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Abstract. Recent years have witnessed major research advances in sensor-
based affect recognition. Alongside these advances, there are many open ques-
tions about how effectively current affective recognition techniques generalize 
to new populations and domains. We conducted a study of learner affect with a 
population of cadets from the U.S. Military Academy using a serious game 
about tactical combat casualty care. Using the study data, we sought to repro-
duce prior affect recognition findings by inducing models that leveraged pos-
ture-based predictor features that had previously been found to predict affect in 
other populations and learning environments. Our findings suggest that features 
and techniques, drawn from the literature but adapted to our setting, did not 
yield comparably effective models of affect recognition. Several of our affect 
recognition models performed only marginally better than chance, and one 
model actually performed worse than chance, despite using principled features 
and methods. We discuss the challenges of devising generalizable models of af-
fect recognition using sensor data, as well as opportunities for improving the 
accuracy and generalizability of posture-based affect recognition. 
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1 Introduction 

Affect is instrumental to learning. Students’ affective experiences shape their learning 
behaviors and outcomes, and vice versa. Growing recognition of this relationship has 
led to the emergence of work on affect-enabled learning technologies, which endow 
educational software with the ability to recognize, understand, and express affect. 
Several affect-enabled learning technologies have been developed in recent years, 
spanning a broad range of domains, including computer science education [1], reading 
comprehension [2], mathematics [3], and computer literacy [4]. Although these be-
spoke affect-sensitive systems have yielded promising results, there are many open 
questions about whether existing affect recognition techniques generalize to new do-
mains, populations, and settings.  

Recent work on sensor-based affect recognition holds promise for yielding general-
izable models. Because sensor-based models typically do not rely on features that are 
specific to particular learning environments, in principle, they should port across do-
mains and settings. Sensor-based affect recognition models have been devised for a 
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range of modalities, including facial recognition, gaze tracking, speech analysis, phys-
iological signals (e.g., heart rate, electrodermal activity), hand gesture, and posture 
[5]. In this work, we focus on posture-based affect recognition, which has shown 
promise for its capacity to predict student affect [1, 3, 4]. Motion sensors, such as 
Microsoft Kinect, can be used to gather rich data streams about posture, they are rela-
tively low-cost, and they are increasingly getting integrated into mainstream comput-
ers [6]. By modeling these rich data streams with machine learning techniques, pos-
ture-based affect recognition models have been induced that can effectively predict 
participants’ affective self-reports, as well as expert judgments of affect gleaned from 
freeze-frame video analyses [1, 3, 4]. 

In this paper, we summarize our work on posture-based affect recognition with the 
Generalized Intelligent Framework for Tutoring (GIFT). In collaboration with Teach-
ers College Columbia University and the U.S. Army Research Laboratory, we con-
ducted a study of learner affect with cadets from the U.S. Military Academy (USMA) 
using a serious game for learning tactical combat casualty care skills. Using this study 
data, we sought to reproduce prior affect recognition findings, leveraging posture-
based predictor features that had previously been found to predict affect in other pop-
ulations and learning environments. However, our results indicated that the same 
features and techniques, adapted to our setting, did not yield comparably effective 
models. Our affect recognition models performed only marginally better than chance, 
and in fact, one model actually performed worse than chance. We discuss the chal-
lenges of devising generalizable models of affect recognition using sensor data, and 
describe opportunities for improving the predictive accuracy of posture-based affect 
recognition models. 

2 Posture Sensor-Based Affect Recognition 

Several research labs have investigated multimodal affect recognition in learning 
environments over the past decade. Our research on generalizable sensor-based affect 
recognition is strongly influenced by this work. To date, posture-based affect recogni-
tion models have been induced with data from pressure-sensitive chairs [3, 4], as well 
as motion sensors, such as Microsoft Kinect [1]. These two data streams, drawing 
from distinct types of sensors, are superficially different, but can be distilled into 
analogous predictor features that have similar relationships with affective states such 
as engagement, boredom, frustration, and confusion. Features can be distilled from 
both types of data to indicate leaning forward, leaning backward, sitting upright, and 
fidgeting. We summarize several representative studies that have utilized these types 
of features to recognize learner affect, and that have influenced our own work. 

