
Verif cation of Real-Time Bounded
Distributed Systems With Mobility

Bogdan Aman and Gabriel Ciobanu
Romanian Academy, Institute of Computer Science, Iaşi, Romania

bogdan.aman@gmail.com and gabriel@info.uaic.ro

We introduce and study a prototyping language for describing real-time distributed systems. Its time
constraints are expressed as bounded intervals to model the uncertainty of the delay in migration and
communication of agents placed in the locations of a distributed system. We provide the operational
semantics, and illustrate the new language by a detailed example for which we use software tools for
analyzing its temporal properties.

1. INTRODUCTION

Computer systems today are interconnected into
large distributed systems. Distributed and concur-
rent systems are now used in both academic and
industrial computing, forcing researchers and prac-
titioners to look for theoretical models and software
tools ref ecting the new framework based on mobility
and interaction. Programming paradigms have pro-
gressed, allowing programmers to implement soft-
ware in terms of high level abstractions. In distributed
systems, such implementations are given by taking
care of time scheduling, access to resources, and in-
teraction among processes. When solving problems
in distributed systems, it is useful to have an explicit
notion of location, explicit migration, local interac-
tion/communication and resource management.

Aiming to bridge the gap between the existing the-
oretical approach of process calculi and forthcom-
ing realistic programming languages for distributed
systems, we have introduced and studied a rather
simple and expressive formalism called TIMO as a
simplif ed version of timed distributed pi-calculus
Ciobanu and Prisacariu (2006). In several aspects,
TIMO is a prototyping language for multi-agent sys-
tems, featuring mobility and local interaction. The
mobility refers to the fact that agents are in loca-
tions and that they can migrate from one location
to the another, while agents must be in the same
location in order to communicate. In this paper we
present a revised/improved version of a real-time
variant called rTIMO (Real Timed Mobility) in which
the timing constraints are expressed as intervals in

order to model the uncertainty of the delay in mi-
gration and communication. rTIMO supports explicit
migration and local communication, together with
certain timing constraints over these actions. We
provide a relationship between rTIMO and the model
checker UPPAAL , and so making possible formal
verif cation for rTIMO . For the complex distributed
systems described by such a language, we show
how it is possible to use UPPAAL capabilities in order
to verify certain properties.

The paper is organized as follows: Section 2
presents the syntax and semantics of rTIMO using
interval constraints. Section 3 provides an example,
while Sections 5 and 6 contain the modelling and
verif cation in UPPAAL . Finally, Section 7 presents
the related work and concludes the paper.

2. SYNTAX AND SEMANTICS OF RTIMO

The prototyping language rTIMO provides suff cient
expressiveness to model in an elegant way
the migration and communication in real-time
distributed systems. In this paper we present a
revised/improved version of rTIMO involving global
timing constraints in which the timing constraints
are expressed as intervals in order to model
the uncertainty of the delay in migration and
communication. This realistic approach is used to
provide systems a larger degree of non-determinism,
for instance in deciding when a process is allowed to
move from one location to another one. We achieve
this by assuming that a rTIMOmigration process
can move to another location during a time interval
(and not necessarily after exactly a given number of

c The Authors. Published by BISL.

Processes
P,Q ::= a[t1,t2]!〈v〉 then P else Q p (output)

a[t1,t2]?(u) then P else Q p (input)
go[t1,t2]l then P p (move)
0 p (termination)
id(v) p (recursion)
P | Q (parallel)

Located Processes
L ::= l[[P]]

Systems
N ::= L p L | N

Table 1: rTIMO Syntax

time units). Two processes may communicate only if
they are present at the same location, they use the
same channel and the time constraints allow them to
interact.

In rTIMO , the transitions caused by performing
actions with timeouts (migration and communication)
are alternated with continuous transitions (time-
passing). The semantics of rTIMO is provided by
multiset labelled transitions in which multisets of
actions are executed in parallel (in one step).

2.1. Syntax of rTIMO

Timing constraints expressed as intervals allow to
model the uncertainty of the delay in migration and
communication. The syntax of rTIMO is given in
Table 1, where the following is assumed:

• a set Loc of locations l, a set Chan of
communication channels a, and a set Id of
process identif ers (each id ∈ Id has its arity
mid);

• for each id ∈ Id there is a unique process
def nition id(u1, . . . , umid

)
def
= Pid, where the

distinct variables ui are parameters;

• [t1, t2], where t1, t2 ∈ R+ and t1 ≤ t2 is an
execution time interval of an action;

• u is a tuple of variables;

• v is a tuple of expressions built from values,
variables and allowed operations.

• a time interval [t1,t2] associated with a migration
action such as go[t1,t2]loc then P indicates that
process P can move to location loc after t time
units, where t ∈ [t1, t2].

• a time interval [t1,t2] associated with an
output communication process a[t1,t2]!〈z〉 then
P else Q makes the channel a available for
communication (by sending z) for a period

of t2 − t1 time units, but only after an idling
of t1 time units. It is also possible to impose
an interval for an input communication process
a[t1,t2]?(x) then P else Q along a channel a. In
both cases, if the interaction does not happen
in the interval [t1, t2], the process gives up and
continues as the alternative process Q.

