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This paper focuses on the fault diagnosis problem of systems modeled with P-time labeled Petri nets with partial
information. Indeed, the set of transitions is partitioned into those labeled with the empty string ǫ called silent (as their
firin cannot be detected) including the faulty transitions and the observable ones. The proposed approach is based on
the synthesis of a function called diagnoser allowing to determine the diagnosis state of the system based on the current
observation. The novelty of the developed approach resides in the fact that, although the time factor is considered as
intervals, the diagnoser is computed thanks to the underlying untimed Petri net structure of the P-time labeled model
considered. Furthermore, the method relies on the schedulability analysis of particular firin sequences exhibited by the
analysis of the obtained diagnoser and does not require the building of the state class graph.
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1. INTRODUCTION

The correct behavior of a real-world application is the
ultimate requirement, particularly for systems such as
communication protocols, manufacturing and real-time
systems. Indeed, a drift from an expected behavior can
be of crucial importance and can even lead, in extreme
cases, to severe consequences including human losses. So,
knowing the current state of a system in order to take the
appropriate decisions and determining the malfunction of
a system component are nowadays fundamental issues.

From a practical point of view, associating a dedicated
sensor to each variable of interest in order to monitor
its internal state is inconceivable. This restriction, due to
economical or physical accessibility reasons leads to a
system analysis in presence of uncertainties as the state
information cannot be directly obtained. This particularity
has gave rise to the introduction of the observers paradigm
in the classical system theory. Indeed, an observer can
be viewed as a mechanism allowing to estimate or
reconstruct the internal state of a system based on some
measurements. From a discrete event dynamic systems
point of view and more precisely from a Petri net (PN on
short) perspective this issue corresponds to the estimation
of a PN marking based on some event observations.

Thus, being given a sequence of observed events (called
word or trace) the challenge consists in determining if a
fault has occurred, eventually or for sure!

It can be noticed that the problems of fault diagnosis
has receive extensive attention these recent years and
particularly in the framework of automata models and
regular languages (Sampath et al. (1995), Cassandras and
Lafortune (2008), Lin (1994), Cassez and Tripakis (2008))
but there are few studies in the time discrete event systems
context.

A preliminary version of this paper was presented in
(Bonhomme (2014)) where an approach allowing to
estimate the marking of a P-time labeled Petri net (P-
TLPN) system based on the observation of particular
labels was presented. The plant observation is given by
a set of labels whose occurrence can be detected/observed
by an external agent (called observer or estimator) - these
particular labels are associated to observable transitions.
The other transitions, the unobservable ones (called silent
transitions) are labeled with the empty string ǫ.

In this extended and enriched version, a fault diagnosis
problem is solved thanks to the introduction of a function
called diagnoser which associates to each observation
a diagnosis state. In the proposed technique the set of
unobservable transitions is further partitioned into the
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set of faulty transitions and the set of regular ones. The
regular transitions are unobservable and non faulty.

The proposed approach does not require the state class
graph construction and consequently it is designed to
alleviate the state space explosion problem. Indeed, the
construction of the considered state observer is based on
the analysis of the underlying untimed PN structure of the
P-time labeled PN considered.

In particular, the following four assumptions are made:

1. the net structure and the initial marking are known,

2. the fault model is known,

3. the underlying untimed PN, of the P-TLPN
considered is bounded,

4. the Petri net induced by the set of unobservable
transitions does not contain circuit of null length.

Note that this latter assumption is adopted to exclude
the situation where an infinit of actions may take place
in a finit amount of time: it prevents the net induced
by the set of unobservable transitions from being Zeno
(Hadjidj et al. (2007)) which is in contradiction with a
diagnosability scheme. In addition, there is no assumption
on the backward conflic freeness of the subnet induced
by the set of unobservable transitions as in (Giua et al.
(2007)).

The paper is organized as follows: after an overview
of the relevant literature in the next section, a brief
reminder of the basics of untimed Petri nets followed by a
formal definitio of P-time labeled Petri nets is realized
in the third section. Section four covers the procedure
of estimation and the construction of the state observer.
The schedulability analysis of the occurrence sequence
highlighted by the state observer and its application to the
estimation problem are studied in the fift section. In the
sixth section the fault diagnosis problem is solved. Section
seven presents an illustration of the developed method and
the last section concludes the paper and gives suggestions
for future research.

2. LITERATURE REVIEW

For discrete event system (DES) state estimation has
been addressed by several researchers. For instance, in
(Giua et al. (2007)) the authors deal with the marking
estimation of a labeled Petri net system. Thanks to
structural assumptions on the subnet induced by the set
of unobservable transitions, they propose an algebraic
characterization of the set of consistent markings once a
sequence is observed.

In the framework of fault detection or fault diagnosis
several approaches can also be found in the literature -
fault diagnosis is closed to the state estimation problem.

Note that a complete survey of fault diagnosis methods
for DES can be found in (Zaytoon and Lafortune (2013)).
In (Cabasino et al. (2010)) the authors proposed a
diagnosis approach based on the concept of basis marking
and justificatio under the acyclicity assumption of the
unobservable subnet of the system considered. Intuitively,
for an observed sequence (word) ω, a justificatio can be
thought as the set of minimal (in terms of firin vector)
unobservable transitions interleaved with ω necessary to
complete ω into a fireabl sequence on the net considered,
from the initial marking. They extended their work in
(Cabasino et al. (2014)) to provide a diagnosability
approach for bounded labeled PN by introducing two
graphs, namely the modifie basis reachability graph
(MBRG) and the basis reachability diagnoser (obtained
from the MBRG). Necessary and sufficien conditions for
diagnosability are given but the construction of the two
graphs is of exponential complexity with respect to the
structure of the PN considered and its initial marking.

