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Software testing has been a significant part of the software development process for the last 30 years and is
gaining even more importance with the increasing complexity of software products. As each application has
its own requirements, multiple software testing methodologies exist. It is the decision of the developers to
choose the best suited types of testing methodologies for their product. This paper presents the design and
implementation of a property-based testing framework. Unlike traditional testing methods this methodology
uses the formal specification of the API to automatically generate the input and validate the output. The
framework will be used to test the API of an L4 microkernel (called VMXL4); VMXL4 possesses the constraints
of an embedded environment and of an ongoing development of a stateful system.

Property-Based Testing, L4 Microkernel, API

1. INTRODUCTION

The software industry has been constantly growing
in the last decades and the liability and robustness of
the software products must match their requirements
in order to remain competitive. To obtain a stable
product, the entire software stack must be reliable.
Therefore software testing must be done at each
layer of the software stack, starting with the lowest
level: the operating system.

Multiple software testing methodologies are in use
nowadays, each of them targeting a degree of
test cases coverage and test writing complexity.
Alongside the well known unit testing method,
another functional methodology named property-
based testing has gained ground among software
developers. It uses the concept of “tests as

specification”, in which tests are written to cover
most of the specification.

Writing a large number of tests for the same
specification implies a sizable effort from the
developers. Property-based testing mitigates this
by automaticallly generating the input and creating
general and abstract tests known as properties.
Those can be similar to unit tests, except for the way
input is generated and output is validated.

This paper presents an user space framework
named QC that is based on an open source basic im-
plementation of a property-based testing framework
implemented by Pennebaker (2012). Although the
well-known related released frameworks are written
in functional programming languages, QC is written
in C due to the VMXL4 native environment support.

©
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Porting a new language environment would have
meant a sizable and unnecessary effort.

The QC framework solves issues commonly encoun-
tered in unit testing by using properties and testing
those properties on a large number of randomly
generated inputs and by maintaining the internal
state of the system. As a downside, QC introduces
the problem of formalizing the specification.

The paper is organised as follows: Section 2 is
introducing the concepts necessary to understand
the paper. Section 3 briefly presents the existing
similar frameworks. Section 4 discusses the design
and implementation of QC and Section 5 its
evaluation in comparison with the existing testing
methods for the API of an L4 microkernel, VMXL4.
Lastly, in Section 6 we present the overview of the
paper and future work.

2. BACKGROUND

This section presents the basic concepts required
to understand the next sections of the paper. It
starts with the overview and importance of software
testing, followed by the essential concepts of unit
testing and property-based testing. We show the
power of property-based testing in contrast with unit
testing. We also do a short introduction of the testing
environment, describing the VMXL4 microkernel.

2.1. Software Testing

Nowadays the number of different programming lan-
guages, hardware platforms and software libraries
is increasing. Requirements, for both specifications
and performance, are also more rigorous as time
passes by. As a consequence, software applications
are becoming more complex and bugs are intro-
duced in new software at all levels. As a countermea-
sure software testing has gained more importance
and attention from programmers.

It is important that applications and services can be
stateful or stateless. In a stateful system, an internal
state is being held and some of the actions have side
effects which might change the state. The design of
a stateful software system can be modeled using
a finite-state machine and a formal specification of
the inputs for every possible state. The summarizing
difference between stateful and stateless systems
is that for the first one the output depends on the
input and possibly on the internal state, whereas for
the second one the output always depends only on
the input. A well known example of stateful versus
stateless are the TCP and UDP transport layer
protocols from the TCP/IP stack, where TCP creates
and maintains a connection between the client and
the server and UDP does not.

At a higher level, software testing can be defined
as the process of executing a part or the entire
application in order to find errors or to evaluate the
quality of the user experience. Any moderately sized
application has flaws, but finding them is a complex
activity. It is usually unfeasible to do an exhaustive
testing on stateful systems, since the number of
different possibilities for the input values associated
with the existing internal system state is too large.
Even for some stateless applications this testing
would imply a sizable effort. We conclude that it is
more resource and time demanding to test a stateful
system instead of a stateless system.