The only variable binding constructor is
a[t1,t2]?(u) then P else Q; it binds the variable u within
P , but not within Q. The free variables of a process
P are denoted by fv(P); for a process def nition, it
is assumed that fv(Pid) ⊆ {u1, . . . , umid

}, where ui
are the process parameters. Processes are def ned
up-to an alpha-conversion, and {v/u, . . .}P denotes
P in which all free occurrences of the variable u are
replaced by v, eventually after alpha-converting P in
order to avoid clashes.

Since location l, provided by a process
go[t1,t2]l then P , can be a variable, its value can
be assigned dynamically through communication
with other processes; this means that migration
supports a f exible scheme for the movement of
processes from one location to another. Thus, the
behaviour can be adapted to various changes of
the distributed environment. Processes are further
constructed from the (terminated) process 0, and
parallel composition P | Q. A located process l[[P]]
specif es a process P running at location l, and a
system N is built from its components L. A system
N is well-formed if there are no free variables in N .

Remark 1 In order to focus on the mobility and
local interaction aspects of rTIMO , we abstract from
arithmetical operations, considering by default that
the simple ones (comparing, addition, subtraction)
are included in the language.

2.2. Operational Semantics of rTIMO

The f rst component of the operational semantics
of rTIMO is the structural equivalence ≡ over

•

systems. The structural equivalence is the smallest
congruence such that the equalities of Table 2 hold.

(NNULL) N | l[[0]] ≡ N
(NCOMM) N | N ′ ≡ N ′ | N
(NASSOC) (N | N ′) | N ′′ ≡ N | (N ′ | N ′′)
(NSPLIT) l[[P | Q]] ≡ l[[P]] | l[[Q]]

Table 2: rTIMO Structural Congruence

Essentially, the role of ≡ is to rearrange a system in
order to apply the rules of the operational semantics
given in Table 3. Using the equalities of Table 2,
a given system N can always be transformed into
a f nite parallel composition of located processes
of the form l1[[P1]] | . . . | ln[[Pn]] such that no
process Pi has the parallel composition operator at
its topmost level. Each located process li[[Pi]] is
called a component of N , and the whole expression
l1[[P1]] | . . . | ln[[Pn]] is called a component
decomposition of the system N .

The operational semantics rules of rTIMO are pre-
sented in Table 3. The multiset labelled transitions of
formN

Λ
−→ N ′ use a multiset Λ to indicate the actions

executed in parallel in one step. When the multiset Λ
contains only one action λ, in order to simplify the
notation, N {λ}

−−→ N ′ is simply written as N λ
−→ N ′.

The transitions of form N
t
 N ′ represent a time

step of length t ∈ R+.

In rule (MOVE0), the process go[0,t]l′ then P migrates
from location l to location l′ (illustrated by the
label l ⊲ l′ of the transition) and then evolves
as process P . In rule (COM), an output process
a[0,t]!〈v〉 then P else Q located at location l, succeeds
in sending a tuple of values v over channel a to
process a[0,t

′]?(u) then P ′ else Q′ also located at l.
Both processes continue to execute at location l, the
f rst one as P and the second one as {v/u}P ′. The
label {v/u}@l of the rule (COM) illustrates the fact
that a communication that lead to the replacement of
u by v (denoted by {v/u}) took place at location l
(denoted by @l). If a communication action has a
timer equal to [0, 0], then by using the rule (PUT0)
for output action or the rule (GET0) for input action,
the generic process a[0,0] ∗ then P else Q where ∗ ∈
{!〈v〉, ?(x)} continues as the process Q. Rule (CALL)
describes the evolution of a recursion process. The
rules (EQUIV) and (DEQUIV) are used to rearrange a
system in order to apply a rule. Rule (PAR) is used
to compose larger systems from smaller ones by
putting them in parallel, and considering the union of
multisets of actions. The rules devoted to the passing
of time are starting with letter D.

A computational step is captured by a derivation of
the form:

N
Λ
−→ N1

t
 N ′.

This means that a step is a parallel execution of
individual actions of Λ followed by a time step.
Performing a step N

Λ
−→ N1

t
 N ′ means that N ′

is directly reachable from N . If there is no applicable
action (Λ = ∅), N Λ

−→ N1
t
 N ′ is written N t

 N ′ to
indicate (only) the time progress.

Proposition 1 For any systems N , N ′ and N ′′, the
following hold:

1. If N t
 N ′ and N t

 N ′′, then N ′≡N ′′;

2. N
(t+t′)
 N ′ if and only if there is a N ′′ such that

N
t
 N ′′ and N ′′ t′

 N ′.

The f rst item of Proposition 1 states that the passage
of time does not introduce any nondeterminism into
the execution of a process. Moreover, if a process is
able to evolve to a certain time t, then it must evolve
through every time moment before t; this ensures
that the process evolves continuously.

