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Abstract. Instructional planning (IP) technology has begun to reach
large online environments. However, many approaches rely on having
centralized metadata structures about the learning objects (LOs). For
dynamic open-ended learning environments (DOELEs), an approach is
needed that does not rely on centralized structures such as prerequisite
graphs that would need to be continually rewired as the LOs change. A
promising approach is collaborative filtering based on learning sequences
(CFLS) using the ecological approach (EA) architecture. We developed
a CFLS planner that compares a given learner’s most recent path of LOs
(of length b) to other learners to create a neighbourhood of similar learn-
ers. The future paths (of length f) of these neighbours are checked and
the most successful path ahead is recommended to the target learner,
who then follows that path for a certain length (called s). We were
interested in how well a CFLS planner, with access only to pure be-
havioural information, compared to a traditional instructional planner
that used explicit metadata about LO prerequisites. We explored this
question through simulation. The results showed that the CFLS plan-
ner in many cases exceeded the performance of the simple prerequisite
planner (SPP) in leading to better learning outcomes for the simulated
learners. This suggests that IP can still be useful in DOELEs that often
won’t have explicit metadata about learners or LOs.

Keywords: instructional planning, collaborative filtering, dynamic open-
ended learning environments, simulated learning environments, simu-
lated learners, ecological approach

1 Introduction

Online courses need to be able to personalize their interactions with their many
learners not only to help each learner overcome particular impasses but also
to provide a path through the learning objects (LOs) that is appropriate to
that particular individual. This is the role of instructional planning (IP), one of
the core AIED sub-disciplines. IP is particularly needed in open-ended learning
environments (OELEs), where learners choose their own goals, because it has
been shown that sometimes learners require an outside push to move forward
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[11]. An added challenge is what we call a dynamic open-ended learning envi-
ronment (DOELE), where both the learners and LOs are constantly changing.
Some learners might leave before finishing the course, while others may join
long after other learners have already begun. New material (LOs) may need to
be added in response to changes in the course or the material, or to learner
demand. Sometimes new material will be provided by the course developers, but
the big potential is for this to be crowd sourced to anybody, including learners
themselves. Other material may fade away over time.

Note that a DOELE is similar to, but not the same as, a “traditional” open-
eded learning environment [8, 11]. A traditional open-ended environment also
gives students choice, but mostly in the problems they solve and how they solve
them, with the course itself fixed in its content, order and goals. In a DOELE
everything is open-ended and dynamic, including even what is to be learned,
how deeply, when it needs to be learned, and in what order.

An impediment to IP in a DOELE is that there is no centralized represen-
tation of knowledge about the content or the learners. Work has been done to
make IP possible in online environments, such as [7], where authors showed that
by extending the LO metadata, instructional plans could be improved to adapt
based on individual learning styles as well as a resource’s scheduling availability.
But for IP to work in DOELEs, an approach to IP is needed where centralized
course structures would not need to be continually revamped (by instructional
designers, say) as learners and LOs change.

We wish to explore how IP can be done in a DOELE. We model a DOELE
in the ecological approach (EA) architecture [14]. In the EA there is no overall
course design. Instead, courses are conceived as collections of learning objects
each of which captures usage data as learners interact with it. Over time this us-
age data accumulates and can be used for many pedagogical purposes, including
IP [2]. Drawing inspiration from work like [1, 5], we propose a new IP algorithm
based on collaborative filtering of learning sequences (CFLS). For a given learner
our planner finds other learners who have traversed a similar sequence of learn-
ing objects with similar outcomes (i.e. similar paths). Then it suggests paths to
the learner that were successful for these similar learners (peers) going forward.

