
Technical Communications of ICLP 2015. Copyright with the Authors. 1

Dynamic Programming on Tree Decompositions
using Binary Decision Diagrams:

Research Summary

GÜNTHER CHARWAT

TU Wien, Institute of Information Systems

Favoritenstraße 9, 1040 Wien, Austria
(e-mail: gcharwat@dbai.tuwien.ac.at)

submitted 29 April 2015; accepted 5 June 2015

Abstract

Dynamic programming (DP) on tree decompositions is a well studied approach for solving
hard problems efficiently. State-of-the-art implementations usually rely on tables for stor-
ing information, and algorithms specify how the tuples are manipulated during traversal
of the decomposition. However, a major bottleneck of such table-based algorithms is rel-
atively high memory consumption. The goal of the doctoral thesis herein discussed is to
mitigate performance and memory shortcomings of such algorithms. The idea is to replace
tables with an efficient data structure that no longer requires to enumerate intermediate
results explicitly during the computation. To this end, Binary Decision Diagrams (BDDs)
and related concepts are studied with respect to their applicability in this setting. Besides
native support for efficient storage, from a conceptual point of view BDDs give rise to an
alternative approach of how DP algorithms are specified. Instead of tuple-based manipu-
lation operations, the algorithms are specified on a logical level, where sets of models can
be conjointly updated. The goal of the thesis is to provide a general tool-set for problems
that can be solved efficiently via DP on tree decompositions.

KEYWORDS: Logic, Dynamic Programming, Fixed Parameter Tractability, Binary De-
cision Diagram, Algorithm Design

1 Introduction and Problem Description

For problems that are known to be intractable, one approach is to exploit structural

properties of the given input. An important parameter of graph-based instances is

“tree-width”, which, roughly speaking, measures the tree-likeness of the input. Tree-

width is defined on so-called tree decompositions (Robertson and Seymour 1984),

where the instance is split into smaller parts, thereby taking into account its struc-

ture. The problem at hand can then be solved by dynamic programming (DP).

Many problems are fixed-parameter tractable (fpt) with respect to tree-width, that

is, they are solvable in time f(k) · nO(1) where k is the tree-width, n is the input

size and f is some computable function. Note that here the explosion in run-time

is confined to k instead of the input size. Courcelle showed that every problem that

2 G. Charwat

is definable in monadic second-order logic (MSO) is fixed-parameter tractable with

respect to tree-width (Courcelle 1990). There, the problem is solved via translation

to a finite tree automaton (FTA). However, the algorithms resulting from such an

“MSO-to-FTA” translation are oftentimes impractical due to large constants (Nie-

dermeier 2006). One approach to overcome this problem is to develop dedicated

DP algorithms (see, e.g., (Groër et al. 2012; Chimani et al. 2012; Charwat et al.

2015)). Such algorithms typically rely on tables for storing information. However,

in practice such implementations usually impose a large memory footprint.

Problem Statement: Although there has been a lot of effort to put Courcelle’s Theo-

rem into practice, there is still a gap between problems that are fpt w.r.t. tree-width

and implementations that can exploit these results sufficiently in a practical set-

ting. In my doctoral thesis, the challenge is to develop an alternative approach for

dynamic programming on tree decompositions. To this end, the idea is to replace

tables with a data structure that has undergone decades of research and that was

developed in particular to be memory efficient, namely Binary Decision Diagrams

(BDDs) (Bryant 1986). A BDD is a data structure where Boolean functions are

represented compactly in form of a directed acyclic graph. Using BDDs gives rise

to a new way of specifying DP algorithms where it is no longer required to manipu-

late single tuples (i.e., intermediate solutions) of the tables directly, but, instead, to

apply Boolean function manipulations where sets of models are changed conjointly.

One question that arises is how this can be done efficiently, and another one is

whether and how all MSO-definable problems can be specified using this paradigm.

Overall, the challenges to be tackled are to 1) develop a general approach for

logic-based formalizations of DP algorithms, and to 2) put these theoretical results

into practice by providing a BDD-based DP software framework that mitigates large

memory requirements oftentimes observed in state-of-the-art implementations.

2 Background

In this section we introduce tree decompositions, give a short review on dynamic

programming (DP) on this data structure and introduce a special format of Binary

Decision Diagrams (BDDs), namely Reduced Ordered BDDs (ROBDDs).