There are multiple methodologies in software testing
which must be used in various steps of the
development process. In this paper we insist only
on those that can be split in two major categories:
functional and nonfunctional testing.

Functional testing verifies the client or design
specifications by testing the system functionality:
checking if the program operations and features
behave as they should. In summary it is used to
ensure that the application does not have bugs.
There are two categories of functional testing:
positive and negative. Positive testing is done using
valid inputs and comparing the actual output with the
expected output, whereas negative testing is done
by supplying the system functionalities with invalid
or unexpected inputs and operations. In the case of
negative functional testing, usually the system must
not behave nondeterministically and rather inform
the user of the input error.

On the other side, nonfunctional testing is concerned
with the user experience, including tests for
performance, security, availability, usability. Using
this type of testing, one can measure and compare
the results in different situations and cover the blanks
left by functional testing. For a competitive software
product, developers must test the program using
both functional and nonfunctional methodologies.

2.2. Unit Testing

One of the most used and successful software
testing methodologies is unit testing (Binder (2000);
Hunt et al. (2004); Osherove (2010)). It is centered
on the concept of unit of work, meaning a single,
invokable, logical and functional use case of the
system.

Unit testing is composed of a suite of tests that
can be run anytime during the development cycle to
test certain functions, logic and capabilities of the
code. Each test uses a predefined set of inputs,
runs a functionality of the system and compares
the output with the desired output. If the outputs
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differ, the tested functionality has at least one bug.
Although unit tests usually verify only one small
feature, sometimes it is not easy to find the bug,
due to the black-box nature of the methodology. This
means that unit testing does not use the internal
structure of the functionality, but only the higher level
invoked part, and therefore the bug may be in the
internal logic and further debugging must be done.
One big advantage of unit testing is its reusable
nature. Even if the internal logic changes, usually the
requirements of the function remains the same and
the old test can still be used.

Although unit testing is very useful, it has a very
important flaw, which may leave hard detectable
bugs in the system. Using unit tests a programmer
only verifies a small finite set of inputs and for
every different input set he must write another test.
Therefore, using unit test programmers cannot even
get close to an exhaustive testing. In addition to
not finding possible subtle bugs, the work of the
programmer is hardened by thinking of all the corner
cases and writing more code for them. In the end,
these drawbacks are less important than the benefits
of unit testing: because it gives good results in
practice, it is very used and every major language
has frameworks for this testing methodology.

2.3. Property-Based Testing

A software testing methodology which addresses
the problems left by unit testing is property-based
testing (Fink and Bishop (1997); Fernandez et al.
(2004); Machado et al. (2007)). Its main advantage
is that it covers substantially more test cases than
unit testing; moreover, it can do exhaustive testing
though the time required to do this is not directly
proportional to the benefits. This is done using
only one generic test, named property, and some
functions to generate the inputs, named generators.

A property is the replacement of a unit test
and is run multiple times with different automated
generated inputs. Every running of the property
generates a different test. The input of the property
depends on the type and domain specified by
the programmer; because the input is generic,
the validation conditions of the test must be also
generic, following a formal specification. The name
“property” comes from the type of test validation,
where each test result must pass a general formal
property. In layman’s terms a property validation
condition specifies in a generic way how the tested
functionality should behave. A drawback of property-
based testing is that the formal specification does not
usually exist and the programmer must infer it from
the business and logic specifications.

A generator is a callback that does random data
generation at each running of the property. Because
complicated non-basic data types may be needed, a
property-based testing tool must allow user defined
generators. In order to achieve a good test coverage,
the generated data must be uniformly distributed
across its domain.

