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Abstract. We discuss methods for evaluating simulated learners associated 
with four different scientific and practical goals for simulated learners. These 
goals are to develop a precise theory of learning, to provide a formative test of 
alternative instructional approaches, to automate authoring of intelligent tutor-
ing systems, and to use as a teachable agent for students to learn by teaching. 
For each goal, we discuss methods for evaluating how well a simulated learner 
achieves that goal. We use SimStudent, a simulated learner theory and software 
architecture, to illustrate these evaluation methods. We describe, for example, 
how SimStudent has been evaluated as a theory of student learning by compar-
ing, across four domains, the cognitive models it learns to the hand-authored 
models. The SimStudent-acquired models generally yield more accurate predic-
tions of student data. We suggest future research into directly evaluating simu-
lated learner predictions of the process of student learning. 
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1 Introduction 

When is a simulated learner a success? We discuss different approaches to evaluating 
simulated learners (SLs). Some of these evaluation approaches are technical in nature, 
whether or how well a technical goal has been achieved, and some are empirical, 
whereby predictions from the SL are compared against data. These approaches can be 
framed with respect to four goals for developing SLs (see Table 1). These goals have 
been pursued in prior SL research, such as the use of “pseudo-students” [1] to test the 
quality of an instructional design (#2 in Table 1). Before describing different evalua-
tion approaches appropriate for different goals, we first introduce SimStudent. 

1.1 SimStudent: A Simulated Learner Theory and Software Architecture 

SimStudent [2,3] is an SL system and theory in the class of adaptive production sys-
tems as defined by [4]. As such, it is similar to cognitive architectures such as ACT-R 
[5], Soar [6], and Icarus [7], however, it distinctly focuses on modeling inductive 
knowledge-level learning [8] of complex academic skills learning. SimStudent learns 
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from a few primary forms of instruction, including examples of correct actions, skill 
labels on similar actions, clues for what information in the interface to focus on to 
infer a next action, and finally yes-or-no feedback on actions performed by SimStu-
dent.  

Table 1.  Scientific and Practical Goals for Simulated Learners (SLs) 

1. Precise Theory. Use SLs to develop and articulate precise theory of learning.  
a. Cognitive Model. Create theories of domain expertise 
b. Error Model. Create theories of student domain misconceptions 
c. Prior Knowledge. Create theories of how prior knowledge changes learning 
d. Learning Process. Create theories of change in knowledge and performance 

2. Instructional Testing. Use SLs as a “crash test” to evaluate instruction 
3. Automated Authoring. Use SLs to automatically an intelligent tutoring system 
4. Teachable Agent. Use SLs as a teachable agent or peer  

 
To tutor SimStudent, a problem is entered in the tutoring interface (e.g., 2x = 8 in 

row 1 of Figure 1). SimStudent attempts to solve the problem by applying productions 
learned so far. If an applicable production is found, it is fired and problem interface is 
updated. The author then provides correctness feedback on SimStudent’s step. If no 
correct production application is found, SimStudent asks the author to demonstrate 
the next step directly in the interface. When providing a demonstration, the author 
first specifies the focus of attention (i.e. input fields relevant to the current step) by 
double-clicking the corresponding interface elements (e.g., the cells containing 2x and 
8 in Figure 1). The author takes action using the relevant information (e.g., entering 
divide 2 in Figure 1). Finally, the author specifies a skill name by clicking on the 
newly added edge of the behavior graph. This skill label is used to help guide Sim-
Student’s learning and to make production rule names more readable. 

SimStudent uses three machine-learning mechanisms (how, where, and when) to 
acquire production rules. When given a new demonstration (i.e., a positive example of 
a rule), SimStudent uses its how learner to produce a general composition of functions 
that replicate the demonstrated steps and ones like it. For example, in Figure 1, when 
given the demonstration “divide 2” for the problem 2x=8, SimStudent induces that 
the result of the “get-first-integer-without-sign” function when applied to left side of 
the problem and appended to the word “divide” explains the demonstration.  

After an action sequence has been discovered, SimStudent uses its where learner to 
identify a generalized path to the focus of attention in the tutor interface. In Figure 1, 
the where learner discovers retrieval paths for the three cells in the first column. The-
se paths are generalized as more positive examples and are acquired for a given rule. 
For example, when the author demonstrates the application of the divide rule shown 
in Figure 1 to the second row of the equation table, then the production retrieval path 
is generalized to work over any row in the equation table. 