2.1 Tree Decompositions

Tree decompositions form the underlying basis for our dynamic programming algo-

rithms.

Definition 1 ((Robertson and Seymour 1984))

A tree decomposition of a graph G = (V,E) is a pair (T ,X) where T = (VT , ET)

is a (rooted) tree and X : VT → 2V is a function that assigns to each node t ∈ VT
a bag Xt ⊆ V such that: 1)

⋃
t∈VT

Xt = V ; 2) {x, y} ∈ E ⇒ ∃t ∈ VT : {x, y} ⊆ Xt;

and 3) x ∈ Xt′ ∧ x ∈ Xt′′ ∧ t′′′ ∈ path(t′, t′′)⇒ x ∈ Xt′′′ .

The width w of the decomposition is max t∈VT |Xt| − 1. The tree-width k of a

graph is the minimum width over all its tree decompositions.

DP on Tree Decompositions using BDDs 3

G: a b c

d e

T : b, c

a, b b, c, d

c, d, e

Fig. 1. Example graph G and a possible tree decomposition T of G.

The first condition states that every vertex of the original graph has to appear

in at least one bag of the tree decomposition, the second condition guarantees that

adjacent vertices appear together in some bag, and finally nodes whose bags contain

the same vertex are connected. Figure 1 depicts an example graph G and a possible

tree decomposition T of width 2. This tree decomposition is optimal w.r.t. width,

i.e., the width corresponds to the tree-width of G.

2.2 Dynamic Programming on Tree Decompositions

Dynamic programming (DP) on tree decompositions follows a general pattern of

how the solution is constructed:

1. For an input graph G, construct a tree decomposition T . It is well-known that

obtaining an optimal decomposition (with respect to width) is NP-hard (Arn-

borg et al. 1987), but there are heuristics that provide a “good” decomposition

in polynomial time (Dermaku et al. 2008; Bodlaender and Koster 2010).

2. Traverse T in post-order and at each node t ∈ VT compute partial solutions

to the problem. Here, only information computed in the child node(s) of t

and the subgraph of G induced by the vertices contained in bag Xt are to be

considered.

3. At the root node of T , due to the properties of tree decompositions, we

know that the whole instances was taken into account. Typically, for decision

problems (e.g., satisfiability, credulous, or skeptical reasoning) the result is

directly available at the root node. For enumeration tasks the tree is traversed

a second time (now in pre-order) and the partial solutions are combined in

order to obtain the complete solutions.

Usually, intermediate results (obtained in step 2 of the algorithm) are stored in

tables where each row explicitly represents a single partial solution. In case the

problem at hand is fpt w.r.t. tree-width k, the size of each table is bounded by a

polynomial of k.

2.3 Binary Decision Diagrams

Herein, we elaborate on an approach where the memory required for storing partial

solutions is reduced by using an implicit representation. In our approach, a special

type of Binary Decision Diagrams (introduced by (Lee 1959) and refined by (Akers

1978)), so called Reduced Ordered Binary Decision Diagrams (ROBDDs) (Bryant

1986), serve as the data structure.

4 G. Charwat

B: a

b1 b2

c1 c2 c3 c4

> ⊥

Bred : a

b

c

> ⊥

Fig. 2. OBBD and ROBBD of formula (a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ c) ∨ (¬a ∧ b ∧ c).

Definition 2

An Ordered Binary Decision Diagram (OBDD) is a rooted, connected, directed

acyclic graph B = (VB, AB) where VB = VT ∪ VN and AB = A> ∪A⊥. We have:

1. Terminal nodes > and/or ⊥ in VT .

2. Nonterminal nodes v ∈ VN where v is a Boolean variable.

3. Each v ∈ VN has exactly one outgoing arc in A> and one in A⊥.

4. For every path from the root to a terminal node, each variable occurs at most

once and in the same order (i.e., we have a strict total order over the variables).

In Reduced OBDDs (ROBDDs) the following reduction rules are applied:

• Isomorphic nodes are merged into a single node with several incoming edges.

• Nodes v ∈ VN where both outgoing arcs reach the same node v′ ∈ VB are removed.