3. TRAVEL AGENCY EXAMPLE IN RTIMO

To illustrate the syntax and semantics of rTIMO ,
we use an example describing an understaffed
travel agency, presented also in Ciobanu and Rotaru
(2013). We assume that the agency has a central
off ce (where the executives interact with agents)
and six local off ces (where agents interact with
customers). However, due to massive layoffs, the
agency has only three travel agents available, whose
jobs are to communicate special travel packages
(destinations and the costs of the travel) to potential
customers, and two executives whose only jobs
are to assign the travel agents to certain local
off ces of the agency each day (not necessarily
the same local off ce each day). Also, there are
two potential customers who are interested in the
recommendations made by the agency, by visiting
some of the local agencies (the ones that are close
to their homes). We assume that the behaviours of
the agency staff and of the potential customers are
cyclic, and can be described as rTIMO processes.

The f rst agent (i.e., process Agent1) leaves its home
(i.e., the location homeAgent1) and goes to the central
off ce of the agency (i.e., location office) in order
to be assigned a certain local off ce for the current
day (i.e., a location that will replace the location
variable newloc). After arriving at the central off ce,
it has to communicate with one of the executives
on channel b after signing the attendance register,
any time between 1 to 5 minutes (depending on

(STOP) l[[0]] 6
λ
−→

(DSTOP) l[[0]]
t
 l[[0]]

(DMOVE)
t2 ≥ t′ > 0

l[[go[t1,t2]l′ then P]]
t′

 l[[go[max{0,t1−t′},t2−t′]l′ then P]]

(MOVE0) l[[go[0,t]l′ then P]]
l⊲l′
−−→ l′[[P]]

(COM) l[[a[0,t]!〈v〉 then P else Q | a[0,t
′]?(u) then P ′ else Q′]]

{v/u}@l
−−−−−→ l[[P | {v/u}P ′]]

(DPUT)
t2 ≥ t′ > 0

l[[a[t1,t2]!〈v〉 then P else Q]]
t′

 l[[a[max{0,t1−t′},t2−t′]!〈v〉 then P else Q]]

(PUT0) l[[a[0,0]!〈v〉 then P else Q]]
a![0,0]@l
−−−−−→ l[[Q]]

(DGET)
t2 ≥ t′ > 0

l[[a[t1,t2]?(u) then P else Q]]
t′

 l[[a[max{0,t1−t′},t2−t′]?(u) then P else Q]]

(GET0) l[[a[0,0]?(u) then P else Q]]
a?[0,0]@l
−−−−−→ l[[Q]]

(DCALL)
l[[{v/x}Pid]]

t
 l[[P ′

id]]

l[[id(v)]]
t
 l[[P ′

id]]
where id(v) def

= Pid

(CALL)
l[[{v/x}Pid]]

id@l
−−−→ l[[P ′

id]]

l[[id(v)]]
id@l
−−−→ l[[P ′

id]]
where id(v) def

= Pid

(DPAR)
N1

t
 N ′

1 N2
t
 N ′

2

N1 | N2
t
 N ′

1 | N ′
2

(PAR)
N1

Λ1−−→ N ′
1 N2

Λ2−−→ N ′
2

N1 | N2
Λ1∪Λ2−−−−→ N ′

1 | N ′
2

(DEQUIV)
N ≡ N ′ N ′ t

 N ′′ N ′′ ≡ N ′′′

N
t
 N ′′′

(EQUIV)
N ≡ N ′ N ′ Λ

−→ N ′′ N ′′ ≡ N ′′′

N
Λ
−→ N ′′′

Table 3: rTIMO Operational Semantics

•

the availability of one of the executives). Since the
agent can use different means of transportations,
and depending on the traff c, it can take between
5 to 10 minutes for the agent to reach the central
off ce of the agency (this movement is described
by the action go[5,10]office then P). The agent then
moves to the given location (it can take between
3 to 5 minutes depending on the local off ce it has
to reach) and advertises (over channel a) the f rst
destination on the agency’s list (i.e., location dest1),
in the form of a holiday pack for 100 monetary units.
Finally, after selling one travel package, the agent
returns home (it can take between 5 to 8 minutes
depending on the local off ce it departs from). The
second and the third agent (i.e., processes Agent2
and Agent3) are similar to the f rst, but they have
different homes (i.e., the locations homeAgent2 and
homeAgent3), and advertise different destinations
(i.e., locations dest2 and dest3), in the form of holiday
packs for 200 and 300 monetary units, respectively.
Formally, we have:

AgentX(homeAgentX : Loc) =

go[5,10]office then AgentX(office : Loc)

AgentX(office : Loc) =

b[1,5]?(newloc : Loc)

then (go[3,5] newloc

then AgentX(newloc : Loc))

else AgentX(office : Loc)

AgentX(officei : Loc) =

a
[1,20]
i !〈destX, 100 ·X〉

then go[1,3] homeAgentX

then AgentX(homeAgentX : Loc)

else go[1,3] homeAgentX

then AgentX(homeAgentX : Loc),

where 1 ≤ i ≤ 6 and X ∈ {1, 2, 3} refers to the
number of the agent.