Finally, after learning an action sequence and general paths to relevant infor- 
mation, SimStudent uses its when learner to identify the conditions under which the 
learned production rule produces correct actions. For example, in Figure 1 SimStu-
dent learns that this rule can only be correctly applied when one side of the equation 
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has a coefficient. In situations when SimStudent receives positive and negative feed-
back on its rule applications, it uses the when learner to update the conditions on the 
rules. Note, the how and where learners primarily use positive examples. 

 
Fig. 1. After entering a problem, “2x=8” (top left), teaching of SimStudent occurs either by 
giving yes-or-no feedback when SimStudent attempts a step or by demonstrating a correct step 
when SimStudent cannot (e.g., “divide 2”).  

SimStudent is also capable of learning the representation of the chunks that make 
up the production system’s working memory and are the informational basis on which 
productions are learned. It does so using an unsupervised grammar induction ap-
proach [3]. This feature sets it apart from other production rule learning systems. 

2 Evaluating Simulated Learners as Theories of Learning 

It is helpful to distinguish a general theory of learning from a theory of student learn-
ing. We focus on student learning because of the goals of AI in Education. However, 
it is worth mentioning evaluation criteria for a general learning theory, such as how 
quickly and independently learning takes place and how general and accurate is re-
sulting performance. These criteria facilitate comparative evaluations. For instance, 
hierarchical Bayesian models are arguably better models of learning than other classi-
fication or neural network models because they learn as well with fewer examples [9].  

2.1 Good Learning Theory Should Generate Accurate Cognitive Models 

A student learning theory should produce the kind of expertise that human students 
acquire. In other words, the result of teaching an SL should be a cognitive model of 
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what human student’s know after instruction. Thus, one way to evaluate an SL is to 
evaluate the quality of the cognitive models it produces. We proposed [10] six con-
straints to evaluate the quality of a cognitive model: 1) solution sufficiency, 2) step 
sufficiency, 3) choice matching, 4) computational parsimony, 5) acquirability, and 6) 
transfer. The first two are empirical and qualitative: Is the cognitive model that the SL 
acquires able to solve tasks and do so with steps that are consistent with human stu-
dents? The third is quantitative: Does the frequency of strategy use and common error 
categories generated by the cognitive model on different tasks correspond with the 
same frequencies exhibited by human students? The last three are rational in charac-
ter, involving inspection of the cognitive model. 

These constraints were designed with hand-authored models in mind, so some, like 
the acquirability constraint (#5), appear trivial in the SL context. There is no question 
that the components of an SL-produced cognitive model are plausibly acquired be-
cause the SL does, in fact, acquire them. Similarly, the solution sufficiency constraint 
(#1) is straightforwardly achieved if the SL does not indeed succeed in learning the 
task domain.  If the cognitive model that is produced solves problems using the kinds 
of intermediate steps used in student solutions, for example, it performs its solution in 
a step-based tutoring system interface, then the step sufficiency constraint (#2) is met.  

How, then, can the remaining constraints be evaluated? In [11], we employed an 
educational data mining approach that evaluates the accuracy of a cognitive model by 
a “smooth learning curve” criteria [cf., 12,13]. Using a relatively simple statistical 
model of how instructional opportunities improve the accuracy of knowledge, this 
approach can measure and compare cognitive models in terms of their accuracy in 
predicting learning curve data. To employ the statistical model fit, the cognitive mod-
el is simplified into a “Q matrix”, which maps each observed task performed (e.g., 
entering a step in a problem solving) to the knowledge components hypothesized to 
be needed to successfully perform that task. For any appropriate dataset uploaded into 
DataShop (learnlab.org/DataShop), the website allows users to edit and upload alter-
native cognitive models (in the Q matrix format), automatically performs statistical 
model fits, renders learning curve visualizations, and displays a rank ordering of the 
models in terms of their predictive accuracy [14]. 

We used this approach to evaluate the empirical accuracy of the cognitive models 
that SimStudent learns as compared to hand-authored cognitive models [11]. SimStu-
dent was tutored in four domains: algebra, fractions, chemistry, and English grammar, 
in which we had existing human data and existing hand-authored cognitive models. In 
each domain SimStudent induced, from examples and from practice with feedback, 
both new chunk structures to represent the organization (or “grammar”) of the percep-
tual input and new production rules that solve problems (e.g., add two fractions) or 
make decisions (e.g., select when to use “the” or “a” in English sentences). In each 
case, the production rules that SimStudent acquired were converted into the Q matrix 
format. Then the DataShop cognitive model comparison was employed to compare 
whether these models fit student learning curve data better than the hand-authored 
cognitive models do.  