Given an OBDD B, propositional variables VN and an assignment A to VN , the

corresponding path in B is the unique path from the root node to a terminal node,

such that for every v ∈ VN it includes the outgoing arc in A> (A⊥) iff A gets assigned

true (false) for v. A is a satisfying assignment of the function represented by B iff

the path ends in >. In the following we specify BDDs by giving the function in form

of a logic formula. Figure 2 shows an OBBD B and the corresponding ROBBD Bred
for the Boolean formula (a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ c) ∨ (¬a ∧ b ∧ c). Nodes c1, c2 and

c3 represent the same variable c and have arcs to the same terminal nodes. Hence,

these isomorphic nodes are merged to a single node c. Then, both outgoing arcs of

b1 reach c, and b1 is removed. Furthermore c4 is removed, resulting in Bred .

BDDs support standard logic operators (e.g., ∧, ∨, ¬, ↔, . . .), existential quan-

tification (∃V B for V ⊆ VN) as well as restriction and renaming of variables (B[v/·]
where · ∈ {>,⊥, v′} for v ∈ VN). The size of ROBDDs is, in the worst case, expo-

nential, i.e., bounded by O(2|VB|) and heavily depends on the variable ordering. It

was shown that finding an optimal ordering is NP-complete (Bollig and Wegener

1996). However, there are good heuristics available (e.g., (Rudell 1993)) and, in

practice, BDDs are oftentimes exponentially smaller (Friedman and Supowit 1987).

3 Literature Review

Dynamic programming on tree decompositions has been studied in many prob-

lem domains such as belief revision (Pichler et al. 2009), answer-set program-

ming (Morak et al. 2011) or abstract argumentation (Dvořák et al. 2012) (for a

general overview, see, e.g., (Niedermeier 2006)).

DP on Tree Decompositions using BDDs 5

There exist several tools that put these theoretical results into practice. The D-

FLAT system (Abseher et al. 2014) combines DP with answer-set programming

(ASP). Here, the user specifies the DP algorithm in form of an answer-set program

which is executed at each node of the decomposition, thereby defining the DP algo-

rithm explicitly. Furthermore, the tool SEQUOIA (Kneis et al. 2011) implements

a game-theoretic approach where the problem is represented as a monadic second-

order (MSO) formula. The instance is decomposed and the DP algorithm automati-

cally generated and executed. Additionally, some problem-specific implementations

like dynASP (Morak et al. 2011) (for ASP solving) and dynPARTIX (Charwat and

Dvořák 2012) (for the area of abstract argumentation) are available. However, these

systems are either designed as tools for prototypical DP implementations, are not

easily extensible to new application areas or suffer from high memory demands for

storing partial solutions during the computation. The latter problem has been ad-

dressed, e.g., by proposing heuristics (Betzler et al. 2006) or reducing the number

of simultaneously stored tables (Aspvall et al. 2000).

BDDs are a well-established concept used, e.g., in model-checking (Mȩski et al.

2014), planning (Kissmann and Hoffmann 2014) and software verification (Beyer

and Stahlbauer 2014). In recent research the effectiveness of exploiting tree-width by

applying decomposition techniques in combination with decision diagrams is stud-

ied. In the area of knowledge compilation, so-called “Tree-of-BDDs” (Subbarayan

2005; Fargier and Marquis 2009) are constructed in an offline phase from a given

CNF, and queried in the online phase to answer questions on this data structure

in linear time. Furthermore, Algebraic Decision Diagrams (ADDs) (Bahar et al.

1997), a concept closely related to BDDs, are used for compiling Bayesian net-

works in such a way that the structure of the network can be exploited in order

to compute inference efficiently (Chavira and Darwiche 2007). Combining DP and

decision diagrams has been proven well-suited also for Constraint Optimization

Problems (COPs) (Sachenbacher and Williams 2005). The key idea is to employ

ADDs to store the set of possible solutions, and the branch-and-bound algorithm

is executed on a decomposition of the COP instance. In (Boutaleb et al. 2006),

this idea was shown to be superior to earlier approaches by additionally applying

(no)good recording during computation.

Furthermore, in (Hooker 2013) “classical” (i.e., without tree decompositions)

serial as well as non-serial dynamic programming in combination with decision

diagrams is studied for optimization problems.