D’Mello and Graesser utilized posture data from the Body Pressure Measurement 
System (BPMS) to predict judgments of student affect during learning with AutoTu-
tor [4]. The BPMS is a pressure-sensitive system that is comprised of a grid of sens-
ing elements placed across a chair’s seat and back. In their study, participants were 
video recorded, and several judges analyzed the video using freeze frame analysis in 
order to code participants’ affective states retrospectively. Using this data, D’Mello 
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and Graesser induced a series of emotion-specific binary logistic regression models, 
each distinguishing a particular affective state from neutral, using 16 posturebased 
features as predictors. Their findings indicated that the models, averaged across judg-
es, explained approximately 11% of the variance in affective state, with findings in 
line with an attentive-arousal theoretical framework. Specifically, affect such as de-
light and flow coincided with forward leaning, boredom coincided with a tendency to 
lean back, and states such as confusion and frustration coincided with an upright pos-
ture. 

Cooper et al. used a suite of sensors to collect data on student affect in Wayang 
Outpost, an ITS for high school geometry [3]. The sensors included a skin conduct-
ance bracelet, pressure sensitive mouse, pressure sensitive chair, and mental state 
camera, which provided data on student posture, movement, grip tension, arousal, and 
facial expression. The pressure sensitive chair was a simplified version of the sensing 
system utilized by D’Mello & Graesser [4], utilizing a series of six forcesensitive 
resistors distributed across the seat and back of a seat cover cushion. Data from these 
channels was distilled into predictor features to predict students’ emotion self-reports, 
which were queried every five minutes throughout the learning interaction. The pos-
ture-based features included net change in seat and back pressure between the current 
timestep and previous timestep, and a feature indicating whether the student was lean-
ing forward or not. Step-wise linear regression models were induced to predict stu-
dents’ emotion self-reports. Results indicated that posture-based features were signifi-
cantly predictive of self-reported excitement during learning, although they were not 
part of the best-performing models for other emotional states. 

Grafsgaard et al. have investigated postured-based affect prediction using Mi-
crosoft Kinect sensors with an intelligent tutoring system for introductory program-
ming [1]. Posture features were distilled from depth image recordings by tracking the 
distance between the depth camera and the participant’s head, upper torso, and lower 
torso. The features included discretized distance indicators, such as near, mid, and far 
head positions, each determined by whether the tracked head point was closer or far-
ther from the median head position by one standard deviation. In addition, a postural 
movement feature was distilled to label occasions where the average amount of accel-
eration of the head tracking point was greater than the population average over a one-
second window. The posture-based predictor features were combined with features 
distilled from other multimodal streams to induce multiple regression models for pre-
dicting students’ retrospective self-reports of engagement and frustration. Findings 
indicated that posture features were predictive of both self-reported affective states: 
leaning forward was predictive of both higher engagement and higher frustration, and 
postural movement was associated with increased frustration and reduced learning. 

Building upon this foundation, we set out to distill similar predictor features from 
the data collected at USMA, and apply similar machine learning methods, to produce 
affect recognition models for predicting field observations of affect. 
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3 Kinect-Driven Affect Recognition in GIFT 

We collected learning and affect data from 119 USMA cadets as they used the 
vMedic serious game environment for learning tactical combat casualty care skills. In 
vMedic, the learner adopts the role of a combat medic who must properly treat and 
evacuate one (or several) of her injured fellow soldiers by following standard medical 
procedures within the game environment. All participants completed the same train-
ing module, which was managed by GIFT. The training module consisted of a pre-
test, a brief PowerPoint on tactical combat casualty care, four training scenarios in 
vMedic, and a post-test. 

Each participant was assigned to a research station that consisted of an Alienware 
laptop, a Microsoft Kinect for Windows sensor, an Affectiva Q Sensor, and a mouse 
and pair of headphones. As participants completed the study materials, a pair of field 
observers regularly recorded participants’ physical displays of emotion. The field 
observers followed an observation protocol, BROMP, developed by Baker et al. [7], 
in which observers walked around the perimeter of the study room, discreetly record-
ing observations of each participant’s affect in a round robin sequence. The field ob-
servers coded for seven affective states: concentration, confusion, boredom, surprise, 
frustration, contempt, and other. 