In all four domains, the SimStudent-acquired cognitive models made distinctions 
not present in the hand-authored models (e.g., it had two different production rules 
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across tasks for which the hand-authored model had one) and thus it tended to pro-
duce models with more knowledge components (as shown in Table 2). For example, 
SimStudent learned two different production rules for the typical last step in equation 
solving where one production covered typical cases (e.g., from 3x = 12 the student 
should “divide by 3”) and another covered a perceptually distinct special case (e.g., 
from -x = 12 the student should divide by -1). 

In all four domains, at least some of these distinctions improved the predictive fit 
to the learning curve data for the relevant tasks. For example, the SimStudent-
acquired cognitive model in algebra leads to better accuracy because real students had 
a much higher error rate on tasks like -x=12 (where the coefficient, -1, is implicit) 
than on tasks like 3x=12 (where the coefficient, 3, is explicitly visible). In one domain 
(Fraction Addition,), the SimStudent-acquired cognitive model failed to make a key 
distinction present in the hand-authored model and thus, while better in some cases, 
its overall fit was worse. In the three other domains, the SimStudent-acquired cogni-
tive models were found to be more accurate than the hand-authored cognitive models.  

Table 2. A comparison of human-generated and SimStudent-discovered models.  

 Number of Production Rules Cross-Validated RMSE 
Human-Generated 

  Model 
SimStudent 

Discovered Model 
Human-Generated 
   Model 

SimStudent 
Discovered Model 

Algebra 12 21 0.4024 0.3999 
Stoichiometry 44 46 0.3501 0.3488 

Fraction Addition 8 6 0.3232 0.3343 
Article selection 19 22 0.4044 0.4033 

In other words, this “smooth learning curve” method of evaluation can provide ev-
idence that an SL, SimStudent in this case, is a reasonable model of student learning 
in that it acquires knowledge at a grain size (as represented in the components of the 
cognitive model) that is demonstrably consistent with human data.  

One limitation of this approach is that it indirectly compares an SL to human learn-
ers through the process of fitting a statistical model. In the case of algebra, for exam-
ple, SimStudent’s acquisition of two different productions for tasks of the form Nx=N 
versus tasks of the form -x=N gets translated into a prediction that student perfor-
mance will be different in these situations, but the not direction of the difference. The 
parameter estimation in statistical model fit yields the prediction for which of these 
task categories (Nx=N or -x=N) is harder. A more direct comparison would not use 
an intermediate statistical model fit. It would require the SL to not only produce a 
relevant distinction, but to make a prediction of student performance differences, such 
as whether it takes longer to successfully learn some kinds of tasks than others. Such 
an evaluation approach is discussed in section 2.3. 

2.2 Matching Student Errors and Testing Prior Knowledge Assumptions  

As a model of student learning, a good SL should not only produce accurate perfor-
mance with learning, but should also produce the kinds of errors that students produce 
[cf.,15]. Thus, comparing SL errors to student errors is another way to evaluate an SL. 
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One theory of student errors is that students learn incorrect knowledge (e.g., incor-
rect production rules or schemas) from correct example-based instruction due to the 
necessary fallibility of inductive learning processes. A further hypothesis is that in-
ductive learning errors are more likely when students have “weak” (i.e., more domain 
general) rather than “strong” (i.e., more domain specific) prior knowledge. With weak 
prior knowledge, students may interpret examples shallowly, paying attention to more 
immediately perceived surface features, rather than more deeply, by making domain-
relevant inferences from those surface features. Consider example-based instruction 
where a student is given the equation “3x+5 = 7” and told that “subtract 5” from both 
sides is a good next step. A novice student with weak prior knowledge might interpret 
this example shallowly, as subtracting a number (i.e., 5) instead of more deeply, as 
subtracting a term (i.e., +5). As a consequence, the student may induce knowledge 
that produces an error on a subsequent problem, such as “4x-2=5” where they subtract 
2 from both sides. Indeed, this error is common among beginning algebra students.  

We evaluated SimStudent by comparing induction errors it makes with human stu-
dent errors [16]. More specifically, we evaluated the weak prior knowledge hypothe-
sis expressed above. We conducted a simulation study by having multiple instances of 
SimStudent get trained by the Algebra Cognitive Tutor. We compared SimStudent 
behaviors with actual student data from the Cognitive Tutor’s logs of student interac-
tions with the system. When SimStudent starts with weak prior knowledge rather than 
strong prior knowledge, it learns more slowly, that is, the accuracy of learned skills is 
lower given the same amount of training. More importantly, SimStudent’s ability to 
predict student errors increased significantly when given weak rather than strong prior 
knowledge. In fact, the errors generated by SimStudent with strong prior knowledge 
were almost never the same kinds of errors commonly made by real students.  