The two executives (i.e., processes Executive1 and
Executive2) reside at the central off ce (i.e., location
office), and each chooses a local off ce (i.e., in a
cyclic manner, from the locations office1, office3,
office5, for process Executive1, and the locations
office2, office4, office6 for process Executive2) that
will be assigned to the next agent that comes to
the central off ce (over channel b in a period of

time between 1 and 5 time units for Executive1 and
a period of time between 2 and 4 time units for
Executive2, namely after each executive resolves
some off ce paperwork that make different periods
for the two executives). Formally, we have:

Executive1(office1 : Loc) =

b[1,5]!〈office1〉

then Executive1(office3 : Loc)

else Executive1(office1 : Loc)

Executive1(office3 : Loc) =

b[1,5]!〈office3〉

then Executive1(office5 : Loc)

else Executive1(office3 : Loc)

Executive1(office5 : Loc) =

b[1,5]!〈office5〉

then Executive1(office1 : Loc)

else Executive1(office5 : Loc)

Executive2(office2 : Loc) =

b[2,4]!〈office2〉

then Executive2(office4 : Loc)

else Executive2(office2 : Loc)

Executive2(office4 : Loc) =

b[2,4]!〈office4〉

then Executive2(office6 : Loc)

else Executive2(office4 : Loc)

Executive2(office6 : Loc) =

b[2,4]!〈office6〉

then Executive2(office2 : Loc)

else Executive2(office6 : Loc)

The f rst customer (i.e., process Client1) leaves
home (i.e., location homeC1) when he knows the
agencies should be open and visits all of the three
local off ces of the agency that are closest to his
home (i.e., the locations office1, office2, and office3),

•

in order, receives travel offers from the agents found
at those local off ces, and chooses the cheapest
travel destination. Then, he goes to the desired
destination, spends a certain amount of time there,
after which he returns home. The second customer
(i.e., process Client2) has the same behaviour as
the f rst, except that he has a different home (i.e.,
location homeClient2), the off ces closest to his home
are locations office4, office5 and office6, and that
he chooses the most expensive travel destination.
For simplicity, we consider that both clients have
the same intervals of performing similar actions.
Formally, we have:

Client1(homeClient1 : Loc) =

go[12,13] office1

then Client1(office1 : Loc)

Client1(office1 : Loc) =

a
[0,4]
1 ?(destClient1,1 : Loc, costClient1,1 : N)

then (go[1,2] office2

then Client1(office2 : Loc))

else (go[1,2] office2

then Client1(office2 : Loc))

Client1(office2 : Loc) =

a
[0,4]
2 ?(destClient1,2 : Loc, costClient1,2 : N)

then (go[1,3] office3

then Client1(office3 : Loc))

else (go[1,3] office3

then Client1(office3 : Loc))

Client1(office3 : Loc) =

a
[0,4]
3 ?(destlientC1,3 : Loc, costClient1,3 : N)

then (go[1,5] nextClient1

then Client1(nextClient1 : Loc))

else (go[1,5] nextClient1

then Clent1(nextClient1 : Loc))

Client1(destClient1,i : Loc) =

go[1,5] homeClient1

then Client1(homeClient1 : Loc), for 1 ≤ i ≤ 3

where

nextClient1 =

destClient1,i if costClient1,i =

minj∈{1,2,3}costClient1,j ∈ N

homeClient1 otherwise.

Client2(homeClient2 : Loc) =

go[12,13] office4

then Client1(office4 : Loc)

Client2(office1 : Loc) =

a
[0,4]
4 ?(destClient2,1 : Loc, costClient2,1 : N)

then (go[1,2] office2

then Client2(office5 : Loc))

else (go[1,2] office2

then Client2(office5 : Loc))

Client2(office5 : Loc) =

a
[0,4]
5 ?(destClient2,2 : Loc, costClient2,2 : N)

then (go[1,3] office6

then Client2(office6 : Loc))

else (go[1,3] office6

then Client2(office6 : Loc))

Client2(office6 : Loc) =

a
[0,4]
6 ?(destClient2,3 : Loc, costClient2,3 : N)

then (go[1,5] nextClient2

then Client2(nextClient2 : Loc))

else (go[1,5] nextClient2

then Client2(nextClient2 : Loc))

Client2(destClient2,i : Loc) =

go[1,5] homeClient2

then Client2(homeClient2 : Loc), for 1 ≤ i ≤ 3

where

nextClient2 =

destClient2,i if costClient2,i =

maxj∈{1,2,3}costClient2,j ∈ N

homeClient2 otherwise.