To show the differences between unit testing and
property-based testing, let’s assume one would want
to test a function named getMax, a function which
returns the maximum of two integer values. In a
unit test he would hard-code two values and test
if the output equals to the maximum value. If he
wants to test multiple cases, possibly corner cases,
then multiple tests need to be written. A pseudocode
implementation of the unit test is shown in Listing 1.

max = getMax (2 , 5)
asser t (max == 5)

Listing 1: Pseudocode for getMax unit testing

Using property-based testing, a pseudocode imple-
mentation would be the one from Listing 2.

a = generator ( )
b = generator ( )
max = getMax ( a , b )
asser t ( ( max == a | | max == b ) &&

(max >= a && max >= b ) )

Listing 2: Pseudocode for getMax property-based
testing

As shown above, the property is generic and more
powerful than the unit test. However, the validation
condition is bigger and must be correctly determined
by the test writer, otherwise the property may give
false positives or, even worse, false acceptances.

The quality of the automatic testing tool may be
improved by reducing the number of failing test
case inputs in order to obtain the minimum set of
inputs determining a given failure, a method known
as shrinking. This has the advantage of improving
the debugging process by providing the programmer
with minimal necessary information for debugging;
another advantage is that the overhead of this
method is not significant.

All in all, property-based testing has the benefits of
unit testing and some advantages over it: bigger test
coverage, improved specification completeness and
it is easier to maintain because of the reduced code
size, as illustrated by Nilsson (2014).

2.4. VMXL4

VMXL4 is a general purpose, high performance
L4 microkernel (Liedtke (1995)), developed in



Figure 1: VMXL4 testing infrastructure

partnership with VirtualMetrix, Inc1. It provides
mechanisms for performance management and a
minimal layer of hardware abstraction on which
virtualized operating systems personalities can be
built. Using the VMXL4 API, trust and security
models can be implemented. Examples of systems
built using VMXL4 are given in Carabas et al. (2014),
Manea et al. (2015) and Mogosanu et al. (2015).

An L4 microkernel was chosen due to the fact that
the L4 API’s formalization was proven to be feasible
by Kolanski and Klein (2006). The seL4 microkernel
is the first operating system kernel to be fully formally
specified and verified, as shown by Elkaduwe et al.
(2008) and Klein et al. (2009). Furthermore, other
implementations have been proposed for formally
verifiable L4 microkernels (Kauer and Völp (2005)).
The property-based testing approach proposed by
this paper is in some respects similar to previous
work, as it also relies on a formal specification.
The most important difference between the two
approaches is that property-based testing is more
efficient in terms of development resources, as
opposed a full mathematical refinement proof, which
may require a significant number of man-months to
be implemented.

Figure 1 shows the architecture of the current
VMXL4 testing infrastructure. The L4 microkernel
runs in the privileged CPU mode commonly known
as kernel space, while the tests run as user
space applications. The testing infrastructure is
implemented using support libraries, but the test
themselves call the L4 API directly in order to
validate it functionally.

Currently most API tests are following unit testing
principles, so test coverage is not nearly as exten-
sive. However, microkernels are stateful systems,
some of their core mechanisms being strongly cou-
pled. As a result, the current testing framework does
not employ true unit tests and only partially validates
the interaction between components.
1http://www.virtualmetrix.com/

We propose that the QC testing framework
presented in Section 4 use the same testing design,
with the addendum that additional support libraries
may be needed, e.g. in order to generate random
numbers. This converges with our goal to provide
a POSIX compliant native environment based on
VMXL4.

3. FRAMEWORKS FOR PROPERTY-BASED
TESTING

The idea of a property-based testing framework is
not new. Previous frameworks have been developed,
but the most successful are for functional languages,
due to some of their distinctive features: higher order
programming, which is very useful for properties
and data generators, lack of side effects, time of
development. Moreover, functional programming fits
better for random testing than imperative program-
ming because it uses fine-grained properties. This
section presents an overview of three of the most
influential existing frameworks and of some open
source projects.

Haskell QuickCheck
Haskell QuickCheck2 is the first well known
framework for property-based testing and future
frameworks were inspired by it. QuickCheck is a
tool which automates testing for Haskell programs.
As shown in Claessen and Hughes (2002, 2011), it
does this by defining a formal specification language,
which is powerful enough to represent common
forms of specifications: algebraic, model-based and
preconditional or postconditional. QuickCheck uses
combinators to define properties and test data
generators and obtain the test generated data
distribution. An important feature of the framework
is the shrinking of the generated data when a test
fails, to give the minimum input which still fails the
property.