There are relatively few works in this topic in the time
discrete event systems scheme where the time factor is
modeled as intervals, so, numerous problems are still
open. Concerning the time Petri net model of Merlin
(Merlin and Faber (1976)), the authors in (Basile et al.
(2013)) proposed a procedure for estimating the marking
of the model in presence of unobservable transitions. They
introduced a modifie state class graph which captures
the required information on the possible evolution of the
system starting from a given initial marking. Thanks to
this graph, being given a timed sequence and a time
instant, the set of markings consistent with the current
observation is determined via integer linear programming
techniques. The approach is restricted to bounded time
Petri nets.

In a recent paper, the authors in (Basile et al. (2015))
extend the previously mentioned approach developed in
(Basile et al. (2013)) to deal with the state estimation and
the fault diagnosis problem for systems modeled by time
PN augmented with labels.

The authors in (Wang et al. (2013)), thanks to a fault
diagnosis graph (FDG) which is a truncation of the
conventional state class graph (SCG) (Berthomieu and
Diaz (1991)), developed an online technique for the
fault diagnosis of systems modeled by unlabeled time
Petri nets. The FDG is constructed incrementally with
respect to the current observation and its number of states
can be, in the worst case, the same as the one of the
traditional state class graph. Indeed, the FDG is obtained
from the SCG by only keeping the information required
for the evaluation of the fault states and the authors
concentrate on the sequence information and remove the
irrelevant state classes (i.e., which are not used in the fault
diagnosis). Intuitively, the state classes which are obtained
after the firin of an unobservable transition are discarded
as the diagnosis state is updated after an observation.



The acyclicity assumption of the subnet induced by the
unobservable transitions is also considered. The authors
further extend the method in (Wang et al. (2014)) by using
reduction rules and model checking techniques.

3. PETRI NETS

3.1. Untimed Petri Nets

The reader unfamiliar with Petri nets can refer to (Murata
(1989)), in the following only the basic notions are
recalled.

A Place/Transition net (P/T net) is a structure N =
(P, T, Pre, Post), where P is a set ofm places; T is a set
of n transitions. Pre : P×T → N and Post : P×T → N

are the pre and post incidence functions that specify the
arcs; C = Post−Pre is the incidence matrix. The preset
and postset of a node X ∈ P ∪ T are denoted ◦X and
X◦. A marking is a vector M : P → N that assigns to
each place of a P/T net a non-negative integer number of
tokens, represented by black dots.M(p) is the marking of
place p.

A net system 〈N ;M0〉 is a net N with an initial marking
M0. A transition t is marking enabled at M if M ≥
Pre(·, t). A transition t enabled at M may fire yielding
the marking M ′ = M + C(·, t). We write M [σ > to
denote that the sequence of transitions σ is enabled atM ,
and we write M [σ > M ′ to denote that the firin of σ
yieldsM ′. A markingM is reachable in 〈N ;M0〉 iff there
exists a firin sequence σ such thatM0[σ > M .

The set of all sequences that are enabled at the initial
marking M0 is denoted L(N,M0) i.e., L(N,M0) =
{σ ∈ T ⋆|M0[σ >} with T ⋆ the Kleene closure of set T
i.e. the set of all firin sequences of elements of T of
arbitrary length, including the empty sequence λ. The
notation σ′σ will correspond to the firin sequence σ′

followed by firin sequence σ, i.e., the concatenation
operation ; σ′ is the prefi of firin sequence σ′σ.

The set of all markings reachable from M0 define the
reachability set of 〈N ;M0〉 and is denoted R(N,M0).

Given a net N = (P, T, Pre, Post) and a subset
Ts ⊆ T , the Ts-induced subnet of N is the net Ns =
(P, Ts, P res, Posts) where Pres and Posts are the
restrictions of Pre and Post to Ts. So, the net Ns is
obtained from N by removing all transitions in T \ Ts,
it is denoted also by Ns∠Ts

N .

3.2. Labels mapping

A labels mapping LM is associated to each transition of
the net considered as follows

LM : T → Ω
⋃

{ǫ} ,

with Ω a finit alphabet and ǫ the empty string.

In the proposed approach, the set of transitions is
partitioned into two sets: observable transitions whose
firin can be detected by an external observer, denoted
as To and unobservable transitions whose firin cannot be
detected, denoted as Tu with T = To∪Tu and To∩Tu = ∅.

More precisely, the following stands:

• Tu = {t ∈ T |LM(t) = ǫ}, transitions in Tu are
also called silent,

• To = {t ∈ T |LM(t) 6= ǫ} (i.e., To is the set of
transitions labeled with a symbol in Ω).

In the proposed approach, the same label ζ ∈ Ω can be
shared by several transitions, i.e., two transitions ti, tj
with ti 6= tj will be called indistinguishable if:

LM(ti) = LM(tj) = ζ.