•

The initial state of the corresponding
rTIMO network N is:

homeAgent1[[Agent1(homeAgent1)]] |
| homeAgent2[[Agent2(homeAgent2)]] |
| homeAgent3[[Agent3(homeAgent3)]] |

| office[[Executive1(office1) |Executive2(office2)]] |
| homeClient1[[Client1(homeClient1)]] |
| homeClient2[[Client2(homeClient2)]]

4. TIMED SAFETY AUTOMATA

Towards a necessary automated verif cation of
complex distributed systems described by rTIMO ,
we provide f rst a relationship between rTIMO and
timed safety automata Alur and Dill (1994). Then,
taking into consideration the existing software tools,
we relate rTIMO to UPPAAL . UPPAAL is an integrated
tool environment for modelling, validation and
verif cation of real-time systems. More details about
the semantics of the input language of UPPAAL can
be found at http://www.uppaal.org/. Modelling and
verif cation of real-time systems by using UPPAAL
are presented in Hessel et all (2008). Such a
system is modelled as a network of several parallel
timed automata. All the clocks are evaluated to real-
numbers and progress synchronously. The model
uses variables just as in programming languages:
they are read, written, and are subject to linear
expressions. A state of the system is def ned by
the locations of the network, the clock constraints,
and the values of the variables. In any state, every
automaton from the network may f re an edge (if it
satisf es the restrictions) separately or synchronize
with another automaton, leading to a new state.

4.1. Syntax

Assume a f nite set of real-valued variables C ranged
over by x, y, . . . standing for clocks, and a f nite
alphabet Σ ranged over by a, b, . . . standing for
actions. A clock constraint g is a conjunctive formula
of constraints of the form x ∼ m or x − y ∼ m, for
x, y ∈ C, ∼∈ {≤, <,=, >,≥}, and m ∈ N. The set of
clock constraints is denoted by B(C).

Definition 1 A timed safety automaton A is a tuple
〈N,n0, E, I〉, where

• N is a f nite set of nodes;

• n0 is the initial node;

• E ⊆ N ×B(C)×Σ× 2C×N is the set of edges;

• I : N → B(C) assigns invariants to nodes.

n
g,a,r
−−−→ n′ is a shorthand notation for 〈n, g, a, r, n′〉 ∈

E. Node invariants are restricted to constraints of the
form: x ≤ m or x < m where m ∈ N.

4.2. Networks of Timed Automata

A network of timed automata is the parallel
composition A1 | . . . | An of a set of timed automata
A1, . . . ,An combined into a single system using the
parallel composition operator and with all internal
actions hidden. Synchronous communication inside
the network is by handshake synchronisation of input
and output actions. In this case, the action alphabet
Σ consists of a? symbols (for input actions), a!
symbols (for output actions), and τ symbols (for
internal actions). A detailed example is found
in Henzinger (1994).

A network can perform delay transitions (delay
for some time), and action transitions (follow an
enabled edge). An action transition is enabled if the
clock assignment also satisf es all integer guards
on the corresponding edges. In synchronisation
transitions, the resets on the edge with an output-
label are performed before the resets on the edge
with an input-label. To model urgent synchronisation
transitions that should be taken as soon as they
are enabled (the system may not delay), a notion of
urgent channels is used.

Let u, v, . . . denote clock assignments mapping C to
non-negative reals R+. g |= u means that the clock
values u satisfy the guard g. For d ∈ R+, the clock
assignment mapping all x ∈ C to u(x) + d is denoted
by u + d. Also, for r ⊆ C, the clock assignment
mapping all clocks of r to 0 and agreeing with u for
the other clocks in C\r is denoted by [r 7→ 0]u. Let
ni stand for the ith element of a node vector n, and
n[n′

i/ni] for the vector n with ni being substituted
with n′

i.

A network state is a pair 〈n, u〉, where n denotes a
vector of current nodes of the network (one for each
automaton), and u is a clock assignment storing
the current values of all network clocks and integer
variables.

Definition 2 The operational semantics of a timed
automaton is a transition system where states are
pairs 〈n, u〉 and transitions are def ned by the rules:

• 〈n, u〉
d
−→ 〈n, u+d〉 if u ∈ I(n) and (u+d) ∈ I(n),

where I(n) =
∧

I(ni);

• 〈n, u〉
τ
−→ 〈n[n′

i/ni], u
′〉 if ni

g,τ,r
−−−→ n′

i, g |= u,
u′=[r 7→ 0]u and u′∈I(n[n′

i/ni]);

• 〈n, u〉
τ
−→ 〈n[n′

i/ni][n
′
j/nj], u

′〉 if there exist i 6= j
such that

1. ni
gi,a?,ri
−−−−−→ n′

i, nj
gj ,a!,rj
−−−−−→ n′

j , gi ∧ gj |= u,
2. u′ = [ri 7→ 0]([rj 7→ 0]u) and u′ ∈

I(n[n′
i/ni][n

′
j/nj]).

home
y<=5

task
y<=12

work
y<=5

2.5<=y
move

x:=0, y:=0

2.5<=y
move
y:=0

x==2.5
perform
x:=0

2.5<=y
y:=0

Figure 1: Timed Safety Automata

Graphically, a timed safety automata can be represented
as a graph having a f nite set of nodes and a f nite set
of labelled edges (representing transitions), using real-timed
variables (representing the clocks of the system). The clocks
are initialised with zero when the system starts, and then
increased synchronously with the same rate. The behaviour
of the automaton is restricted by using clock constraints, i.e.
guards on edges, and local timing constraints called node
invariants (e.g., see Figure 1). An automaton is allowed to stay
in a node as long as the timing conditions of that node are
satisf ed. A transition can be taken when the edge guards are
satisf ed by clocks values. When a transition is taken, clocks
may be reset to zero.