4 Goal and Current Status of Research

4.1 Goal of the Research

The goal of the thesis is to develop a new methodology for DP on tree decomposi-

tions. The following tasks are to be considered:

1. Sets-of-models based DP algorithms: One goal is to develop a general approach

where DP algorithms on tree decompositions can be specified on a logical level

in form of Boolean formula manipulations, such that they can be handled

6 G. Charwat

efficiently and transparently by the underlying BDD data structure. Based on

this, alternative algorithm design patterns shall be developed and analyzed.
2. Study of expressiveness: An important question to answer is whether and

how different types of problems (e.g., decision or optimization problems) can

be addressed. Furthermore, it shall be elaborated how problems of different

(classical) complexity can be handled, in particular NP-complete problems

and problems that are hard for the second level of the polynomial hierarchy.

Ultimately, it would be desirable to prove whether all MSO-definable problems

can be modeled using our approach such that the resulting algorithms run in

fpt time (w.r.t. tree-width).
3. Implementation: From a practical perspective, the goal is to develop a system

that combines BDDs with DP on tree decompositions. This tool should rely

on existing software (HTDECOMP (Dermaku et al. 2008) for obtaining the

decomposition, D-FLAT (Abseher et al. 2014) for handling the program flow

and CUDD (Somenzi 2012) for BDD management).
4. Empirical evaluation: It is expected that the new approach of combining

BDDs with DP results in much lower memory requirements than previous

attempts. Within the thesis, the memory demands as well as the run-time

performance is compared to existing decomposition-based systems, and also

to “direct” implementations that are not based on such decompositions. Of

particular interest is a comparison on real-world instances that exhibit small

tree-width (such as, e.g., provided in (Batagelj and Mrvar 2006; Langer 2012;

Bliem 2012)). Furthermore, the influence of the variable ordering within the

BDDs on the run-time performance shall be studied.

Overall, the goal is to develop a method that combines DP on tree decompositions

with BDDs and to give a clear picture on the applicability of this approach in

practice.

4.2 Status of Research

In recent work (see (Charwat and Woltran 2015)) we accomplished to formalize our

approach for NP-complete decision problems. The applied methodology is feasible

for problems that are fpt w.r.t. tree-width k, but can also be applied to problems

that are not fpt. However, there the run-time complexity is no longer polynomial

in the size of the input (for a fixed k). We studied several problems that impose

different challenges on our algorithm design, namely 3-Colorability, Boolean

Satisfiability, Directed Dominating Set and Hamiltonian Cycle.

Here, we briefly illustrate how the simplest problem, 3-Colorability (“Given

a graph G, is G 3-colorable?”), can be solved using our approach. We assume that

the tree decomposition T = (VT , ET) of G = (V,E) is normalized, meaning that

each node t ∈ VT is of one of the following types: (l) leaf node: t has no children;

(i) introduction node: t has exactly one child node t′ with Xt′ ∪ {u} = Xt where

u is the introduced vertex; (r) removal node: t has exactly one child node t′ with

Xt′ = Xt ∪{u} where u is the removed vertex; and (j) join node: t has exactly two

child nodes t′ and t′′ with Xt = Xt′ = Xt′′ .

DP on Tree Decompositions using BDDs 7

dynBDD EDM D-FLAT EDM dynBDD LDM SEQUOIA D-FLAT LDM

Solved
Timeout
Memout
Error

3-Colorability

0
50

10
0

15
0

20
0

25
0

In
st

an
ce

s

0

1000

2000

3000

4000

5000

0 20 40 60 80 100 130 160

0

2

4

6

8

10

Instances solved

Ti
m

e
(s

ec
)

M
em

or
y

(G
B)

Memory
Time

D-FLAT EDM
dynBDD EDM

Fig. 3. 3-Colorability: Benchmark comparison with available TD-based systems.