The extension of the label mapping can be realized over
sequences, LM : T ⋆ → Ω⋆, recursively as follows:

1. LM(ti) = ζ ∈ Ω if ti ∈ To,

2. LM(ti) = ǫ if ti ∈ Tu,

3. let σ ∈ T ⋆ and ti ∈ T then LM(σti) =
LM(σ)LM(ti),

4. LM(λ) = ǫ where λ is the empty sequence.

3.3. P-time Petri Nets

Definitio 1 The formal definitio of a P-TPN (Khansa
et al. (1996)) is given by a pair 〈N ; I〉 where:

• N is a marked Place/Transition net (a P/T net
system augmented with a marking)

• P → (Q+ ∪ {0})× (Q+ ∪ {∞}),

• pi → I(pi) = [ai, bi] with 0 ≤ ai ≤ bi

With:

• P : the set of places of the net N ,

• Q+: the set of positive rational numbers,

• Ii define the static interval of the operation
duration of a token in a place pi.

A token in place pi will be considered in the enabledness
of the output transitions of this place if it has stayed for
ai time units at least and bi at the most. Consequently,
the token must leave pi, at the latest, when its operation
duration becomes bi. After this duration bi, the token
will be ”dead” and will no longer be considered in the
enabledness of the transitions. According to the strong
firin mode, a transition in a P-TPN, is forced to fir unless
it is disabled by the firin of another conflictin transition.



Let consider αi the clock associated with the token
denoted i ∈ TK of the P-TPN (TK being the set of
tokens of the P-TPN considered). υ is a valuation of the
system, i.e., a mapping associating to each token i of
the P-TPN, an element of (R≥0), υi, representing the
time elapsed since the token i has been created (i.e., the
valuation of the clock αi). So, υ ∈ (R≥0)

TK with the
notation AX representing the set of mappings from X to
A. 0 is the initial valuation with ∀i, 0i = 0

The semantics of a P-TPN can be define as a Timed
Transition System (TTS). A state of the TTS is a couple
s = (M,υ) where M is a marking and υ a valuation of
the system.

Definitio 2 The semantics of a P-TPN 〈N ; I〉 is define
by the Timed Transition System SN = (Q, {q0} ,Σ,−→):

1. Q = NP × (Q≥0)
TK

2. q0 = (M0, 0)

3. Σ = T

4. −→∈ Q× (Σ ∪Q≥0)×Q

• The continuous transition is define ∀d ∈ R≥0 by:

(M,υ)
d
→ (M,υ′) iff

{

υ′ = υ + d.
∀ token k in ps ⇒ υ′

k ≤ bs.

• The discrete transition is define ∀ti ∈ T by:

(M,υ)
ti→ (M ′, υ′) iff:







































M ≥◦ ti.
∀ token k in pl, υk ≤ bl.
∀ ps ∈

◦ ti,∀ token k in ps involved in ti’s firin :
⋂

k[max(0, as − υk), (bs − υk)] 6= ∅.
M ′ = M −◦ ti + t◦i .

∀ token r, υ′
r =

{

0 if created by ti.
υr otherwise.

The dynamic evolution of a P-TPN depends on the
timing situation of each token. Indeed, each token will
be associated with a potential firin interval (or dynamic
interval) which can be different from its static one. For
instance, consider place pi with static interval [ai, bi],
let a token arrive in place pi at absolute time τ . At τ
its potential firin interval will correspond to [ai, bi]. At
time τ + c with c ≤ bi the dynamic interval of the
considered token will become [max(ai − c, 0), bi − c].
It can be noticed that a token is considered as dead when
its dynamic interval becomes [0, 0].

Definitio 3 A P-time labeled Petri net (P-TLPN on
short) over an alphabet Ω is a triple 〈N, I,LM〉 where
〈N, I〉 is a P-TPN and LM : T → Ω

⋃

{ǫ} is a labeling
function.

Finally, given a sequence of labels (a word) ω ∈ Ω⋆, it
is denoted by ωk the kth element in ω and the number
of elements of ω is denoted by |ω|. For a ∈ Ω, we write
a ∈ ω if there exists k ≥ 1 such that ωk = a (i.e., a is an
element of the word ω).

Furthermore, let ω1, ω2, . . . , ωn be n sequences of labels
(i.e., wi ∈ Ω⋆, 1 ≤ i ≤ n), the notation ω = ω1ω2 . . . ωn

will be the concatenation of ω1, ω2, . . . , ωn.

The next section recalls the procedure (Bonhomme
(2015)) to construct the state observer.

4. ESTIMATION PROCEDURE

The goal of the observer is to give the current state
estimate of the system based on the information of the
observed traces. The state of the observer will consist in a
set of states the model can be in after a label observation.

The following set will be associated to any observed word
ω (i.e., the observed labels sequence):

• L(ω) is the set containing all sequences of
transitions that are consistent with ω, i.e., the
set of all possible firin sequences that produce
observation ω.

In general, if ω is an observed word, the associated firin
sequence σ ∈ LM−1(ω) is not necessarily fireabl on the
net as some unobservable transitions should be interleaved
to obtain a fireabl sequence that produce ω.