In addition to illustrating how an SL can be evaluated by comparing its error gen-
eration to human errors, this example illustrates how an SL can be used to test as-
sumptions about student prior knowledge. In particular, SimStudent provides a theo-
retical explanation of empirical results [17] showing correlations between tasks meas-
uring prior knowledge (e.g., identify the negative terms in “3x-4 = -5-2x”) and subse-
quent learning of target skills (e.g., solving algebra equations).  

Some previous studies of students’ errors focus primarily on a descriptive theory to 
explain why students made particular errors, for example, repair theory [15], the theo-
ry of bugs [18], and the theory of extrapolation technique [19]. With SLs, we can 
better understand the process of acquiring the incorrect skills that generate errors. The 
precise understanding that computational modeling facilitates provides us with in-
sights into designing better learning environments that mitigate error formation.  

2.3 Good Student Learning Theory Should Match Learning Process Data 

Matching an SL’s performance to learning process data is similar to the cognitive 
model evaluation discussed above in section 2.1. However, as indicated above, that 
approach has the limitation of being an indirect comparison with human data whereby 
there the fit to human data is, in a key sense, less challenging because it is mediated 
by a separate step parameter estimation of a statistical model. A more direct compari-
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son is, in simple terms, to match the behavior of multiple instances of an SL (i.e., a 
whole simulated class) with the behavior of multiple students. The SLs interact with a 
tutoring system (like one shown in Figure 2) just as a class of human students would 
and their behavior is logged just as human student data is. Then the simulated and 
human student data logs can be compared, for example, by comparing learning curves 
that average across all (simulated and human) student participants.  

3 Evaluating Simulated Learners as Instruction Testers 

A number of projects have explored the use of an SL to compare different forms of 
instruction. VanLehn was perhaps the first to suggest such a use of a “pseudo student” 
[1]. A version of ACT-R’s utility learning mechanism was used to show that the SL 
was more successful when given error feedback not only on target performance tasks 
(e.g., solving two-step equations), but also on shorter subtasks (e.g., one-step equa-
tions) [10]. A SimStudent study showed better learning from a combination of exam-
ples and problems to solve, than just giving it examples [2]. Another showed that 
interleaving problem types is better for learning than blocking problem types because 
interleaving provides better opportunities correcting over-generalization errors [20].  

For a general theory of instruction, it is of scientific interest to understand the ef-
fectiveness of different forms of instruction for different kinds of SL systems even if 
the SL is not an accurate model of student learning. Such understanding is relevant to 
advancing applications of AI and is directly relevant to using an SL for automated 
ITS authoring (next section). Such theoretical demonstrations may also have rele-
vance to a theory of human instruction as they may 1) provide theoretical explana-
tions for instructional improvements that have been demonstrated with human learn-
ers or 2) generate predictions for what may work with human students.  

These instructional conclusions can only be reliably extended to human learners 
when the SL is an accurate model of student learning. The most reliable evaluation of 
an SL as instructional tester is a follow-up random assignment experiment with hu-
man learners that demonstrates that the instructional form that was better for the SLs 
is also better for students. In the examples given above, there is some evidence that 
the SLs are accurate models of student learning (e.g., past relevant human experi-
ments). However, in none of them was the ideal follow-up experiment performed. 

4 Evaluating Simulated Learners as ITS Authoring Tools 

In addition to their use as theories of learning and for testing instructional content, 
simulated learning systems can also be used to facilitate the authoring of Intelligent 
Tutoring Systems (ITS). In particular, once an SL has been sufficiently trained, the 
cognitive model it learns can then be used directly as an expert model. Previous work, 
such as Example Tracing tutor authoring [21], has explored how models can be ac-
quired by demonstration. However, by using a simulated learning system to induce 
general rules form the demonstrations more general models can be acquired more 
efficiently. For example, the use of SimStudent as authoring tool is still experimental, 
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but there is evidence that it may accelerate the authoring process and produce more 
accurate cognitive models than hand authoring. One demonstration explored the bene-
fits of a traditional programming by demonstration approach to authoring in SimStu-
dent versus a programming by tutoring approach [2].  In the latter, SimStudent asks 
for demonstrations only at steps where it has no relevant productions. Otherwise, it 
performs a step and asks the author for feedback as to whether the step is correct or 
not. Programming by tutoring was found to be much faster than programming by 
demonstration (77 minutes vs. 238 minutes) and produced a more accurate cognitive 
model whereby there were fewer productions that produced over-generalization er-
rors. Programming by tutoring is now the standard approach because of its improved 
efficiency and effectiveness. Better efficiency is obtained because many author 
demonstrations are replaced by SimStudent actions with a quick yes-or-no response. 
Better effectiveness is obtained because these actions expose over-generalization 
errors to which the author responds “no” and the system learns new if-part precondi-
tions to more appropriately narrow the generality of the modified production rule.  