Let the set of colors C = {r, g, b}. For all c ∈ C and x ∈ V , the truth value

of variable cx denotes whether vertex x gets assigned color c. The algorithm now

works as follows. We traverse T in post-order. At each node t ∈ VT we compute the

BDD B∗t based on the node type ∗ ∈ {l, i, r, j}. Additionally, we take into account

the BDDs Bt′ and Bt′′ of the child nodes (if any), and the subgraph of G that is

induced by the vertices in Xt. Here, we denote by Et the edges contained in the

induced subgraph. The BDD manipulation operations are given as follows:

Blt =
∧
c∈C

∧
{x,y}∈Et

¬(cx ∧ cy) ∧
∧

x∈Xt

(rx ∨ gx ∨ bx)∧∧
x∈Xt

(
¬(rx ∧ gx) ∧ ¬(rx ∧ bx) ∧ ¬(gx ∧ bx)

)
Bit =Bt′ ∧

∧
c∈C

∧
{x,u}∈Et

¬(cx ∧ cu) ∧ (ru ∨ gu ∨ bu)∧

¬(ru ∧ gu) ∧ ¬(ru ∧ bu) ∧ ¬(gu ∧ bu)

Brt =∃rugubu[Bt′] Bjt = Bt′ ∧ Bt′′

For a graph to be 3-colorable we have to guarantee that adjacent vertices do

not have the same color and that every vertex gets assigned exactly one color.

Intuitively, Blt and Bit are constructed by adding the respective constraints for in-

troduced vertices. In Brt , due to the definition of tree decompositions, we know that

all constraints related to removed vertex u were already taken into account. Hence,

we can abstract away the variables associated with u, thereby keeping the size of

the BDD bound by the width of the decomposition. In join nodes, Bjt combines the

intermediate results obtained in the child nodes of the decomposition. At the root

node r of T (where we impose Xr = ∅) we have that either Br = > or Br = ⊥,

representing the solution to our problem.

We call the approach illustrated above early decision method (EDM), meaning

that information is incorporated into the BDD as soon as it becomes available (i.e.,

during introduction of vertices). In (Charwat and Woltran 2015) we developed an

alternative algorithm design pattern, called late decision method (LDM). In contrast

to EDM, here the BDDs are updated just before a vertex is removed from a bag.

All problems mentioned above were implemented in both the EDM and LDM

variants, and compared to TD-based systems in a preliminary empirical evaluation.

8 G. Charwat

Results for 3-Colorability are shown in Figure 3 (for details and further results,

see (Charwat and Woltran 2015)). The benchmark set contained 252 (randomly

generated) instances consisting of 10 up to 1000 vertices. The obtained tree decom-

positions exhibited a width between 1 and 944. The figure on the left illustrates

the number of solved instances, as well as the overall number of observed time-

outs (limited to 10 minutes) and memouts (limited to 4GB). SEQUOIA reports

“error” whenever the system-internal pre-check determines that the given instance

is not solvable. The accumulated runtime and memory requirements over all in-

stances that were solved by the two best-performing systems is given in the right

figure. In total, dynBDD (using EDM) required approximately 18% less time and

47% less memory than D-FLAT (EDM). Our experiments suggest that EDM is

better-suited for unsatisfiable instances since conflicts can be detected earlier dur-

ing the computation. However, LDM usually yields smaller BDDs and results in less

computational effort. Furthermore, from a developer’s perspective, we obtain more

concise algorithm specifications. Overall, benchmark results are very promising for

all problems considered so far, both with respect to reduced memory requirements

and run-time.

5 Open Issues and Expected Achievements

The performance of BDDs heavily depends on the applied variable ordering. An

open question is how this ordering can be optimized in our context, e.g., by taking

the ordering of the vertices in the tree decomposition into account. Furthermore,

from a practical perspective, also debugging and visualization possibilities that may

support an algorithm developer are under investigation. It is desirable to develop

further algorithm design pattern (besides EDM and LDM) and to study their impli-

cations on the run-time performance. Additionally, our approach natively supports

parallel problem solving (over decomposition branches), which would be a comple-

mentary approach to recent developments on parallel BDD implementations (van

Dijk et al. 2013; Lovato et al. 2014). Additionally, it would be interesting to de-

velop problem-specific optimizations for our TD-based algorithms and compare

their performance to standard (non-DP) implementations (e.g., for Hamiltonian

Cycle (Gebser et al. 2014; Soh et al. 2014)).

Regarding expressiveness, we are interested in optimization problems. Here, al-

ternative types of decision diagrams (DDs), such as Algebraic DDs (Bahar et al.

1997), Edge-valued BDDs (Lai and Sastry 1992) and Multi-valued DDs (Kam et al.

1998) may be appropriate. Most importantly, we want to study our approach in the

context of problems that are hard for the second level of the polynomial hierarchy.