Building a timed automaton for each located process
of rTIMO leads to the next result about the
equivalence between an rTIMO network N and its
corresponding timed automaton AN .

Theorem 1 Given an rTIMO network N with
channels appearing only once in output actions,
there exists a network AN of several parallel timed
automata with a bisimilar behaviour.

A bisimilar behaviour is given by:

• at the start of execution, all clocks in rTIMO
and their corresponding timed automata are
set to 0;

• the consumption of a go action in a node l is
matched by a τ edge obtained by translation;

• a communication rule is matched by a
synchronization between the edges obtained
by translations;

• the passage of time is similar in both
formalisms: in rTIMO the global clock is used
to decrement by d all timers in the network
when no action is possible, while in the timed
automata all local clocks are decremented
synchronously with the same value d.

Thus, the size of a timed safety automata AN is
polynomial with respect to the size of a TIMO
network N , and the state spaces have the same
number of states.

5. MODELLING THE TRAVEL AGENCY
EXAMPLE IN UPPAAL

The model of the travel agency of Section 3 has three
templates:

• Agent(int dest) is the model of an agent
with one integer parameter dest, as shown

in Figure 2. Using the parameter dest we
can initialize the three agents from Section
3 by creating the processes A1 = Agent(1),
A2 = Agent(2) and A3 = Agent(3), where
each agent sells a travel package to a different
destination dest. It is also possible to instantiate
any number of agents, or agents that sell the
same travel package.

• Executive(int o1, int o2, int o3) is the model of
an executive with three integer parameters
o1, o2 and o3, shown in Figure 2. The three
parameters are used to initiate the two ex-
ecutives described in Section 3 by creat-
ing the processes E1 = Executive(1, 3, 5) and
E2 = Executive(2, 4, 6), where each executive
is given the off ce locations that he/she can
assign to agents. As for the agents, it is pos-
sible to create more executives than the ones
presented in Section 3.

• Client(int id, int o1, int o2, int o3) is the model
of a client with four parameters, shown
in Figure 3. The parameters are used to
initiate the two clients of Section 3 by
creating the processes C1 = Client(1, 1, 2, 3)
and C2 = Client(2, 4, 5, 6). The id parameter
is used to uniquely identify a client, while the
other parameters are used to identify three
local off ces each client is allowed to visit
before making a travel decision. As for Agent
and Executive, any number of clients can be
created.

Thus, the initial system is
system A1,A2,A3,E1,E2,C1,C2.

We explain in detail the Agent template of Figure
2 (the others are constructed in a similar manner).
It has f ve locations: home, office, office b, office o

Figure 2: The Agent (left) and Executive (right) Templates

and office a. The initial location is home, which
corresponds to the fact that an agent is at home.
The location has the invariant x <= 10 (taken
from the rTIMO action go[5,10]) which has the effect
that the location must be left within 10 time units.
The outgoing transition towards location office is
guarded by the constraints 5 <= x and x <=
10, which correspond to the above mentioned go
rTIMO action. Once at location office, the agent can
either synchronize on channel b[o] with an executive
or, if the channel expires, create another instance in
order to be able to receive an off ce location from
an executive. After the communication is performed,
the agent is at location office b (meaning that it
successfully received the location newloc = o of the
off ce he is detached to), and is ready to move to
the assigned location officeo. After arriving at officeo,
he awaits for a client for at most 20 time units, to
which he must communicate the travel package on
channel a[newloc][dest]!. Regardless of the fact that
he interacts with a client or not, he moves within
20 time units to the location office b where he is
ready to go home in order to prepare for a new
working day. Thus, an agent has a cyclic evolution
(a similar behaviour as one of the executives and of
the clients).

6. VERIFYING PROPERTIES OF TRAVEL
AGENCY BY USING UPPAAL

According to the results and descriptions presented
in the previous section, we can verify time
bounded distributed systems with mobility presented
as rTIMO networks by using UPPAAL. UPPAAL
can be used to check temporal properties of
networks of timed automata, properties expressed
in Computation Tree Logic (CTL). If φ and ψ are
boolean expressions over predicates on nodes,

integer variables and clock constraints, then the
formulas have the following forms:

A [] φ - Invariantly φ; A 〈 〉 φ - Always Eventually
φ;

E [] φ - Potentially Always φ; E 〈 〉 φ - Possibly
φ;

φ ψ - φ always leads to ψ. This is a shorthand
for A [] (φ⇒ A 〈 〉 ψ)

The formulas can be of two types: path formulae
(quantify over paths or traces of the model) and
state formulae (individual states). Path formulae can
be classif ed into reachability (E 〈 〉 φ), safety (A [] φ
and E [] φ) and liveness (A 〈 〉 φ and φ ψ).
Reachability properties are used to check whether
there exist a path starting at the initial state, such
that φ is eventually satisf ed along that path. Safety
properties are used to verify that something bad
will never happen, while liveness properties check
whether something will eventually happen.