A second demonstration of SimStudent as an authoring tool [22] compared author-
ing in SimStudent with authoring example-tracing tutors in CTAT. Tutoring SimStu-
dent has considerable similarity with creating an example-tracing tutor except that 
SimStudent starts to perform actions for the author, which can be merely checked as 
desirable or not, saving the time it otherwise takes for an author to perform those 
demonstrations. This study reported a potential savings of 43% in authoring time. 

5 Evaluating a Simulated Learner as a Teachable Agent 

Simulated learner systems can be more directly involved in helping students learn 
when they are used as a teachable agent whereby students learn by teaching [cf., 23]. 
Evaluating the use of an SL in this form ideally involves multiple steps. One should 
start with an SL that has already received some positive evaluation as a good model of 
student learning (see section 2). Then incorporate it into a teachable agent architecture 
and, as early and often as possible, perform pilot students with individual students 
[cf., 24 on think aloud user studies) and revise the system design. Finally, for both 
formative and summative reasons, use random assignment experiments to compare 
student learning from the teachable agent with reasonable alternatives. 

Using SimStudent, we built a teachable agent environment, called APLUS, in 
which students learn to solve linear equations by teaching SimStudent [25]. To evalu-
ate the effectiveness of APLUS and advance the theory of learning by teaching, we 
conducted multiple in vivo experiments [25,26,27,28]. Each of the classroom studies 
have been randomized controlled trials with two conditions varying one instructional 
approach. In one study [25], the self-explanation hypothesis was tested. To do so, we 
developed a version of APLUS in which SimStudent occasionally asked “why” ques-
tions. For example, when a student provided negative feedback to a step SimStudent 
performed, SimStudent asked, “Why do you think adding 3 here on both sides is in-
correct?” Students were asked to respond to SimStudent’s questions either by select-
ing pre-specified menu items or entering a free text response. The results showed that 
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the amount and the level of elaboration of the response had a reliable correlation with 
students’ learning measured by online pre- and post-tests.  

6 Conclusion 

We outlined four general purposes for simulated learners (see Table 1) and reviewed 
methods of evaluation that align with these purposes. To evaluate an SL as a precise 
theory of learning, one can evaluate the cognitive model that results from learning, 
evaluate the accuracy of error predictions as well as prior knowledge assumptions 
needed to produce those errors, or evaluate the learning process, that is, the changes in 
student performance over time. To evaluate an SL as an instructional test, one should 
not only evaluate the SL’s accuracy as a theory of student learning, but should also 
perform human experiments to determine whether the instruction that works best for 
SLs also works best for human students. To evaluate an SL as an automated authoring 
tool, one can evaluate the speed and precision of rule production, the frequency of 
over-generalization errors and the fit of the cognitive models it produces. More ambi-
tiously, one can evaluate whether the resulting tutor produces as good (or better!) 
learning than an existing tutor. Similarly, to evaluate an SL as a Teachable Agent, one 
can not only evaluate the system features, but also perform experiments on whether 
students learn better with that system than with reasonable alternatives. 

Simulated learner research is still in its infancy so most evaluation methods have 
not been frequently used. We know of just one such study [29] that evaluated an SL 
as an instructional tester by following up a predicted difference in instruction with a 
random assignment experiment with real students. It used an extension of the ACT-R 
theory of memory to simulate positive learning effects of an optimized practice 
schedule over an evenly spaced practice schedule. The same experiment was then run 
with human students and it confirmed the benefits of the optimized practice schedule. 
Such experiments are more feasible when the instruction involved is targeting simpler 
learning processes, such as memory, but will be more challenging as they target more 
complex learning processes, such as induction or sense making [31]. 

The space of instructional choices is just too large, over 200 trillion possible forms 
of instruction [32], for a purely empirical science of learning and instruction to suc-
ceed. We need parallel and coordinated advances in theories of learning and instruc-
tion. Efforts to develop and evaluate SLs are fundamental to such advancement. 
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