Definitio 4 Let N be a P-TLPN with T = To ∪ Tu. The
following operator is defined

• The projection over To is Po : T ⋆ → T ⋆
o define as:

– Po(λ) = λ,
– for all σ ∈ T ⋆ and t ∈ T, Po(σt) = Po(σ)t if

t ∈ To and Po(σt) = Po(σ) otherwise (with
λ representing the empty sequence).

Given a sequence σ ∈ L(N,M0), ω = LM(Po(σ))
denotes the corresponding observed word.

Definitio 5 Let N be a P-TLPN with T = To ∪ Tu and
ω ∈ Ω⋆ be an observed word. L(ω) is define as:

L(ω) = P−1
o (LM−1(ω)) ∩ L(N,M0) =

{σ ∈ L(N,M0)|LM(Po(σ)) = ω},

i.e., the set of firin sequences consistent with ω ∈ Ω⋆.

Definitio 6 Let N be a P-TLPN with T = To ∪ Tu and
ω ∈ Ω⋆ be an observed word. C(ω) is define as:

C(ω) = {M ∈ R(N,M0)|∃σ ∈ L(ω) : M0[σ > M},

i.e., the set of markings consistent with ω.



So, being given an observed word ω, L(ω) is the set of
sequences that may have fire while C(ω) is the set of
markings in which the system may actually be.

P5

t4

t5

t6 t7

[1, 3]

[0, 6]
P1

P2

P3

P4

t1

t2

t3

[1, 3] [1, 2]

[2, 4]

a

b

b

Figure 1: P-TLPN model.

Let consider the P-TLPN of Figure 1 with Tu =
{t4, t5, t6, t7}, To = {t1, t2, t3}, Ω = {a, b}. It holds
LM(t1) = a,LM(t2) = LM(t3) = b (transitions t2
and t3 are indistinguishable) and LM(ti) = ǫ,∀ti ∈ Tu.

If the observed word is ω = ab then LM−1(ω) =
{t1t2, t1t3} and L(ω) = {t4t1t2, t4t1t6t7t3} and C(ω) =
[10000].

Definitio 7 Let N be a P-TLPN with T = To ∪ Tu, the
unobservable reachability mapping UR, which enables
to fin the markings reachable from a given marking
Mi, following the firin of all unobservable sequences is
define as:

UR : Nm → 2N
m

,

Mi → UR(Mi) =
{Mj ∈ Nm|∃σu ∈ T ⋆

u ,Mi[σu > Mj} ,

with 2N
m

the power set of the markings of the PN
considered.

4.1. State observer

Let Ni and Nj be two nodes of the graphical representa-
tion of the state observer (associated respectively to the
states yi and yj of the observer) such that it exists a
directed arc linking Ni to Nj (Ni → Nj , i.e., Ni is
a predecessor of Nj) labeled with ak with ak ∈ Ω as
illustrated on Figure2.

Ni

Nj

ak

Figure 2: nodes of the state observer.

Definitio 8 The state observer for the partially observ-
able P-TLPNN with initial markingM0 and T = To∪Tu

is define by the 5-tuple (Yso, Eso, fso, y0, ςso) where:

• Yso is the set of states of the state observer,

• Eso = Ω is the set of labels (associated to the
observable events),

• ςso : Yso → 2R(N,M0) is a function associating to
each state yso ∈ Yso a set of reachable markings,

• y0 is the initial state of the state observer and
ςso(y0) = SEM(N0) ∪ SSM(N0),

• fso : Yso × E⋆
so → Yso is the transition function

define as :
for yl ∈ Yso a state of the observer and
ω ∈ E⋆

so a string of observable labels
fso(y0, ω) = yl if ςso(yl) /∈ ∅ where ςso(yl) =
{

Ml : M0
τ
→ Ml ∧ LM(Po(τ)) = ω

}

=

SEM(Nl) ∪ SSM(Nl).

With the two sets SSM and SEM define as follows:

Definitio 9 Sets SSM and SEM

• SEM(Nj), the Set of Entry Markings of Nj ,

SEM(Nj) = {Ms ∈ Nj |∃Mu ∈ Ni, tk ∈ To,

ak ∈ Ω,LM(tk) = ak : Mu[tk > Ms}

• SSM(Nj), the Set of Shadow Markings of Nj ,

SSM(Nj) = {Ms ∈ Nj |∃Mu ∈ SEM(Nj),

σu ∈ T ⋆
u : Mu[σu > Ms}

or equivalently, SSM(Nj) = UR(SEM(Nj)).

Intuitively, for a given node Ns of the state observer,
after the observation of the word ω, the set SEM(Ns) ∪
SSM(Ns) represents the set of markings that are
consistent with the current observed word (i.e., C(ω)). The
other nodes can be computed recursively as explained in
the following.

1. The state observer starts in the initial state y0
and its associated initial node N0 is composed of
SEM(N0) = {M0} and SSM(N0) = UR(M0).

2. as soon as a label ak (associated with an observable
transition tk ∈ To) is observed a new state yl of the
observer is calculated yielding a new node Nl:

• the set of entry markings of node Nl is
obtained by investigating the set of markings
resulting from the firin of transition tk
starting from any marking (SEM ∪SSM ) of
N0,

• the set of shadow markings ofNl corresponds
to the set of markings obtained by the firin
of all unobservable sequences of transitions
starting from any entry marking of Nl,



3. return to 2 with the newly calculated state as the
initial state.