We present various properties that could be
analyzed and verif ed for our example from Section
3. We have used an Intel PC with 8 GB memory, 2.50
GHz × 4 CPU and 64-bit Ubuntu 14.04 LTS to run
the experiments. The results are presented for each
analyzed property.

Example 1 Given the uncertainty of the delay in
migration and communication, the size of the
potential interactions in rTIMO systems grows
exponential making the software verif cation a
necessity. We use UPPAAL to perform this kind
of verif cations for the travel agency example
presented in Section 3, for both safety and liveness
properties. Here we present only some of the
formulas/properties verif ed by using UPPAAL.

Figure 3: The Client Template

• C1.office1−− > C1.home

The formulae C1.office1 C1.home, short-
hand for A[](C1.office1 ⇒ A〈 〉C1.home, de-
scribe that, once the client C1 is in the office1
location, then it will always reach the home
location. This implies that after leaving location
office1, even whether the client visits or not the
locations office2 and office3, the client C1 goes
to the desired location, after which returns
home.

• E〈 〉 C1.home imply C1.dest1

This formulae is used to check whether once
the client C1 is in the home location, then
it possibly reaches the dest1 location. This
implies that if the client C1 leaves the home
location, one of its travels takes him to location

dest1. In a similar manner it can be checked
that there are evolutions in which the client C1
visits one of the locations dest2 or dest3.

• E〈 〉 A1.office and A2.office and A3.office

This is checking whether or not the agents
A1, A2 and A3 reach the office location at
the same time. Due to the uncertainty of the
delay in migration and communication and of
the fact that each agent has different timing
constraints, having all agents at location office
may not happen in all the possible evolutions.

•

• A[] not deadlock

This is checking that there exists no deadlock.
This implies that, whatever are the interac-
tions between the involved participants, the
evolution never stops. This means that after
a working day the agents go the next day
to work, while the clients continue to look for
travel packages in the following days.

For this property, we have stopped the
verif cation process after 57609 seconds due
to the fact that the RAM was fully used (as it
can be seen below).

Since the verif cation of the previous property
was stopped due to insuff cient RAM, we try a
similar verif cation of “no deadlock” for smaller
systems. For systems with a smaller number
of agents, executives and clients the “no
deadlock” property is satisf ed. For one agent,
one executive and one client the UPPAAL
verif cation returned:

Adding another agent takes more time to verify,
but the property still holds:

Several other properties of rTIMO systems can be
verif ed by using UPPAAL .

7. CONCLUSION AND RELATED WORK

In this paper we presented time bounded extension
of rTIMO , suitable to work in complex distributed
systems with mobility. It is different from all
previous approaches since it encompasses specif c
features as real-time timeouts given as intervals,
explicit locations, time bounded migration and
communication. The parallel execution of a step is
provided by multiset labelled transitions. We have
presented an example of applying rTIMO to an
understaffed travel agency, illustrating that rTIMO
provides an appropriate framework for modelling and
reasoning about time bounded distributed systems
with migration and interaction/communication. We
have shown that we can model and verify real-
time systems (e.g., the travel agency) corresponding
to rTIMO networks by using UPPAAL . As rTIMO is
a prototype language, a f exible representation of
a travel agency is given as a number of parallel
processes that are instances of the AX, EX and
CX. The implementation of rTIMO processes in
UPPAAL is natural due to the fact that in UPPAAL it is
possible to use templates. For the running example
this allows, by proper instantiations, to create any
number of agents, executives and clients that can
interact when placed in parallel. It is easy to note
that the formalism presented in Aman and Ciobanu
(2013) represents a strict subclass of the formalism
presented in this paper.

Several proposals of process calculi for real-time
modelling and verif cation have been presented in
the literature: timed CSP Reed and Roscoe (1988),
timed ACP Baeten and Bergstra (1991) and several
timed extensions of CCS Moller and Tofts (1990);
Yi et all (1994). Aiming to bridge the gap between
the existing theoretical approach of process calculi
and forthcoming realistic programming languages for
distributed systems, we have introduced and studied
a rather simple and expressive formalism called
TIMO as a simplif ed version of timed distributed
pi-calculus Ciobanu and Prisacariu (2006). In
several aspects, TIMO is a prototyping language
for multi-agent systems, featuring mobility and local
interaction. Starting with a f rst version proposed
in Ciobanu and Koutny (2008), several variants
were developed during the last years; we mention
here the access permissions given by a type
system in perTIMOCiobanu and Koutny (2011a),
as well as a probabilistic extension pTIMOCiobanu
and Rotaru (2013). Inspired by TIMO , a f exible
software platform was introduced in Ciobanu and
Juravle (2009, 2012) to support the specif cation
of agents allowing timed migration in a distributed
environment Ciobanu (2010). Interesting properties
of distributed systems described by TIMO refer
to process migration, time constraints, bounded

•

liveness and optimal reachability Aman et. all
(2012); Ciobanu and Koutny (2011b). A verif cation
tool called TIMO@PATCiobanu and Zheng (2013)
was developed by using Process Analysis Toolkit
(PAT), an extensible platform for model checkers.
A probabilistic temporal logic called PLTM was
introduced in Ciobanu and Rotaru (2013) to verify
complex properties making explicit reference to
specif c locations, temporal constraints over local
clocks and multisets of actions.

