
Technical Communications of ICLP 2015. Copyright with the Authors. 1

Formal Methods
for Answer Set Programming

Amelia Harrison

Department of Computer Science

The University of Texas at Austin

2317 Speedway, 2.302
Austin, Texas 78712

Internal Mail Code: D9500

E-mail: ameliaj@cs.utexas.edu

submitted 29 April 2015; accepted 5 June 2015

Abstract

Answer set programming is a logic programming paradigm that has increased in popularity
over the past decade and found applications in a wide variety of fields. Even so, manuals
written by the designers of answer set solvers usually described the semantics of the input
languages of their systems using examples and informal comments that appeal to the users’
intuition, without references to any precise semantics. We describe a precise semantics for
the input language of the grounder gringo, which serves as the front end for several answer
set solvers. The semantics represents gringo rules as infinitary propositional formulas.
We develop methods for using this semantics to prove properties of gringo programs,
such as verifying program correctness.

KEYWORDS: infinitary formulas, semantics of aggregates, stable models.

1 Introduction

Answer set programming (ASP) is a powerful declarative paradigm for the design

and implementation of knowledge-intensive applications (Lifschitz 2008; Brewka

et al. 2011). This paradigm leverages computational methods used in the design of

fast satisfiability solvers. The first ASP solvers were created more than ten years

ago. One of their attractive features was that their input language had a simple,

fully specified semantics, based on the concept of a stable model (Gelfond and

Lifschitz 1988). This semantics meant that ASP programs could be analyzed using

formal methods.

As the number of ASP users increased, new constructs useful to programmers

were added to input languages. This increase in expressivity, however, came at the

expense of a fully specified semantics. Many of the new constructs lacked a precise

mathematical formulation.

We have worked in close collaboration with the gringo system1 designers to

1 http://potassco.sourceforge.net/

2 Amelia Harrison

bridge that gap. In (Gebser et al. 2015), we present a precise semantics which

covers a large subset of the gringo input language. To the best of our knowledge,

this semantics exactly matches the meaning of the input language for Version 4.5

of gringo, released on May 5, 2015. It covers a number of constructs not covered

in our previous work, including intervals, pools, and lparse-style aggregates.

Our semantics is based on a translation from rules in the gringo input lan-

guage to infinitary propositional formulas (formulas with infinite conjunctions and

disjunctions). Previous work on the semantics of ASP used a translation to first-

order formulas (Lee et al. 2008). However, such a translation is not applicable to

aggregate expressions like

#count{X : p(X)} = Y

where the result of applying the aggregate function is compared to a variable. In

(Lee and Meng 2012) the authors propose a translation to logic with generalized

quantifiers which can capture the meaning of the aggregate expression above.

With our semantics in place, we can ask questions regarding the correctness of

ASP solvers, programs, and optimization methods, and we can develop general

methods for answering such questions. The results presented in this note repre-

sent initial results on developing formal methods for approaching these kinds of

questions.

Such a semantics is also a prerequisite for precisely describing the relationship

between input languages of different ASP solvers. While this proposal deals with

the input language of gringo in particular, it is worth noting that most ASP

languages have very similar syntax. In this regard, formalizing a precise semantics

and developing formal methods for the input language of gringo goes a long way

towards doing the same for other ASP input languages.

In Section 2, we describe what we have accomplished in the direction of describing

a precise semantics for the input language of gringo. In Section 3, we describe the

infinitary logic which we will use to represent gringo programs, and in Section 4 we

give a theoretical result which makes this logic an appealing representational choice.

In Section 5, we show that the semantics can be used to establish the correctness of

a gringo program. Finally, our plans for future work are documented in Section 6.

2 Defining Semantics for Gringo Programs

In this note we will use “Gringo” to denote the input language of gringo. In work

currently in submission (Gebser et al. 2015), we extend the translational approach

to defining the semantics of Gringo proposed in (Harrison et al. 2014b). In that

note, we showed how rules containing arithmetical functions, comparisons, condi-

tions, and aggregates can be translated into the language of infinitary propositional

formulas described in Section 3. In (Gebser et al. 2015), we extend that semantics

to cover intervals, pools, division of integers, aggregates with non-numeric values,

and lparse-style aggregate expressions. That semantics serves as a specification for

Gringo from Version 4.5 on.

The key element of the proposed semantics is a translation function from Gringo

Formal Methods for Answer Set Programming 3

into the language of infinitary propositional formulas. Like grounding in the original

definition of a stable model (Gelfond and Lifschitz 1988), this translation is modular,

in the sense that it applies to the program rule by rule. For example, the result of

applying this translation to the rule

{q(1..n, 1..n)} (1)

is the formula ∧
1≤i,j≤n

(q(i, j) ∨ ¬q(i, j)) .

(The expression 1..n in rule (1) is an example of an interval.)