The study produced several parallel data streams, including vMedic trace data, Ki-
nect position tracking data, electrodermal activity data, pre- and post-test response 
data, and field observation data. In this work, we focus on analysis of the Kinect and 
field observation data, which were fused into a single time-synchronized dataset. The 
dataset was cleaned and filtered in order to remove any Kinect-tracking glitches, as 
well as non-essential vertex data. Afterward, 73 predictor features were distilled, 
which characterized participants’ postural positions and dynamics, inspired by similar 
features from the research literature on posture-based affect recognition. The features 
included summary statistics for three points tracked by the Kinect: head, top_skull, 
and center_shoulder. Specifically, we computed features for the current distance and 
depth of each vertex; the minimum, maximum, median, and variance in distance of 
each vertex observed thus far; the same statistics for 5, 10, and 20-second windows; 
several features that characterized net changes in vertex distance, analogous to the 
net_change features reported in [3, 4]; and sit_forward, sit_back, and sit_mid features 
analogous to those reported in [1, 3]. 

Using this feature data, we induced separate affect detectors for each emotional 
state using a range of machine learning techniques in RapidMiner 5.3, inclu ing J48 
decision trees, naïve Bayes, support vector machines, logistic regression, and JRip 
[8]. The detectors were cross-validated using 10-fold participant-level cross valida-
tion. Oversampling was used to balance class frequency by cloning minority class 
instances in the training sets. Forward feature selection was performed to reduce the 
number of predictor features used in the models. We calculated Kappa and A’ to as-
sess the models’ performance. 

Across all of the emotions, our posture-based affect recognition models achieved 
an average Kappa of 0.064, and 0.521 for A’ [8]. The best performing model was for 
boredom, which showed Kappa=0.109, A’=0.528 using logistic regression. Overall, 
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the models performed slightly better than chance, with the exception of the surprise 
detector, which actually performed worse than chance, Kappa=-0.001, A’=0.493. 

These results were surprisingly modest, despite our best efforts to run a carefully 
designed study and reproduce previously reported methods. There are several possible 
explanations. It is possible that BROMP labels, which are based on holistic judgments 
of affect over 20-second windows, are ill matched for methods that leverage low-level 
postural features as predictors. Previous work utilized self-reports and freeze frame 
video analysis, which have different tradeoffs than BROMP. Additionally, much of 
the work on posture-based affect recognition has taken place in laboratory settings 
with a single participant at a time. In our study, up to 10 participants were present, 
with each research station having a slightly different sensor position and orientation. 
This variation may have introduced additional noise to the data, which could have 
been problematic for the methods reported here. Further, the population of learners 
we used in the study, USMA cadets, showed considerable restraint in their physical 
expressions of affect. As such, the displays of affect via body language may have 
been different than those encountered in prior work, making them ill matched for the 
predictor features that we engineered. These findings underscore the challenges to be 
overcome in efforts to devise generalizable models of affect recognition. 

We draw several lessons for our continued work on sensor-based affect recognition 
with GIFT. First, orienting Kinect sensors’ position and orientation to track points on 
participants’ lower torso could prove important for posture detection. In the present 
study, our sensor configuration enabled us to track only vertices on participants’ up-
per torso and head, which may have limited the features we could distill. 

Second, it would be useful to validate the Kinect vertex data recorded by GIFT 
against the sensor’s raw depth video data. Prior work on Kinect-based posture detec-
tion directly leveraged raw depth channel data, but this method is memoryintensive 
and requires custom implementation of posture tracking algorithms [1]. While vertex 
data produced by Kinect should in principle provide the same information about pos-
ture as raw depth data, validating this fact would ensure that our findings relate to the 
generalizability of affect recognition techniques, and not assumptions about underly-
ing data sources. 