Erlang QuickCheck
The programmers who developed Haskell
QuickCheck saw the bigger commercial opportunity
offered by Erlang and developed a new version
of the framework3, which has its specifications in
Erlang. Linking specification in Erlang to code under
test in other languages is easier than in Haskell.
Two very important distinctive features of the Erlang
version are the ability to test stateful systems
by using state machine testing and the ability to
generate and run parallel test cases in order to find
race conditions (Arts and Hughes (2003)).
2https://hackage.haskell.org/package/QuickCheck
3http://www.quviq.com/products/erlang-quickcheck/
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ScalaCheck
ScalaCheck4 is the third main framework used for
property-based testing and is used for automated
randomized property-based testing of programs
developed in Scala or Java (Odersky (2010)). It
was inspired by Haskell QuickCheck and implements
most of its features, but also some in addition to its
predecessor, such as stateful testing. Nilsson (2014)
provides a comprehensive guide to ScalaCheck.

Open Source Initiatives
Due to the success of Haskell QuickCheck, open
source implementations in most major programming
languages were started, such as C, C++, Java,
Python, but with less features and success. QC was
inspired by one of those open source initiatives,
employed by Pennebaker (2012).

4. QC DESIGN AND IMPLEMENTATION

This section presents the design and implementation
of the QC framework and the motivation behind
it. QC intends to test the L4 microkernel API in
a functional manner, following the property-based
testing methodology. It may be used alongside unit
tests, because it tries to generalize them, but on a
long term it may strive to replace unit testing for the
VMXL4 microkernel API.

4.1. Implementation Starting Point

The implementation is based on the open source
project developed by Pennebaker (2012). It is a basic
framework, supporting only two features: random
data generation and one property per test, which
was run for a predefined number of times. A part
of the implementation is not really usable, because
the programmer who uses the framework must know
the size of the generated types and create tests
accordingly, which is error-prone. The only part
which we partially used is the test data generation
component.

The framework is implemented in the C program-
ming language because it was the most convenient
option taking into consideration the testing environ-
ment. Porting a new language environment can be
very complicated, because the native environment
offered by a microkernel is very low-level. Moreover,
implementing a POSIX environment is equivalent
with the implementation of an entire operating sys-
tem. Also, because the API had already been written
in C, there is no need for further linking between
different languages.
4https://www.scalacheck.org/

4.2. General Design

Because a kernel is a stateful system and QC is
developed to test the L4 microkernel API, being
evaluated on VMXL4, two more concepts used by
QC have to be introduced. Preconditions are a set of
predicates that must be true prior to the execution of
a property and postconditions are a set of predicates
that must be true after the execution of an action in
the property. If all the preconditions of a property are
true, then the property is applicable, otherwise it is
not. If all the postconditions of a property are true,
than the property has passed.

Due to the fact that QC is designed for a stateful
system, it uses tests containing multiple properties
that are used as actions with side effects in
the stateful system. Therefore QC borrows some
elements from integration testing, a methodology
in which individual software modules are tested
together. Each test consists of at least one property,
randomly generated from the available properties.
Each property has a finite number of arguments
with known data types at compile time, a fact
that provides the opportunity to use property-based
testing. When at least one of the postconditions
of a property has failed, then the test fails, the
entire generic test completes and the actions taken
during the test are printed alongside their input. The
second situation in which a test fails is when its state
becomes inconsistent, meaning that no property has
all of its preconditions passing and therefore no
future action can be taken. When a test fails, the
programmer sees all the randomly generated data
used by the test and this facilitates easier debugging.

Properties are divided in two categories: normal
properties and cleanup properties. Normal prop-
erties are placeholders for actions that the sys-
tem may take anytime, provided the preconditions
are satisfied. Cleanup properties are used to end
tests and to free allocated resources. Every test
must have at least one cleanup property. If a test
does not have allocated resources, QC provides the
empty clean property macro for an empty property,
whose only purpose is to end the test. Although
most of the time only one cleanup property will
be used for a generic test, having multiple cleanup
properties may be useful in some situations. One
can use fine-grained cleanup properties if the system
can have many internal states. This makes the code
cleaner and in a system with many generic tests, the
probability to reuse cleanup properties is bigger if
they are fine-grained.