As another example, consider the aggregate expression

#count{X : q(X, 1)} = 1. (2)

If the ground atom q(i, j) expresses that there is a queen at square (i, j) of a

chessboard, then this aggregate expression says that there is exactly one queen in

the first column. The translation of this aggregate expression can be written as∨
t∈H

q(1, t) ∧
∧
G⊆H
|G|=2

¬
∧
t∈G

q(1, t), (3)

where H is the set of all ground terms, which may be infinite. This example il-

lustrates the need for infinitary formulas. We will explain more precisely what is

meant by “can be written as” in Section 4.

Extending the semantics proposed in (Harrison et al. 2014b) to cover more con-

structs is not entirely straightforward. To include intervals, for example, we have

to modify the semantics from (Harrison et al. 2014b) in two ways. First, we have to

say that an arithmetic term denotes, generally, a finite set of integers, not a single

integer. (And it is not necessarily a set of consecutive integers, because the Gringo

language allows us to write (1..3)*2, for instance. This expression denotes the set

{2, 4, 6}.) Second, in the presence of intervals we cannot treat a choice rule {A} as

shorthand for the disjunctive rule

A ; not A

as proposed in (Ferraris and Lifschitz 2005). Indeed, rule (1) has 2n
2

stable models;

the rule

q(1..n,1..n) ; not q(1..n,1..n)

has only 2 stable models.

3 Review: Infinitary Formulas and their Stable Models

Infinitary formulas were originally introduced more than fifty years ago (Scott and

Tarski 1958; Karp 1964). The definitions of infinitary formulas and their stable

models given below are equivalent to those proposed in (Truszczynski 2012).

Let σ be a propositional signature, that is, a set of propositional atoms. For

every nonnegative integer r, (infinitary propositional) formulas (over σ) of rank r

are defined recursively, as follows:

4 Amelia Harrison

• every atom from σ is a formula of rank 0,

• if H is a set of formulas, and r is the smallest nonnegative integer that is

greater than the ranks of all elements of H, then H∧ and H∨ are formulas of

rank r,

• if F and G are formulas, and r is the smallest nonnegative integer that is

greater than the ranks of F and G, then F → G is a formula of rank r.

We will write {F,G}∧ as F ∧ G, and {F,G}∨ as F ∨ G. The symbol ⊥ will be

understood as an abbreviation for ∅∨ and ¬F stands for F → ⊥. These conventions

allow us to view finite propositional formulas over σ as a special case of infinitary

formulas.

A set or family of formulas is bounded if the ranks of its members are bounded

from above. For any bounded family (Fα)α∈A of formulas, we denote the formula

{Fα : α ∈ A}∧ by
∧
α∈A Fα, and similarly for disjunctions.

Subsets of a signature σ will be also called interpretations of σ. The satisfaction

relation between an interpretation and a formula is defined recursively, as follows:

• For every atom p from σ, I |= p if p ∈ I.

• I |= H∧ if for every formula F in H, I |= F .

• I |= H∨ if there is a formula F in H such that I |= F .

• I |= F → G if I 6|= F or I |= G.

The reduct F I of a formula F w.r.t. an interpretation I is defined recursively, as

follows:

• For every atom p from σ, pI is p if p ∈ I, and ⊥ otherwise.

• (H∧)I = {GI | G ∈ H}∧.

• (H∨)I = {GI | G ∈ H}∨.

• (G→ H)I is GI → HI if I |= G→ H, and ⊥ otherwise.

An interpretation I is a stable model of a set H of formulas if it is minimal w.r.t. set

inclusion among the interpretations satisfying the reducts F I of all formulas F

from H.

4 Strong Equivalence of Infinitary Formulas

About sets H1, H2 of infinitary formulas we say that they are strongly equivalent

to each other if, for every set H of infinitary formulas, the sets H1 ∪H and H2 ∪H
have the same stable models. About formulas F and G we say that they are strongly

equivalent if the singleton sets {F} and {G} are strongly equivalent. Strong equiv-

alence is an important property because if the translations of two rules are strongly

equivalent, then we can replace one rule with the other within a Gringo program

without changing the meaning of that program. Strong equivalence is also impor-

tant because it allows us to simplify infinitary formulas that may be difficult to

reason about. For example, recall aggregate expression (2) from Section 2. Apply-

ing our translation to that aggregate expression yields a formula that is syntactically

complicated; however, that formula is strongly equivalent to (3).