Third, investigating alternate machine learning techniques could prove useful for 
enhancing the predictive ability of posture-based predictor features. It is possible that 
temporal models, such as dynamic Bayesian networks, which explicitly model shifts 
in posture and affect, could yield improved results. Furthermore, recent work on deep 
learning techniques may show promise, given their capacity to perform automated 
representation learning. Although additional work is merited to manually engineer 
high-level features to match the holistic encodings of affect provided by BROMP, it 
would be ideal to automate this manual feature engineering process, as is one of the 
promises of representation learning techniques such as deep learning. 
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4 Conclusions 

We have described work investigating the generalizability of posture sensor-based 
affect recognition. We collected a multimodal dataset on affect and learning with a 
group of USMA cadets using a serious game for tactical combat casualty care. Lever-
aging techniques from the affective computing research literature, we distilled a range 
of posture-based predictor features for modeling participants’ affective states with 
machine learning. Our results indicated that posture-based features and models, which 
had previously been found to yield effective affect recognition systems, did not work 
as effectively on our data as had been found with other populations and learning envi-
ronments. In fact, most of our affect recognition models performed only marginally 
better than chance, despite the use of principled features and models. Although there 
are several directions to investigate for enhancing our posture-based affect recogni-
tion models, the failure of existing techniques to generalize to our data is notable. 
These findings underscore the challenges, and opportunities, in research on affect 
recognition and generalizable approaches to intelligent tutoring. 

Acknowledgments. The authors wish to thank the U.S. Army Research Laboratory 
for supporting this research. We are grateful to Vasiliki Georgoulas, Michael Mat-
thews, and James Ness for facilitating the study at the United States Military Acade-
my. Additionally, we wish to thank our collaborators, Ryan Baker, Jeanine DeFalco, 
and Luc Paquette at Teacher’s College Columbia University, and Keith Brawner, 
Benjamin Goldberg, and Bob Sottilare from ARL. 

References 

1. Grafsgaard, J. F., Wiggins, J. B., Vail, A. K., Boyer, K. E., Wiebe, E. N., Lester, J. C.: The 
Additive Value of Multimodal Features for Predicting Engagement, Frustration, and 
Learning during Tutoring. In: Proceedings of the 16th ACM International Conference on 
Multimodal Interaction, pp. 42–49. (2014) 

2. Mills, C., Bosch, N., Graesser, A., Mello, S. D.: To Quit or Not to Quit: Predicting Future 
Behavioral Disengagement from Reading Patterns. In: Proceedings of the 12th International 
Conference on Intelligent Tutoring Systems, pp. 19–28. (2014) 

3. Cooper, D. G., Arroyo, I., Woolf, B. P., Muldner, K., Burleson, W., Christopherson, R.: 
Sensors model student self concept in the classroom. In: Proceedings of the 17th Interna-
tional Conference on User Modeling, Adaptation, and Personalization, pp. 30–41. (2009) 

4. Mello, S. D., Graesser, A.: Mining Bodily Patterns of Affective Experience During Learn-
ing. In: Proceedings of the 3rd International Conference on Educational Data Mining, pp. 
31–40. (2010) 

5. D’Mello, S. K., Kory, J.: A Review and Meta-Analysis of Multimodal Affect Detection 
Systems. ACM Computing Surveys, 47(3), 43 (2015) 

6. Intel. (2015, March 20). Intel RealSense. Retrieved from http://www.intel.com/realsense. 
7. Baker, R. S. J. d., D’Mello, S. K., Rodrigo, M. M. T., Graesser, A. C.: Better to be frus-

trated than bored: The incidence, persistence, and impact of learners’ cognitive– affective 

AIED 2015 Workshop Proceedings - Vol 6 29



states during interactions with three different computer-based learning environments. In-
ternational Journal of Human-Computer Studies, 68(4), 223–241 (2010) 

8. Paquette, L., Rowe, J., Baker, R., Mott, B., Lester, J., DeFalco, J., Brawner, K., Sottilare, 
R., Georgoulas, V.: Sensor-Free or Sensor-Full: A Comparison of Data Modalities in Mul-
ti-Channel Affect Detection. Under review for the 8th International Conference on Educa-
tional Data Mining, (under review) 

AIED 2015 Workshop Proceedings - Vol 6 30