Acknowledgements. Many thanks to the reviewers
for their useful comments. The work was supported
by a grant of the Romanian National Authority for
Scientif c Research, project number PN-II-ID-PCE-
2011-3-0919.

REFERENCES

Alur, R. and Dill, D.L. (1994) A Theory of Timed
Automata. Theoretical Computer Science 126,
183–235.

Aman, B. and Ciobanu, G. (2013) Real-Time
Migration Properties of rTIMOVerif ed in UPPAAL .
In Hierons, R., Merayo, M.and Bravetti, M. (Eds.),
SEFM 2013. Lecture Notes in Computer Science
8137, 31–45.

Aman, B., Ciobanu, G. and Koutny, M. (2012) Be-
havioural Equivalences over Migrating Processes
with Timers. In Giese, H. and Rosu, G. (Eds.)
FMOODS/FORTE 2012, Lecture Notes in Com-
puter Science 7273, 52–66.

Baeten, J.C.M. and Bergstra, J.A. (1991) Real Time
Process Algebra. Journal of Formal Aspects of
Computing Science 3(2), 142–188.

Ciobanu, G. (2008) Behaviour Equivalences in
Timed Distributed π-Calculus. In Wirsing, M.,
Banâtre, J.-P., Hölzl, M. and Rauschmayer, A.
(Eds.), Lecture Notes in Computer Science 5380,
190–208.

Ciobanu, G. (2010) Finding Network Resources by
Using Mobile Agents. Intelligent Distributed Com-
puting IV. Studies in Computational Intelligence
315, 305–313.

Ciobanu, G. and Juravle, C. (2009) A Software
Platform for Timed Mobility and Timed Interaction.
In Lee, D., Lopes, A. and Poetzsch-Heffter, A.
(Eds.) FMOODS/FORTE 2009, Lecture Notes in
Computer Science 5522, 106–121.

Ciobanu, G. and Juravle, C. (2012) Flexible
Software Architecture and Language for Mobile
Agents. Concurrency and Computation: Practice
and Experience24, 559–571.

Ciobanu, G. and Koutny, M. (2008) Modelling and
Verif cation of Timed Interaction and Migration.
In Fiadeiro, J.L., Inverardi, P. (Eds.) FASE 2008,
Lecture Notes in Computer Science 4961, 215–
229.

Ciobanu, G. and Koutny, M. (2011) Timed Migration
and Interaction With Access Permissions. In
Butler, M., Schulte, W. (eds.) FM 2011, Lecture
Notes in Computer Science 6664, 293–307.

Ciobanu, G. and Koutny, M. (2011) Timed Mobility
in Process Algebra and Petri nets. The Journal of
Logic and Algebraic Programming 80(7), 377–391.

Ciobanu, G. and Prisacariu, C. (2006) Timers for
Distributed Systems. In Di Pierro, A. and Wiklicky,
H. (Eds.) QAPL 2006,Electronic Notes in Theoretic
Computer Science 164(3), 81–99.

Ciobanu, G. and Rotaru, A. (2013) A Probabilistic
Logic for PTIMO. In Liu, Z., Woodcock, J. and Zhu,
H. (Eds.) ICTAC 2013, Lecture Notes in Computer
Science 8049, 141–158.

Ciobanu, G. and Zheng, M. (2013) Automatic
Analysis of TIMOSystems in PAT. In Proc.
18th International Conference on Engineering of
Complex Computer Systems (ICECCS 2013),
IEEE Computer Society, 121–124.

Hennessy, M. (2007) A Distributed π-calculus.
Cambridge University Press.

Henzinger, T.A., Nicollin, X., Sifakis, J. and Yovine,S.
(1994) Symbolic Model Checking for Real-time
Systems. Information and Computation 111, 192–
224.

Hessel, A., Larsen, K.G., Mikucionis, M. Nielsen,
B. Pettersson, P. and Skou, A. (2008) Testing
Real-Time Systems Using UPPAAL . In Hierons,
R.M., Bowen, J.P., Harman, M. (Eds.) FORTEST,
Lecture Notes in Computer Science 4949, 77–
117.

Milner, R., Parrow, J. and Walker, D. (1992) A
Calculus of Mobile Processes (i-ii). Information
and Computation 100, 1–77.

Moller, F. and Tofts, C. (1990) A Temporal Calculus
of Communicating Systems. In Baeten, J.C.M.,
Klop, J.W. (Eds.) CONCUR 1990, Lecture Notes
in Computer Science 458, 401–415.

Reed, G.M. and Roscoe, A.W. (1988) A Timed
Model for Communicating Sequential Processes.
Theoretical Computer Science 58(1-3), 249–261.

Yi, W. , Pettersson, P. and Daniels, M. (1994) Au-
tomatic Verif cation of Real-time Communicating
Systems by Constraint-solving. In International
Conference on Formal Description Techniques,
223–238.