To evaluate IP techniques in such an environment, one could implement a real
course with thousands of learners using the EA to capture learner interactions
with the various LOs in the course. However, after doing this it would take
several years for enough learners to build up enough interactions with each LO to
provide useful data to be used by an instructional planner. Also, in a course with
thousands of learners, there is risk of causing confusion or inconvenience to a vast
multitude if there are problems while the planner is under development. Finally,
there are unanswered design questions such as the criteria to use for identifying
an appropriate peer, how many LOs should be recommended for a learner before
re-planning occurs, and appropriate values for many other parameters that would
be used by the planner. In order to overcome these challenges and gain insight
into these questions immediately, we have thus turned to simulation.
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2 Simulation Environment

Before describing the CFLS planner and experiment in detail, we describe the
simulation environment. The simulation is low-fidelity, using very simple ab-
stractions of learners and LOs, as in our earlier work [6]. Each of the 40 LOs has
a difficulty level and possible prerequisite relationships with other LOs. Each
simulated learner has an attribute, aptitude-of-learner, a number between (0,1)
representing a learner’s basic capability for the subject and allows learners to be
divided into groups: low (≤ .3), medium (.4 – .7) and high aptitude (≥ .8).

A number called P[learned] is used to represent the learning that occurred
when a learner visits a LO, or the probability that the learner learned the LO.
P[learned] is generated by an evaluation function, a weighted sum: 20% of the
learner’s score on a LO is attributed to aptitude-of-learner, 50% attributed to
whether the learner has mastered all of the prerequisite LOs, 20% attributed
to whether the learner had seen that LO previously, and 10% attributed to the
difficulty level of the LO. We feel this roughly captures the actual influences on
how likely it is that real learners would master a learning object.

The simulated learners move through the course by interacting with the
LOs, one after another. After each LO is encountered by a simulated learner,
the above evaluation function is applied to determine the learner’s performance
on the LO, the P[learned] for that learner on that LO. In the EA architecture,
everything that is known about a learner at the time of an interaction with a
LO (in this case, including P[learned]) is captured and associated with that LO.
The order of the LOs visited can be set to random, or it can be determined by
a planner such as the CFLS planner. To allow for the comparison of different
planning approaches without advantaging one approach, each simulated learner
halts after its 140th LO regardless of the type of planner being used.

3 Experiment

By default, the simulation starts with an empty history - no simulated learners
have yet viewed any LOs. However, because the CFLS planner relies on having
previous interaction data, it is necessary to initialize the environment. Thus,
a simple prerequisite planner (SPP) was used to initialize the case base with a
population of simulated learners. The SPP is privy to the underlying prerequisite
structure and simply delivers LOs to learners in prerequisite order. As Table 1
shows, the SPP works much better than a random planner. The data from the 65
simulated learners who used the SPP thus was used to initialize the environment
before the CFLS planner took over. This interaction data generated by the SPP
also provides a baseline for comparison with the CFLS planner. Our simulation
experiment was aimed at seeing if, with appropriate choices of b and f (described
below) the CFLS planner could work as well or better than the SPP.

We emphasize that the CFLS planner has no knowledge about the under-
lying prerequisite structure of the learning objects. This is critical for CFLS
planning to work in a DOELE. However, there are two places where clarification
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Table 1. Baseline results for each group of simulated learners (high, medium and low
aptitude) when visiting LOs randomly and following a simple prerequisite planner.

Planning Type / Aptitude low medium high

Random N=21 N=26 N=18
Average Score on Final Exam (P[learned]) 0.107 0.160 0.235

Simple Prerequisite Planner (SPP) N=21 N=26 N=18
Average Score on Final Exam (P[learned]) 0.619 0.639 0.714

is required. First, while the SPP is running, the evaluation function will be used
by the simulation to calculate P[learned] values for each LO visited. This usage
data will contain implicit evidence of the prerequisite relationships. So, at a later
time when the CFLS planner is given access to the same usage data, the CFLS
planner could implicitly discover prerequisite relationships from the interaction
data. Second, during the CFLS planner execution, the underlying prerequisite
structure is still being consulted by the evaluation function. However, the CFLS
planner knows nothing about such prerequisites, only the P[learned] outcome
provided by the evaluation function. When simulated learners are replaced with
real learners, the evaluation function would disappear and be replaced with a
real world alternative, such as quizzes or other evidence to provide a value for
P[learned]. Similarly, the CFLS planner does not require knowledge of the dif-
ficulty level of each LO, nor does it require knowledge of the aptitude of each
learner; these are just stand-in values for real world attributes used by the sim-
ulation and would disappear when the planner is applied in a real world setting.