A higher level design of QC is shown in Figure 2. The
programmer must call QC with an array of normal
properties and an array of cleanup properties, as
previously discussed. To generate random input and



Figure 2: QC design

randomly pick properties, QC uses a seed. When a
test fails, the programmer will want to reproduce the
exact same sequence of properties and inputs to test
the fix for the bug. Because the random generation is
deterministic given the seed, QC shows it for every
generic test so the programmer can use that seed
if he wants to reproduce the tests. Otherwise, QC
generates a random seed to assure random tests
and a good test coverage.

QC will generate a fixed number of tests, previously
given by the user. Another available option is the
verbosity level for generic tests. The user can see
the sequence used by every test or only by failing
tests. Viewing the sequence used by every test can
be useful to improve the generic test and its test
coverage.

There may be cases when tests will end prematurely,
after using only a few properties, because QC may
choose and use a cleanup property whenever its
preconditions are satisfied. To mitigate this, the user
chooses the minimum number of properties that
must be used during a test.

The last parameter from Figure 2 represents the type
of statistics shown at the end of the generic test. QC
supports two types of statistics for every generic test:
user defined and automatically generated. The user
can choose to see both categories, only one or none.

4.3. Generators

As previously mentioned, generators are the
callbacks that randomly produce the input data.

A QC generator consists of 2 callbacks: one to
generate the data and the other to print the
data, as the C printf function needs different
formats depending on the printed type. Because of
that, the QC equivalent of a generator is struct

generator printer.

QC offers a set of predefined generators for C
basic data types, such as int and char, and also
for bool, string (stored as a char dynamic array)
and generic arrays. Moreover, a user can write his
own generators or printers and use them for his
properties.

In order to generate arrays, only the basic type
generator is needed, because QC offers a wrapper
which automatically generates new array types. The
array type can have fixed or random size in a given
range, depending on the user needs. All generated
arrays are dynamically allocated and their memory
is freed after their associated property ends. This
avoids out of memory errors for big tests with many
generated arrays, but can introduce subtle bugs if the
user forgets to copy the content of the array in case
he needs it after the property ends.

Sometimes basic types may need additional features
such as a maximum or minimum value. QC offers two
solutions for this. The first one is that miscellaneous
parameters can be added to the generators, in
order to modify the generated value to match the
requirements. The second solution is to change and
update the generated values from the property code.
Both solutions are acceptable for code readability,
but in general cases the first option should be used,
because it’s reusable and only the parameters will be
changed.

All generated data for a property is stored in a
dynamically allocated array with the size in bytes
equal to the maximum number of arguments of a
property multiplied by the maximum size in bytes of
an argument type. This approach solves the problem
with the variable number of property arguments and
their different types. The value of the generated data
is obtained in the property and the user must only
know the data type and the index of the argument,
something that he had already defined in the state
machine test specification.

4.4. Statistics

In order to measure various metrics, QC offers
the possibility to attach user defined statistics to a
property. After a property ends successfully, each of
its statistics callbacks is called and the metrics are
updated. This can help the user to investigate bugs
and also measure the test coverage. An example of
this logging category is shown in Listing 7.
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By default, QC logs statistics regarding properties
and their sequence. For every property, QC logs the
number of total calls, the number of starting test
property calls and for every property how many times
it followed the current property. An example of this
type of logging is shown in Listing 8. The default
logging done by QC can be very useful to detect
preconditions bugs and see if the tests are surfacing
the desired states.

The user decides if he wants to see any of the two
statistics category when the QC framework is called
to generate and validate tests.

4.5. Properties, Preconditions and
Postconditions

Since QC supports stateful system testing, using
a property requires the following steps: testing
preconditions, getting the values for the randomly
generated data, applying actions and testing
postconditions.