Here, a challenge to be faced is that each partial solution get associated with a set

of so-called counter candidates, that witness whether a partial solution is valid (see,

e.g., (Dvořák et al. 2012)). Here, an open issue is how such sets of counter candi-

dates can be represented in BDDs. Ultimately we want to provide a BDD-based

tool-set for various intractable problems, such that they can be solved in fpt time

within our approach.

DP on Tree Decompositions using BDDs 9

References

Abseher, M., Bliem, B., Charwat, G., Dusberger, F., Hecher, M., and Woltran,
S. 2014. The D-FLAT system for dynamic programming on tree decompositions. In
Proc. JELIA. LNCS, vol. 8761. Springer, 558–572.

Akers, S. B. 1978. Binary decision diagrams. IEEE Transactions on Computers 100, 6,
509–516.

Arnborg, S., Corneil, D. G., and Proskurowski, A. 1987. Complexity of finding
embeddings in a k-tree. SIAM J. Algebraic Discrete Methods 8, 277–284.

Aspvall, B., Telle, J. A., and Proskurowski, A. 2000. Memory requirements for
table computations in partial k-tree algorithms. Algorithmica 27, 3, 382–394.

Bahar, R., Frohm, E., Gaona, C., Hachtel, G., Macii, E., Pardo, A., and Somenzi,
F. 1997. Algebric decision diagrams and their applications. Formal Methods in System
Design 10, 2-3, 171–206.

Batagelj, V. and Mrvar, A. 2006. Pajek datasets. http://vlado.fmf.uni-lj.si/

pub/networks/data/.

Betzler, N., Niedermeier, R., and Uhlmann, J. 2006. Tree decompositions of graphs:
Saving memory in dynamic programming. Discrete Optimization 3, 3, 220–229.

Beyer, D. and Stahlbauer, A. 2014. BDD-based software verification - Applications
to event-condition-action systems. STTT 16, 5, 507–518.

Bliem, B. 2012. D-FLAT: Collection of instances with small tree-width. http://dbai.

tuwien.ac.at/proj/dflat/system/examples/instances.tar.gz.

Bodlaender, H. L. and Koster, A. M. C. A. 2010. Treewidth computations I. Upper
bounds. Inf. Comput. 208, 3, 259–275.

Bollig, B. and Wegener, I. 1996. Improving the variable ordering of OBDDs is NP-
complete. IEEE Trans. Comp. 45, 9 (Sep), 993–1002.

Boutaleb, K., Jégou, P., and Terrioux, C. 2006. (No)good recording and ROBDDs
for solving structured (V)CSPs. In Proc. ICTAI. IEEE Computer Society, 297–304.

Bryant, R. E. 1986. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers 100, 8, 677–691.

Charwat, G. and Dvořák, W. 2012. dynPARTIX 2.0 - Dynamic programming argu-
mentation reasoning tool. In Proc. COMMA. FAIA, vol. 245. IOS Press, 507–508.

Charwat, G., Dvořák, W., Gaggl, S. A., Wallner, J. P., and Woltran, S. 2015.
Methods for solving reasoning problems in abstract argumentation - A survey. Artif.
Intell. 220, 28–63.

Charwat, G. and Woltran, S. 2015. Efficient problem solving on tree decomposi-
tions using binary decision diagrams. In Proc. LPNMR. LNCS. Springer. Accepted for
publication.

Chavira, M. and Darwiche, A. 2007. Compiling Bayesian networks using variable
elimination. In Proc. IJCAI. 2443–2449.

Chimani, M., Mutzel, P., and Zey, B. 2012. Improved Steiner tree algorithms for
bounded treewidth. J. Discrete Algorithms 16, 67–78.

Courcelle, B. 1990. The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Inf. Comput. 85, 1, 12–75.

Dermaku, A., Ganzow, T., Gottlob, G., McMahan, B. J., Musliu, N., and Samer,
M. 2008. Heuristic methods for hypertree decomposition. In Proc. MICAI. LNCS, vol.
5317. Springer, 1–11.

Dvořák, W., Pichler, R., and Woltran, S. 2012. Towards fixed-parameter tractable
algorithms for abstract argumentation. Artif. Intell. 186, 1–37.