Different studies can use simulated student data in varying ways. In some
cases, low fidelity modelling is not adequate. For example, in [4] it was found that
the low fidelity method of generating simulated student data failed to adequately
capture the characteristics of real data. As a result, when the simulated student
dataset was used for training the cognitive diagnosis model, its predictive power
was worse than when the cognitive diagnosis model was trained with a simulated
student dataset that had been generated with a higher fidelity method. In our
study, using a low fidelity model is still informative. We are less concerned with
the exactness of P[learned] and are more interested in observing possible relative
changes of P[learned] for certain groups of students, as different variations of the
planner are tried on identical populations of simulated students.

The CFLS planner works as follows. For a given target learner the CFLS
planner looks backward at the b most recent learning objects traversed. Then, it
finds other learners who have traversed the same b learning objects with similar
P[learned] values. These b LOs can be in any order, a simplification necessary
to create a critical mass of similar learners. These are learners in the target
learner’s “neighbourhood”. The planner then looks forward at the f next LOs
traversed by each neighbour and picks the highest value path, where value is
defined as the average P[learned] achieved on those f LOs ahead. This path is
then recommended to the learner, who must follow it for at least s (for “sticky”)
LOs before replanning occurs. Of course, s is always less than f . In our research
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we explored various values of b and f to find which leads to the best results (we
set f = s for this experiment). “Best results” can be defined many ways, but
we focused on two measurements that were taken for each learner at the end of
each simulation: the percentage of LOs mastered, and the score on a final exam.
A LO is considered to be mastered when a score of P[learned] = 0.6 or greater
is achieved. The score on the final exam is taken as the average P[learned] on
the LOs that are the leafs of the prerequisite graph (interpreted as the ultimate
target concept, which in the real world might well be final exams).

There is still a cold start problem even after the simulation has been ini-
tialized with the interaction data from the SPP. This is because the simulated
learners who are to follow the CFLS planner have not yet viewed any LOs them-
selves as they begin the course, so there is no history to match the b LOs to
create the plan. In this situation, the CFLS planner matches the learner with
another arbitrary learner (from the interaction data from the SPP), and recom-
mends whatever initial path that the other learner took when they first arrived
in the course. While another solution to the cold start problem could be to start
the new learner with the SPP, we did this to avoid any reliance whatsoever on
knowing the underlying prerequisite structure.

The most computationally expensive part of the CFLS planner is finding the
learners in the neighbourhood, which is at worst linear on the number of learners
and linear on the amount of LO interaction history created by each learner. Each
learner’s LO interaction history must be searched to check for a match with b,
with most learners being removed from the list during this process. The forward
searching of f is then executed using only the small resulting dataset.

4 Results

We ran the CFLS planner 25 different times with all pairings of the values
of b and s ranging from 1 to 5, using a population of 65 simulated learners.
This population had the same distribution of aptitudes as the population used
to generate the baseline interaction data described above. The heat maps in
Figs. 1 and 2 show the measurements for each of the 25 simulations, for each
aptitude group, with the highest relative scores coloured red, mid-range scores
coloured white, and the lowest scores coloured blue. In general, simulated learners
achieved higher scores when following the CFLS planner than when given LOs
randomly. The CFLS planner even exceeded the SPP in many cases.

A success triangle is visible in the lower left of each aptitude group. The
success triangles can be interpreted to mean that if a path is going to be recom-
mended, never send the learner any further ahead (s) than you have matched
them in the past (b). For example if a learner’s neighbourhood was created using
their b = 2 most recent LOs, then never make the learner follow in a neighbour’s
steps further than s = 2 LOs. One reason for the eventual drop at high values
of b is that no neighbour could be found and a random match is used instead.
However, the abrupt drop at b > s was unexpected. To be sure the pattern was
real, an extended series of simulations was run. We ran b = 6 and s = 5 to see
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if there would be a drastic drop in performance, and indeed this was the case.
We also ran another row varying b with a fixed s = 6, and again found a drop
at b = 7.