The preconditions are optional but if they are
missing, the property can be always chosen by the
framework as the next part of the test. Preconditions
are implemented as a callback, differently from
the property callback. Because the preconditions
depend only on the internal state, not on the
generated data, it is better to obtain the new
data only if the property can be applied, avoiding
generation of useless data, which will be replaced
afterwards. Therefore, preconditions must be tested
before the data generation step and this can be
achieved by having another callback, associated with
a property. This approach has another benefit: some
preconditions are used by multiple properties and
having them as functions gives better reusability. If
a property does not have any preconditions, their
callback will be NULL. To address any possible usage,
preconditions can be used from inside the property
too, but this is not a good practice, as explained
above.

Actions are the main content of properties, because
they change the state of the system and their side
effects are verified by the postconditions. Actions
can be interleaved with their postconditions, which
are obtained from the formal specification of the
API. As opposed to preconditions, postconditions
are located in their corresponding property callback,
because they depend on the generated data and we
do not obtain a performance improvement if we have
them in separate callbacks. Moreover, if the property
contains multiple actions, then it is recommended to
check the postconditions for an action or a group of
actions as soon as possible, in order to have good
code readability.

Figure 3: Property info callbacks

As can be seen in Figure 3, QC properties are
composed of multiple callbacks, stored in a structure
named property info. We need an array of generators
for the property input and another array of user
defined statistics to gather various data. On the
other side, we need a callback for preconditions
and a callback for the property itself, to make the
API calls and test the postconditions. Having all
of those callbacks, different components of generic
tests become easier to integrate with each other.

struct p r o p e r t y i n f o {
/∗ ca l l back f o r the proper ty ∗ /
prop f u n c t i o n ;

/∗ d i s p l a y i n g name ∗ /
char const ∗ const name ;

/∗ ar ray o f generators ∗ /
struct g e n e r a t o r p r i n t e r ∗gp ;

/∗ number o f generators ∗ /
i n t gp s ize ;

/∗ precond i t i ons ca l l back ∗ /
p recond i t i on prec ;

/∗ ar ray o f s t a t i s t i c s ca l l backs ∗ /
struct u s e r s t a t i s t i c ∗ s t a t s ;

/∗ number o f s t a t i s t i c s ca l l backs ∗ /
i n t s t a t s s i z e ;

} ;
Listing 3: Struct property info

In QC’s implementation, property descriptions and
callbacks are contained by the property info

structure, as shown in Listing 3. In addition to what
was previously discussed, the name field assigns a
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descriptive name to the property and is used for the
verbosity option QC INFO or for failing tests.

4.6. QC test logic

Having all the previously discussed elements, QC
can generate and run tests. Figure 4 shows a state
machine with the actions taken by QC during a test.
Until a test fails or the required number of tests have
been run, the framework tries to falsify the generic
test by finding a failing test.

Starting a test, QC chooses a property, checks
its preconditions (should they exist) and, based on
the result, picks another property or continues with
the current one. If the preconditions have passed,
QC generates test data, executes the actions and
the postconditions are checked. If any of the
postconditions fails, the testing is over, because QC
falsified a sequence of properties. Otherwise, the
statistics are updated and if the property is from
the cleanup group, the current test completes and
another test starts; if the property is from the normal
group, the test continues and another property is
chosen.

4.7. Pseudorandom number generator

QC has a random module which currently supports
two implementations: the POSIX rand function
and the Mersenne Twister PRNG. The default
implementation is Mersenne Twister (presented
in Matsumoto and Nishimura (1998)), because it
provides better data distribution than rand and
always has the same output for a given seed, on
32 bits, in contrast with rand, whose result may vary
depending on the architecture.

4.8. VMXL4 Influence over QC

Internally QC uses a seed for randomizing the
test data generation and the chosen property at
every step of a test. Because the VMXL4 native
environment is under ongoing development and
some POSIX functions (e.g. rand) are not yet
implemented, inside the testing environment the
seed is actually a numerical value obtained from
a hardware timer provided by the development
platform. However, the framework does not depend
on a specific platform and is portable, requiring only
POSIX functionality.