10 G. Charwat

Fargier, H. and Marquis, P. 2009. Knowledge compilation properties of Trees-of-BDDs,
revisited. In Proc. IJCAI. 772–777.

Friedman, S. J. and Supowit, K. J. 1987. Finding the optimal variable ordering for
binary decision diagrams. In Proc. IEEE Design Automation Conf. ACM, 348–356.

Gebser, M., Janhunen, T., and Rintanen, J. 2014. SAT modulo graphs: Acyclicity.
In Proc. JELIA. LNCS, vol. 8761. Springer, 137–151.

Groër, C., Sullivan, B. D., and Weerapurage, D. 2012. INDDGO: Integrated
network decomposition & dynamic programming for graph optimization. Tech. Rep.
ORNL/TM-2012/176.

Hooker, J. N. 2013. Decision diagrams and dynamic programming. In Proc. CPAIOR.
LNCS, vol. 7874. Springer, 94–110.

Kam, T., Villa, T., Brayton, R., and Sangiovanni-Vincentelli, A. 1998. Multi-
valued decision diagrams: Theory and applications. Multiple-Valued Logic 4, 9–62.

Kissmann, P. and Hoffmann, J. 2014. BDD ordering heuristics for classical planning.
J. Artif. Intell. Res. (JAIR) 51, 779–804.

Kneis, J., Langer, A., and Rossmanith, P. 2011. Courcelle’s theorem - A game-
theoretic approach. Discrete Optimization 8, 4, 568–594.

Lai, Y.-T. and Sastry, S. 1992. Edge-valued binary decision diagrams for multi-level
hierarchical verification. In Proc. DAC. IEEE CSP, 608–613.

Langer, A. 2012. SEQUOIA library and tests. https://github.com/sequoia-mso.

Lee, C. 1959. Representation of switching circuits by binary-decision programs. Bell
System Technical Journal 38, 985–999.

Lovato, A., Macedonio, D., and Spoto, F. 2014. A thread-safe library for binary
decision diagrams. In Proc. SEFM. LNCS, vol. 8702. Springer, 35–49.

Mȩski, A., Penczek, W., Szreter, M., Woiźna-Szcześniak, B., and Zbrzezny, A.
2014. BDD-versus SAT-based bounded model checking for the existential fragment of
linear temporal logic with knowledge: Algorithms and their performance. Autonomous
Agents and Multi-Agent Systems 28, 4, 558–604.

Morak, M., Musliu, N., Pichler, R., Rümmele, S., and Woltran, S. 2011. A new
tree-decomposition based algorithm for answer set programming. In ICTAI. IEEE,
916–918.

Niedermeier, R. 2006. Invitation to fixed-parameter algorithms. Oxford Lecture Series
in Mathematics and its Applications, vol. 31. OUP, Oxford.

Pichler, R., Rümmele, S., and Woltran, S. 2009. Belief revision with bounded
treewidth. In Proc. LPNMR. LNCS, vol. 5753. Springer, 250–263.

Robertson, N. and Seymour, P. D. 1984. Graph minors. III. Planar tree-width. J.
Comb. Theory, Ser. B 36, 1, 49–64.

Rudell, R. 1993. Dynamic variable ordering for ordered binary decision diagrams. In
Proc. ICCAD. IEEE CSP, 42–47.

Sachenbacher, M. and Williams, B. C. 2005. Bounded search and symbolic inference
for constraint optimization. In Proc. IJCAI. PBC, 286–291.

Soh, T., Berre, D. L., Roussel, S., Banbara, M., and Tamura, N. 2014. Incremental
sat-based method with native boolean cardinality handling for the Hamiltonian cycle
problem. In Proc. JELIA. LNCS, vol. 8761. Springer, 684–693.

Somenzi, F. 2012. CU Decision Diagram package release 2.5.0. Department of Electrical
and Computer Engineering, University of Colorado at Boulder.

Subbarayan, S. 2005. Integrating CSP decomposition techniques and BDDs for compiling
configuration problems. In Proc. CPAIOR. LNCS, vol. 3524. Springer, 351–365.

van Dijk, T., Laarman, A., and van de Pol, J. 2013. Multi-core BDD operations for
symbolic reachability. Electr. Notes Theor. Comput. Sci. 296, 127–143.