Definitio 10 Let Ni and Nj be two nodes of the state
observer,Ni andNj are said to be equivalent (Ni ⇔ Nj)
if and only if:

SEM(Ni) = SEM(Nj) and SSM(Ni) = SSM(Nj).

Proposition 1 Two nodesNi andNj of the state observer
will be equivalent if and only if, the following holds:

SEM(Ni) = SEM(Nj).

Definitio 11 Given a marking Mi ∈ R(N,M0) and a
transition tf ∈ To (associated with a label lf ∈ Ω, i.e.,
LM(tf ) = lf ), the set of candidate sequences denoted
CS(Mi, tf ) is the set of firin sequences, composed of
the unique fina observable transition tf , which can occur
fromMi, i.e.:

CS(Mi, tf ) = {s.tf |s ∈ T ⋆
u ∪ λ, tf ∈ To : Mi[s.tf >}.

With respect to the timing constraints to be satisfied
candidate sequences can be in the state possible or
impossible.

As Nu∠Tu
N (i.e., the Petri net induced by the set of

unobservable transitions) is not Zeno by assumption, it
is ensured that the time is diverging with regard to the
length of the firin sequences, thus, the set of candidate
sequences from a marking is necessarily finit (at the
instant of observation) and it can be investigated. The
following section addresses the schedulability analysis
(Bonhomme (2013b)) of an occurrence sequence (i.e., a
procedure verifying if the considered firin sequence can
occur without any violation of timing constraints) and its
application to the estimation problem.

5. SCHEDULABILITY ANALYSIS AND
ESTIMATION

Let σ = tatbtc . . . tq be a firin sequence of length s
(denoted |σ| = s). The jth fire transition of σ will
be associated with the jth firin instant (Bonhomme
(2013a)). A variable xi will represent the elapsed time
between the (i − 1)th firin instant and the ith one (with
x0 = 0).

For instance on Figure 3, (x2 + x3) is the time elapsed
between the firs firin instant (associated with transition
ta) and the third one (transition tc).

x1 x2 x3 .........

firing of ta firing of tb firing of tc firing of tq

xs

Figure 3: Firing instants.

In a P-TPN, the sojourn time (i.e., the amount of time
that a token has been waiting in a place) is counted up

as soon as the token has been dropped in the place as seen
previously. To compute the firin instants, this approach
requires that a token is identifie by three parameters:
the place that contains it, the information of its creation
instant and of its consumption one.

Function TOK is define with this purpose assuming that
a FIFO queuing policy in the net is used in the sequel:

TOK:N× (N \ {0})× T ⋆ → ℘(P )),

TOK(j, n, σ) = {p ∈ P |p contains a token created by
the jth firin instant and consumed by the nth one in firin
sequence σ}.

With ℘(P ) the set of subsets of P (also noted 2P ).

When it is clear from the context σ will be omitted in the
notation of TOK(.).

When the weight of the P-TPN arcs is element of N,
TOK(j, n) is a multi-set. For the sake of simplicity,
only ordinary P-TPN are considered (the arcs weight are
element of {0, 1}).

Tokens, with the same creation instant, located in different
places and involved in the same transition firin may
mutually constrained their sojourn time, the following
quantities, Dsmin and Dsmax, are introduced in order
to evaluate the contribution of these tokens. So, Dsmin
represents their availability in order to participate to this
firin and similarly, Dsmax expresses the fact that they
all must be prevented from dying (with [ai, bi] the static
interval associated with the place pi).

Dsmin(j, n) =
{

max (ai), i | pi ∈ TOK(j, n)
else 0 if TOK(j,n) = ∅

,

Dsmax(j, n) =
{

min (bi), i | pi ∈ TOK(j, n)
else +∞ if TOK(j,n) = ∅

.

The definitio of the following set SEN(q), allowing to
determine the creation instants of tokens involved in the
qth firin instant, is also necessary:

SEN(q) = {u|TOK(u, q) ⊂ ( °tq)}

To express more simply the obtained results, the definitio
of the following coefficient is required:

cuq =

{

Dsmin(u, q) if u ∈ SEN(q)
0 else ,

djk =

{

Dsmax(j, k) if TOK(j, k) 6= ∅
+∞ else

With, ∀(j, k) ∈ [0, q − 1] × [1, q], j /∈ SEN(q) and k 6=
q, then cjk = 0, and ∀k ∈ [0, q], xk ≥ 0.

The following proposition is finall obtained:



Proposition 2 A sequence of transitions σ = t1t2....tq
is schedulable (i.e., it may be fi ed respectively at firin
instants 1, 2, . . . , q) if and only if there exist x1 ≥ 0,
x2 ≥ 0,..., xq ≥ 0 such that:






























c0k ≤ x1 ≤ d0k, k = 1, ..., n
max

k=2,...,n
(c0k, c1k + x1) ≤ x1 + x2 ≤ min

k=2,...,n
(d0k, d1k + x1)

. . .

max
j=0,...,q−1

k=q,...,n

(cjk +

j
∑

s=0

xs) ≤

q
∑

s=0

xs ≤ min
j=0,...,q−1

k=q,...,n

(djk +

j
∑

s=0

xs)

In the sequel this system will be denoted as Sσ(q) or
simply Sσ when it is clear from the context.