The VMXL4 API is currently being tested using
the Check Unit Testing Framework for C. In order
to be as easy as possible to use and because
unit tests usually need little changes to become
properties, the QC interface has been designed to
have some similarities with the Check framework.
For that reason, postconditions can be tested using

prop fail if and prop fail unless, wrappers
similar to Check’s fail if and fail unless.

5. QC EVALUATION AND TESTING

This section describes evaluation, results and
implications, while the framework is still under
development. To evaluate the performance of the QC
framework, its impact on the test coverage and code
size will be detailed.

/∗ normal p r o p e r t i e s ∗ /
struct p r o p e r t y i n f o p [ ] = {

{ i n i t p r o p e r t y , ” i n i t ” ,
( gp ar ray ){ q c u i n t } , 1 ,
q i s n o t i n i t i a l i z e d ,
( s t a t s a r r a y ){ queue s i ze s ta t } , 1} ,

{dequeue property , ” dequeue ” ,
( gp ar ray ){} , 0 ,
q i s i n i t i a l i z e d ,
NULL, 0} ,

{enqueue property , ” enqueue ” ,
( gp ar ray ){ q c i n t } , 1 ,
q i s i n i t i a l i z e d ,
( s t a t s a r r a y ){ e lemen t s i gn s ta t } , 1}

} ;

struct proper ty group normal group = {
. prop = p , . s i ze = 3

} ;

/∗ cleanup p r o p e r t i e s ∗ /
struct p r o p e r t y i n f o c lean p [ ] = {

{ c l ea r p rope r t y , ” c l ea r ” ,
( gp ar ray ){} , 0 ,
q i s i n i t i a l i z e d ,
NULL, 0}

} ;

struct proper ty group clean group = {
. prop = clean p , . s i ze = 1

} ;

q c f o r a l l (
/∗ proper ty groups ∗ /
normal group , clean group ,
/∗ minimum p r o p e r t i e s ∗ /
5 ,
/∗ v e r b o s i t y l e v e l ∗ /
QC ERROR,
/∗ number o f t e s t s ∗ /
1000 ,
/∗ s t a t i s t i c s l e v e l ∗ /
QC SHOW STATS

) ;

Listing 4: QC initialization and calling to test a circular
queue library API



Figure 4: Test state machine

QC has been tested so far on two modules. The
first module is an implementation of a circular
queue, which has been chosen for the following
three reasons: it is easier to validate new features
of the framework with a simpler module, it is a
stateful system, with an internal representation for
the queue, and it is a portable module which can
be used to validate QC against Haskell QuickCheck.
The second module is the thread scheduling module
of VMXL4, currently being tested with unit tests using
the Check framework.

For the circular queue, the code from Listing 4 was
used to initialize QC in order to test the queue
library public API. It can be observed that the code
uses normal properties and cleanup properties, as
mentioned in Section 4. With just four properties,
similar to unit tests, the framework automatically
generates 1000 test cases with a different number
of properties and different sequences of properties,
each with automatically generated different inputs.
As one can see, there is not much difference in the
code logic complexity for unit testing and property-
based testing, but the benefits of property-based are
significant. When different bugs were introduced on
purpose in the queuing logic, QC detected all of
them, using only the code from Listing 4 and its four
properties.

An example of QC finding a bug for the circular
queue is Listing 5. It displays, in order, all the
properties taken during the test and their generated
input. Judging by the output, it is most likely that

there are problems with the enqueue operation when
the queue gets full. This is one of the corner cases
which the programmer should have taken care of
personally if he were to use unit testing.

∗∗∗ Test Fa i led ! ∗∗∗
Test number 43
−−−−−−−−−−−−−−
i n i t : 2
dequeue :
enqueue : −392470180
enqueue : −692402

Listing 5: QC failing test

After solving the bug, QC validates the implementa-
tion in Listing 6.

+++ Success : passed 1000 t e s t s . +++
Listing 6: QC tests passing

For the generic test from Listing 4, the generated
user defined statistics are shown in Listing 7. QC
displays the total number of statistics for every
property. For the init property, we wanted to see
in what range is the queue size. For the enqueue

property, we wanted to see the sign of the enqueued
number. It can be observed that the numbers are
showing a balance for the generated data.