Fig. 1. Average % Learning Objects Mastered by aptitude group

Fig. 2. Average Score on Final Exam (P[learned]) by aptitude group

A hot spot of successful combinations of b and s appeared for each aptitude
group. For low aptitude learners, it was best to only match on the b = 1 most
recent learning objects, and to follow the selected neighbour for only s = 1 LOs
ahead before replanning. This combination of b and s is the only time when
the CFLS planner outperformed the SPP for the low aptitude group. However,
for the medium and high aptitude groups, the CFLS planner outperformed the
SPP in all cases within the success triangle. Looking at final exam scores (Fig.
2), medium aptitude learners responded well to being matched with neighbours
using b = 1 or 2 and sticking with the chosen neighbour for the same distance
ahead. The high aptitude group responded very well to using neighbourhoods
created with b = 3 and recommending paths of s = 3.

Within the success triangles, the rows and columns of Fig. 2 were checked
to see if there existed an ideal b for a given s, and vice versa. Wherever there
appeared to be a large difference, Student’s t-test was used to check for statistical
significance. We are able to use paired t-tests because the simulated learners have
exactly the same characteristics in all the simulation runs, the only difference
being the order in which LOs were interacted with. For example, learner #3
always has aptitude-of-learner = .4, so, there is no difference in that learner
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between simulation runs. We used a two-tailed t-test because it was not certain
whether one distribution was going to be higher or lower than the other.

Looking along the rows, when s is held the same, there are some cases where
one value of b is better than another. For the low aptitude group, for the most
part the lower the b, the better. For the medium aptitude group, there were no
significant advantages to changing b. For the high aptitude group, when s = 3,
the t-test was used to check if b = 3 was significantly more advantageous than
using b = 2. The measurements for Score on the Final Exam for the high aptitude
learners were compared between both simulation results, (b = 2 and s = 3) and
(b = 3 and s = 3). With N=19 learners in this group, the calculated p-value was
0.009, indeed a statistically significant difference.

Looking along the columns, when b is held the same there was a case where
increasing s, i.e. sticking to a longer plan ahead, was statistically advantageous.
In the medium aptitude group, when b = 1 it was statistically better to use s = 2
than to use s = 1 with a p-value of 0.011. None of the increases of s with the
same b were significant for the high aptitude group, and there were no increases
for the low aptitude group.

5 Analysis and Future Work

Through simulation, we have shown that a CFLS planner can be “launched” from
an environment that has been conditioned with interaction data from another
planner, such as an SPP, and operate successfully using only learner usage data
kept by the EA and not needing centralized metadata such as a prerequisite
graph. This is one of the key requirements for DOELEs. Like biological evolution,
the EA is harsh in that it observes how learners succeed or fail as various paths
are tried. Successful paths for particular types of learners, regardless of whether
they follow standard prerequisites, is the only criterion of success. New learners
or new learning objects will find their niche - some paths will work for some
learners but not for others, and this is discovered automatically through usage.

More experiments are needed to explore the many possibilities of the sim-
ulation environment. While this experiment was not a true test of a DOELE
because new learners and LOs were not inserted, this can be readily explored
in future work. New additions could be matched randomly a few times in or-
der to build enough data in the EA, and then automatically incorporated into
neighbourhood matches or into future plans.

Given the evaluation function that was selected, we found that planning
ahead and sticking to the plan worked best for high aptitude learners and a re-
active approach (planning ahead but sticking to the plan for only a short time)
worked best for the low aptitude learners. Would a different pattern emerge
if a different evaluation function were chosen? Would a different threshold for
mastery than P[learned] > 0.6 make any difference? In future work, would it be
worthwhile to break down the aptitude groups into six: very-high, high, medium-
high, medium-low, low, and very-low? This may assist with more easily tuning
the weights of the evaluation function, as there was not much difference in our
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results between the high and medium aptitude groups. In addition, more experi-
ments where s < f are needed to answer the question of whether the drop along
the edge of each success triangle was because of s or f . Also, in this work we
did not look at the many different types of pedagogical interactions (ex. asking
the student a question, giving a hint etc.) and focused on very abstract repre-
sentations. More work is needed to explore this approach on systems later in the
design process, when more detail about the content and the desired interactions
with learners is known.