Definitio 12 The firin space at the qth firin instant,
associated with a firin sequence σ, denoted by FSσ(q)
is the set of non negative vectors (x1, ..., xq) such that
the fi st, the second, . . . and the qth firin conditions
are satisfied Thus, a firin sequence σ = t1t2....tq
is schedulable if and only if its associated firin space
FSσ(q) is non-empty.

Thanks to this characterization of a firin sequence, the
Zenoness property can be checked by evaluating the
minimal duration of the circuit of unobservable transitions
under consideration (for instance, by minimizing the sum
of the xi associated with the considered transitions).

Definitio 13 A P-TLPN Nr firin schedule, will be a

sequence of ordered pairs (ti,
i
∑

k=0

xk) ; transition ti

fi able at time (
i
∑

k=0

xk), obtained from the state reached

by starting from Nr initial state and firin the transitions
tj , 1 ≤ j < i, in the schedule at the given times.

Finally, as in (Basile et al. (2015)), let denote:

ωt = ((a1, τ1), (a2, τ2) . . . (an, τn)) ∈ (Ω×Q+)⋆,

a time-label sequence (TLS), i.e., a sequence of pairs
(observed label-time instant).

Indeed, in the considered sequence, label ai is observed at
absolute time τi (i ≥ 1) and τ1 ≤ τ2 . . . ≤ τn.

Now all the required material for the proposed method is
given, the principle is presented as follows:

• starting from the initial state, once a label af will be
observed at the absolute time τf ,

• the set of associated observable event Taf
=

{t ∈ To|LM(t) = af} will be evaluated,

• then, ∀tf ∈ Taf
the set of feasible candidate

sequences CS(M0, tf ) will be computed,

• a switch from node N0 to node Nf (created by
the observation of label af ) is realized in the state
observer,

• for each σf ∈ CS(M0, tf ) (with Po(σf ) = tf ) the
associated linear system Sσf

will be constructed,

• and each σf will be checked for schedulability with
the following additional constraint:

∑|σf |
i=0 xi = τf .

Thanks to these considerations it is ensured that sequence
σf is schedulable and the firin of tf occurs at τf . Once a
firin sequence is proved to be possible the set of markings
the system can be in is then determined.

Let denote by FEAS(N0, tf ) the set of schedulable
firin sequences from node N0 ending with the unique
observable transition tf (it is a subset of the set of
candidate sequences).

FEAS(N0, tf ) = {σ ∈ CS(M0, tf )|FSσ(|σ|)

augmented with
∑|σ|

i=0 xi = τf is non-empty
}

.

Furthermore, based on the knowledge of the schedulable
candidate firin sequences only a subset of the set of
entry markings of node Nf (resulting from the firin of
transition tf ), denoted SEM ′(Nf ), will be considered for
the next step.
It holds:

SEM ′(Nf ) = {M ∈ SEM(Nf )|M0[σ > M,

σ ∈ FEAS(N0, tf )}.

With SEM ′(Nf ) ⊆ SEM(Nf ).

Afterwards, if another label ax is observed at absolute
time τx then:

• The set of associated observable event Tax
=

{t ∈ To|LM(t) = ax} will be evaluated,

• then, ∀tx ∈ Tax
the set of feasible candidate

sequencesCS(Mi, tx)will be computed withMi ∈
SEM ′(Nf ),

• a switch from nodeNf to nodeNx is realized in the
state observer,

• for each feasible firin sequence (on the underlying
untimed PN) σ′

fσx (i.e., M0[σ
′
fσx >) with

σx ∈ CS(Mi, tx) and σ′
f ∈ FEAS(N0, tf ) the

associated linear system Sσ′

f
σx

will be constructed.

It is recalled that σ′
f is a schedulable firin sequence

determined in the previous step with label af
observed at τf and Po(σ

′
fσx) = tf tx.

• each previously determined σ′
fσx will be checked

for schedulability with the following additional
constraint:

∑|σ′

f |+|σx|

i=0 xi = τx.



ensuring that the firin of tx occurs at τx.

And so on, the same method is iteratively applied with
respect to the current observation.

So, more formally the following principle is obtained:
let ωobs be an observed word (i.e., a sequence of labels
ωobs = a1a2a3 . . . aiai+1 . . . ∈ Ω⋆) and let Ni (i ≥ 1)
be the node of the associated state observer obtained after
the observation of label ai ∈ ωobs detected at absolute
time τi, as illustrated on the following figur (Figure 4).

N0 N1

a1 a2

N2

....
ai

Ni

a i+1
....

Figure 4: Observable sequence.

The associated sets FEAS and SEM ′ are computed as
follows:

Let t1 ∈ Ta1
= {t ∈ To|LM(t) = a1},

FEAS(N0, t1) = {σ ∈ CS(M0, t1)|FSσ(|σ|) augmented

with
∑|σ|

k=0 xk = τ1 is non-empty
}

.

SEM ′(N0) = SEM(N0) = {M0} and

SEM ′(N1) = {M ∈ SEM(N1)|M0[σ > M,

σ ∈ FEAS(N0, t1)}.

∀i > 0,

Let LM(ti+1) = ai+1,

FEAS(Ni, ti+1) = {σ ∈ CS(Mb, ti+1)|Mb ∈ SEM ′(Ni),

M0[̟ >,FS̟(|̟|) augmented with
∑|̟|

k=0 xk = τi+1 is non-empty
}

.