−−−TESTS USER DEFINED STATISTICS−−−

” i n i t ” INFO
t o t a l s t a t i s t i c s : 1
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name : ” queue size ”
<20: 201
<40: 201
<60: 202
<80: 203
<100: 193

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
” enqueue ” INFO
t o t a l s t a t i s t i c s : 1

name : ” e lement s ign ”
negat ive : 1457
p o s i t i v e : 1423

Listing 7: User defined statistics

Last but not least, for the generic test from Listing 4,
the QC default statistics are shown in Listing 8. For
every property, QC displays the total number of calls,
how many times it was the first property of the test
and afterwards for every property how many times it
followed the current property. Note that for cleanup
properties QC doesn’t show the following properties,
because the cleanup property will be the last from
the test. Generally, QC default statistics are useful
not only to balance the tests, but also to debug
preconditions.

−−−TESTS PROPERTY SEQUENCE STATISTICS−−−

” i n i t ” INFO
t o t a l c a l l s : 1000
s t a r t i n g c a l l s : 1000

i n i t : 0
dequeue : 527
enqueue : 473
c lea r : 0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
” dequeue ” INFO
t o t a l c a l l s : 3003
s t a r t i n g c a l l s : 0

i n i t : 0
dequeue : 1264
enqueue : 1239
c lea r : 500

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
” enqueue ” INFO
t o t a l c a l l s : 2880
s t a r t i n g c a l l s : 0

i n i t : 0
dequeue : 1212
enqueue : 1168
c lea r : 500

+++++++++++++++++++++++++++++++++++++++++
” c l ea r ” INFO
t o t a l c a l l s : 1000
s t a r t i n g c a l l s : 0

Listing 8: QC statistics

When porting some of the unit tests for the VMXL4
thread scheduling module to QC properties, the
VMXL4 API Reference Manual was needed to
understand the behavior of tested functions and to
infer the formal specification, which, in the end, is not
a sizable effort for a programmer who is accustomed
to the design of the module. For some of the ported
unit tests the specification was very simple and their
content remained almost the same.

Although only a few unit tests were ported to
QC properties, the framework already found one
inconsistency in the unit test. The faulty unit test
was verifying if two threads with different priorities
are scheduled accordingly; however on symmetric
multiprocessing (SMP) the validation condition was
always true. The test would have passed even if the
system had a bug.

The inconsistency was found after transforming the
unit test into a property and using the same wrong
specification. The property was failing, therefore
only two causes could have been possible: the
property was wrong or the module had a bug.
Fortunately, the first case was true and the unit test
was the cause. QC found the inconsistency using
its random generation feature. This emphasizes
that unit tests are not very reliable compared to
properties, because usually they do not take into
consideration many test cases, therefore they may
hide system bugs or even test design bugs.

6. CONCLUSIONS AND FURTHER WORK

Every software system needs testing in order to fulfill
its business requirements and, as a consequence,
be reliable and successful. This paper concentrates
on property-based testing, because although it is
more powerful than unit testing, due to its bigger
input coverage, it is used less frequently than unit
testing. In order to emphasize the property-based
testing applicability and importance, the paper gives
an overview of the QC framework.

QC is an automated testing tool written in C which
runs in the native environment of an L4 microkernel
and whose purpose is to test the microkernel API in
a functional manner. Because the microkernel is a
stateful system, the framework allows the testing of
multiple controlled series of operations, besides the
usage of random generated input. In order to obtain
a thorough testing, QC offers support for generating
any data type, using predefined generators which
can be combined to obtain new test data generators.
To test and evaluate the framework, the native
environment of the VMXL4 microkernel is used.
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As future work, QC failing tests will be shrinked
to a more suggestive failing test, to ease the work
of the debugging programmer. Additionally, we aim
to analyze QC’s code coverage, compare it to that
of other L4 testing infrastructures and find ways to
improve it.
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