) An
Operating Guideline Approach to the SOA. Annals
of Mathematics, Computing and Teleinformatics,
pp 35-43.

Ridi, L. and Torrini, J. and Vicario, E. (2012)
Developing a Scheduler with Difference-Bound
Matrices and the Floyd-Warshall Algorithm. IEEE
SOFTWARE.

Sbaï, Z. and Barkaoui, K. (2013) Vérification formelle
des processus workflow - Extension aux work-
flows inter-organisationnels. Revue Ingénierie des
Systèmes d’Information: Ingénierie des systèmes
collaboratifs, 18(5), pp 33-57.

Sbaï, Z. and Barkaoui, K. (2012) Vérification
Formelle des Processus Workflow Collaboratifs.
Actes de la conférence francophone sur les
Systèmes Collaboratifs (SysCo’12), pp. 197-210.

Boucheneb, H. and Gardey, G. and Roux, O.H.
(2009) TCTL model-checking of Time Petri Nets.
Journal of Logic and Computation, 19(6), pp 1509-
1540.

Tan, Wei and Fan, Yushun and Zhou, MengChu
(2009) A Petri Net-Based Method for Compatibility
Analysis and Composition of Web Services in
Business Process Execution Language. IEEE T.
Automation Science and Engineering, 6(1), pp 94-
106.

Yoneda, T. and Ryuba, H. (1998) CTL model
checking of time Petri nets using geometric
regions. IEICE Transactions on Information and
Systems, pp 297-396.

van der Aalst, W.M.P. and Arjan, J.M. and
Christian, S. and Wolf, K. (1998) Service
Interaction: Patterns, Formalization, and Analysis.
9th Internatinal School on Formal Methods for the
design of Computer, Communication and Software
Systems.

van der Aalst, W.M.P. (1997) Verification of Workflow
nets. ICATPN 97, LNCS, 1248.

van der Aalst, W.M.P. (1996) Three good reasons
for using a petri-net-based workflow management
system. International Working Conference on
Information and Process Integration in Enterprises
(IPIC96), pp 179-201.

van der Aalst, W.M.P. (1993) Interval timed coloured
petri nets and their analysis. Proceedings of the
14th International Conference on Application and
Theory of Petri Nets, London, Springer-Verlag, pp
453-472.

Karsten and Schmidt (2005) Controllability of open
workflow nets. EMISA. LNI, Bonner Köllen Verlag,
pp 236-249.

Sbaï. Z. and Kamel Barkaoui. and Hanifa Bouch-
eneb. (2014) Compatibility Analysis of Time Open
Workflow Nets. Proceedings of the International
Workshop on Petri Nets and Software Engineer-
ing, co-located with 35th International Conference
on Application and Theory of Petri Nets and Con-
currency (PetriNets 2014) and 14th International
Conference on Application of Concurrency to Sys-
tem Design (ACSD), pp 249-268.

Sbaï. Z. and Kamel Barkaoui. (2014) On Compat-
ibility Analysis of Inter Organizational Business
Processes. Enterprise and Organizational Model-
ing and Simulation - 10th International Workshop,
EOMAS 2014, Held at CAiSE 2014, Thessaloniki,
Greece, June 16-17, 2014, Selected Papers, pp
171-186.