With firin sequence ̟ = σ1σ2 . . . σiσ where σs ∈
FEAS(Ns−1, ts), s ∈ {1, . . . , i} and Po(̟) =
t1t2t3 . . . titi+1.

More precisely:

Po(σj) = tj , j ∈ {1, . . . , i} with LM(tj) = aj .

SEM ′(Ni+1) = {M ∈ SEM(Ni+1)|Mk[σ > M,

σ ∈ FEAS(Ni, ti+1),Mk ∈ SEM(Ni)}.

SEM ′(Ni) is the set of entry markings of node Ni

resulting from the firin of schedulable firin sequences
with respect to the current observation.

Roughly speaking, FEAS(Ni, tk) is the set of candidate
sequences of node Ni ending with tk and which

can be completed by schedulable sub-sequences into
a schedulable firin sequence starting from the initial
marking of the P-TLPN considered.

So, by this way it is ensured that the feasible
firin sequences associated with the observed time-
label sequence ((a1, τ1), (a2, τ2) . . . (ai+1, τi+1)) are
effectively computed.

In the next section, addressing the fault diagnosis problem
of a P-TLPN system, this set will be used to evaluate the
state diagnosis associated with an observed TLS.

6. FAULT DIAGNOSIS

The set of unobservable transitions is partitioned into two
subsets, Tu = Tf ∪ Treg where the set Tf includes all the
fault transitions (modeling anomalous or faulty behavior)
while Treg includes all unobservable transitions which
correspond to regular events. Furthermore, the set Tf is
partitioned into r different subsets T i

f , where i = 1, . . . , r,
that models the different fault classes.

Definitio 14 Let 〈N ;M0〉 be a net system with labeling
function LM : T → Ω

⋃

{ǫ} , where N =
(P, T, Pre, Post) and T = To∪Tu. Let consider the TLS
ωt = ((a1, τ1), (a2, τ2) . . . (an, τn)) associated with the
state observer of Figure 4.

Let define
∑

(M0, ωt) = {σ ∈ T ⋆|M0[σ >, σ = σ1σ2 . . . σn :

LM(σi) = ai, i = 1, . . . , n, σs ∈ FEAS(Ns−1, ts),

LM(ts) = as, s = 1, . . . , n}

Indeed, σ can be viewed as a concatenation of
subsequences, namely σi, i ≥ 1. Each subsequence σi is
of the form s.ti with s ∈ T ⋆

u , LM(ti) = ai and absolute
firin instant of ti is τi.

So, it holds:

σi ∈ CS(Mb, ti) withMb ∈ SEM ′(Ni−1).

Definitio 15 A diagnoser is a function

Γ : [Ω×Q+]⋆ ×
{

T 1
f , T

2
f , . . . , T

r
f

}

→ {N,U, F}

that associates with each observed time-label sequence ωt

and each fault class T i
f , where i = 1, . . . , r, a diagnosis

state.

• Γ(ωt, T
i
f ) = N if ∀σ ∈

∑

(M0, ωt) and ∀tf ∈ T i
f ,

it is tf /∈ σ.
In such a case the ith fault cannot have occurred,
because none of the firin sequences consistent



with the considered observation contains a fault
transition of class i.

• Γ(ωt, T
i
f ) = U if:

1. ∃σ ∈
∑

(M0, ωt) and tf ∈ T i
f such that

tf ∈ σ,
2. ∃σ′ ∈

∑

(M0, ωt) such that ∀tf ∈ T i
f , it is

tf /∈ σ′.
In such a case a fault transition of class i may
have occurred or not, the diagnosis is in this case,
uncertain.

• Γ(ωt, T
i
f ) = F if ∀σ ∈

∑

(M0, ωt), ∃tf ∈ T i
f such

that tf ∈ σ.
In such a case the fault of class i must have
occurred, because all firabl sequences consistent
with the considered observation contains at least
one fault transition of class i.

Let consider the P-TLPN of Figure1 with Tu =
{t4, t5, t6, t7}, To = {t1, t2, t3}, Ω = {a, b}. It holds
LM(t1) = a,LM(t2) = LM(t3) = b (transitions t2
and t3 are indistinguishable). Furthermore, T 1

f = {t5} and
T 2
f = {t7}, i.e., there are two fault classes.

b

a

N1

[10000]

N0

SEM
SEMSSM

SSM

[01000]

[00100]

[00010]

[00001]

[00100]

[00010]

[00001]

b

Figure 5: State observer.

The corresponding state observer with two nodes is
depicted on Figure 5.

Let consider the following observed TLS ωt =
((a, 2), (b, 5)) then:
∑

(M0, ωt) = {ω1, ω2} with ω1 = t4t1t2 and ω2 =
t4t1t6t7t3.

We have (according to the notations of definitio 14):

• ω1 = σ1σ2 with σ1 = t4t1 and σ2 = t2,

• ω2 = σ1σ2 with σ1 = t4t1 and σ2 = t6t7t3.

The two obtained candidate sequences are feasible
with regard to the timing constraints. Indeed, the
two associated firin schedules can be, for instance,
considered respectively for ω1 and ω2:

• ((t4, 1), (t1, 2), (t2, 5)),

• ((t4, 1), (t1, 2), (t6, 2), (t7, 3), (t3, 5)).