Future work could also investigate the usage of a differential planner, where
different settings are tuned for different situations. For example, when creating
a neighbourhood for a low aptitude learner, medium aptitude learners could be
allowed into the neighbourhood if they have a matching b. Results could reveal
situations where for example a low aptitude learner is helped by following in the
steps of a medium aptitude learner. A differential planner could also dynamically
choose the values of b and s for a given individual instead of using the same values
for everyone at all times. For example, in a real world setting a CFLS planner
may try to create a plan using a neighbourhood of b = 3, knowing it is optimal,
but if for the specific case there is not enough data, it could change to b = 2
on the fly. Other aspects that could be changed are the criteria for creating
the neighbourhood: rather than filtering by aptitude, another attribute could be
chosen such as click behaviour or learning goals.

6 Conclusion

In this paper, we have described the need for instructional planning in DOE-
LEs with many LOs aimed at large numbers of learners. Instructional planners
such as [13] use AI planning technology that is based on states, actions and
events, which are difficult to infer from an unstructured online environment. In
recent years, instructional planning has been replaced by instructional design
approaches such as [3]. Advanced instructional planners from the 1990s, such as
PEPE and TOBIE [16] can blend different teaching strategies to appropriate sit-
uations. We have shown that instructional planning can still be done in the less
rigid courses envisioned by the EA architecture and likely to be commonplace
in the future, using only learner usage data kept by the EA and not needing
centralized metadata about the course.

We have shown a specific planning technique, the CFLS planner, that is ap-
propriate for DOELEs, and how to experiment in this domain. The simulation
experiment revealed the number of LOs from a target learner’s recent browsing
history should be used for creating a neighbourhood (b), a question that has
also been investigated by other researchers, such as in [18]. We have also found
recommendations for settings for how far ahead to plan (s and f) for differ-
ent groups of learners, and identified questions for future work. As is the case
with collaborative filtering and case-based approaches, the quality of the plans
created is limited to the quality of LOs within the repository and the quality
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of interactions that have previously occurred between learners and sequences of
LOs.

The bottom-up discovery of prerequisite relationships has been investigated
by others, such as [17]. When the need for centralized metadata about a course
is discarded, and when the further step is taken that different paths can be
found to work better for different learners, then a shift in thinking occurs. Each
individual learner could effectively have a unique ideal (implicit) prerequisite
graph. Whether or not a prerequisite relationship even exists between two LOs
could vary from learner to learner. The notion of prerequisite can thus be viewed
not only as a function of the content relationships, but also as a function of the
individual learner.

Making recommendations of sequences has also been identified as a task in
the recommender systems domain [9]. An approach such as a CFLS planner is
a step in the direction of building recommender systems that can use sequence
information to recommend sequences. This has also been accomplished with
standards approaches such as [15]. Simulation with the EA provides another
method for developing and testing such approaches.

Overall, the research we have done to date and the questions it raises, shows
the value of exploring these complex issues using simulation. We were able to
essentially generate some 25 different experiments exploring some issues in in-
structional planning, in a very short time when compared to what it would have
taken to explore these same issues with real learners. Others have also used sim-
ulation for developing an educational planner, such as [10] for social assessment
games. To be sure our simulation model was of low fidelity, but we suspect that
there are some properties of the CFLS planner that we have uncovered that ap-
ply in the real world (the lower triangles seem to be very strong and consistent
patterns). And, there are some very real issues that we can explore fairly quickly
going forward that might reveal other strong patterns, as discussed. We believe
that it isn’t always necessary to have simulations with high cognitive fidelity (as
in SimStudent [12]) to find out interesting things. Low fidelity simulations such
as the ones we have used in this and our earlier work [6] (and those of [2]) have a
role to play in AIED. Especially as we move into the huge questions of dynamic
open-ended learning environments with thousands of learners and big privacy is-
sues, the sharp minimalist modelling possible with low fidelity simulation should
allow quick and safe experimentation without putting too many real learners at
risk and without taking years to gain insights.
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