It holds t7 ∈ T 2
f and t7 ∈ ω2 (t7 /∈ ω1), and t5 ∈ T 1

f ,
t5 /∈ ω1, t5 /∈ ω2.

So, Γ(ωt, T
1
f ) = N and Γ(ωt, T

2
f ) = U .

It means, that according to the previous observed time
label sequence ωt, it is known for sure that the fault of
class 1 (corresponding to fault transition t5) cannot have
occurred while fault transition t7 ∈ T 2

f may have occurred
(via ω2).

If the observed TLS corresponds to ωt = (b, 1), it is
easy to verify that

∑

(M0, ωt) = {ω3} with ω3 = t5t2
(the associated firin schedule is ((t5, 1), (t2, 1))) and
consequently, Γ(ωt, T

1
f ) = F and Γ(ωt, T

2
f ) = N (i.e., a

fault of class T 1
f occurs for sure and a fault of the second

class cannot have occurred).

In the next section an illustrative example is presented
where the Tu-induced subnet is cyclic.

7. ILLUSTRATIVE EXAMPLE

Let consider the P-TLPN of Figure 6 with To = {t2, t5},
Tu = {t1, t3, t4, t6, t7}, Tf = {t6} and LM(t2) =
a,LM(t5) = b. The Tu-induced subnet contains the cycle
(p3 − t4 − p4 − t6 − p3).

P1

P2

P3
P4

t1

t2

t3

t6

t5t4

t3

[1, 3]

[2, 2]
[1, 12]

[2, 8]

a

b

P5

t7

[10, 15]

Figure 6: P-TLPN with a cyclic Tu-induced subnet.

The state observer is depicted on Figure 7, it consists of
three nodes X0, X1 and X2.

a

X1

[10000]

X0

SEM

SEM

SSM

SSM

[00100]
b

[01000]

[01000]

[00010]

a

[00001]

[01000]

[00100]

[00010]

bX2

a

[00100]

SEM SSM

Figure 7: State observer of the P-TLPN of Figure 6.

If the observed word is ω = (a, b) then the set of possible
associated firin sequences is of the form t1t2t4(t6t4)

⋆t5
with the ⋆ after the subsequence (t6t4) (derived from the



Kleene star operator) indicating that it is allowed to occur
from zero time to infinitel . Thanks to the time instant
of occurrence of each label the set of feasible associated
firin sequences is necessarily finite

For instance if the TLS considered is:

ωt = ((a, 3), (b, 6)) then
∑

(M0, ωt) = {ω1} with
ω1 = t1t2t4t5. The associated firin space FSω1

(|ω1|)
augmented with the following constraints:

• x1+x2 = 3 (absolute firin instant of transition t2),

• x1 + x2 + x3 + x4 = 6 (absolute firin instant of
transition t5),

is non-empty.

It holds:

ω1 = σ1σ2 with σ1 = t1t2 and σ2 = t4t5 and an example
of firin schedule is:

̟ = ((t1, 1), (t2, 3), (t4, 5), (t5, 6)),

and it is unique with respect to the static intervals of the
P-TLPN places. So, it is easy to see that Γ(ωt, Tf ) = N
and the faulty transition t6 cannot have occurred.

If the TLS considered is now: ωt = ((a, 3), (b, 9)) then
Γ(ωt, Tf ) = U , as the computation of the set

∑

(M0, ωt)
leads to the following possible firin schedules (with the
same observable projection), one containing the faulty
transition and the other one not:

• ̟1 = ((t1, 1), (t2, 3), (t4, 5), (t5, 9)),

• ̟2 = ((t1, 1), (t2, 3), (t4, 5), (t6, 6), (t4, 8),
(t5, 9)).

If the TLS considered is now: ωt = ((a, 3), (a, 14))
then Γ(ωt, Tf ) = F . Indeed, the computation of the set
∑

(M0, ωt) leads to the following possible firin schedule
containing the faulty transition:

• ̟2 = ((t1, 1), (t2, 3), (t4, 5), (t6, 10), (t3, 12),

(t2, 14)).

In this case the faulty transition occurs with certainty
thanks to the timing structure of the P-TLPN considered
and the occurrence date of the observed labels.

8. CONCLUSION AND PERSPECTIVES

In this paper, a new methodology allowing to analyze
the fault diagnosis of systems modeled by P-time labeled
Petri nets is developed. It is based on the construction of
a function called diagnoser which associates with each
observation and each fault class a diagnosis state. This
diagnoser is obtained thanks to the synthesis of a state

observer which is an automaton allowing to estimate the
set of markings in which the system may be, being given
a sequence of observed labels.

Furthermore, the considered state observer is computed
on the basis of the untimed underlying Petri net of the
P-time labeled PN considered. This particularity allows
to avoid the combinatorial state space explosion problem
usually associated with the consideration of the time
factor modeled as time intervals.

Thanks to a schedulability analysis technique, the
feasibility of the candidate firin sequences associated
with the observed time-label sequence is evaluated via
linear programming techniques.

An issue currently being investigated is the extension of
the method to test the diagnosability property of P-TLPN
systems, i.e., is the fault can be detected within a finit
number of steps after its occurrence ?
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