It is well-known that finite propositional formulas are strongly equivalent if and

Formal Methods for Answer Set Programming 5

only if their equivalence is provable in a 3-valued logic called the logic of here-and-

there (Lifschitz et al. 2001). In (Harrison et al. 2015), we define and axiomatize

an infinitary version of that logic and show that infinitary propositional formu-

las are strongly equivalent to each other if and only if they are equivalent in the

infinitary logic of here-and-there. Our axiomatization of this logic, called HT∞, in-

cludes infinitary versions of the introduction and elimination rules for propositional

connectives. For example, the rules

(∧I)
Γ⇒ H for all H ∈ H

Γ⇒ H∧

and

(∧E)
Γ⇒ H∧

Γ⇒ H
(H ∈ H),

where H is a possibly infinite set of infinitary formulas and Γ is a finite set of in-

finitary formulas, serve as infinitary analogs to the conjunction introduction and

elimination rules of a finite system of natural deduction. It also includes the follow-

ing axiom schemas:

F ⇒ F,

F ∨ (F → G) ∨ ¬G, (4)

and ∧
α∈A

∨
F∈Hα

F →
∨

(Fα)α∈A

∧
α∈A

Fα (5)

for every non-empty family (Hα)α∈A of sets of formulas such that its union is

bounded; the disjunction in the consequent of (5) extends over all elements (Fα)α∈A
of the Cartesian product of the family (Hα)α∈A.

5 Example: The Correctness of a Gringo Program

In this section, we present a theorem, proved in (Gebser et al. 2015), that expresses

the correctness of a simple, but nontrivial Gringo program with respect to the

translation defined in that paper.

Table 1 shows an ASP encoding of the n-queens problem. It is similar to the

most optimized of the solutions in the language of gringo Version 3 presented in

(Gebser et al. 2011). We will call this program K.

The n-queens problem involves placing n queens on an n × n chess board such

that no two queens threaten each other. We will represent squares by pairs of

integers (i, j) where 1 ≤ i, j ≤ n. Two squares (i1, j1) and (i2, j2) are said to be in

the same row if i1 = i2; in the same column if j1 = j2; and in the same diagonal

if |i1 − i2| = |j1 − j2|. A set Q of n squares is a solution to the n-queens problem

if no two elements of Q are in the same row, in the same column, or in the same

diagonal.

Let τK denote the result of applying the translation defined in our semantics to

the program K. For any stable model I of τK, by QI we denote the set of pairs

(i, j) such that q(i, j) ∈ I.

6 Amelia Harrison

% place queens on the chess board

{ q(1..n,1..n) }.

% exactly 1 queen per row/column

:- X = 1..n, not #count{ Y : q(X,Y) } = 1.

:- Y = 1..n, not #count{ X : q(X,Y) } = 1.

% pre-calculate the diagonals

d1(X,Y,X-Y+n) :- X = 1..n, Y = 1..n.

d2(X,Y,X+Y-1) :- X = 1..n, Y = 1..n.

% at most one queen per diagonal

:- D = 1..n*2-1, 2 { q(X,Y) : d1(X,Y,D) }.
:- D = 1..n*2-1, 2 { q(X,Y) : d2(X,Y,D) }.

Table 1. An ASP encoding of the n-queens problem.

Theorem 1

For each stable model I of τK, QI is a solution to the n-queens problem. Further-

more, for each solution Q to the n-queens problem there is exactly one stable model

I of τK such that QI = Q.

The proof of the theorem uses as lemmas some facts regarding how we may

simplify the result of applying our translation to aggregate expressions involving the

count aggregate function (Gebser et al. 2015, Section 5.3). It was shown previously

(Harrison et al. 2014b) that the infinitary propositional formulas corresponding to

the count aggregate can be simplified by strongly equivalent transformations using

its monotonicity properties. In (Gebser et al. 2015), we show how these formulas

can be further simplified under the assumption that intervals do not occur in some

parts of the aggregate expression.

6 A Summary of Future Work

Another application of this work would be to prove the correctness of the compu-

tational methods used in gringo and in the ASP solvers that use this grounder

as their front end. Currently, those solvers employ a number of “intelligent instan-

tiation” algorithms which allow the grounder to function efficiently (Gebser et al.

2009). Using our semantics we will work with the designers of gringo to prove that

these algorithms are correct.

As previously mentioned, a semantics for Gringo takes us a long way in the

direction of a semantics for most ASP languages. Exploring how these languages

compare and contrast is yet another direction of future work. An example of one

such language is the ASP Core language (Calimeri et al. 2012).

Finally, there are a number of theoretical questions regarding the infinitary sys-

Formal Methods for Answer Set Programming 7

tem from (Harrison et al. 2014a) which we would like to investigate. For example,

it is well-known that any finite propositional formula which begins with negation

and is classically provable is also intuitionistically provable (Glivenko 1929). One

question that we would like to address is whether or not an analogous theorem

holds of the system HT∞. Another is whether or not we can succinctly charac-

terize safety of a Gringo program using properties of its translation. Answering

these questions and others like them will help build the arsenal of formal methods

at our disposal for addressing more immediately practical questions, for example,

questions of program correctness.

Acknowledgements

My sincere thanks to my friend and mentor Vladimir Lifschitz. Thanks also to

the anonymous reviewers. This research was partially supported by the National

Science Foundation under Grant IIS-1422455.

References

Brewka, G., Niemelä, I., and Truszczynski, M. 2011. Answer set programming at a
glance. Communications of the ACM 54(12), 92–103.

Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T.,
Leone, N., Ricca, F., and Schaub, T. 2012. ASP-Core-2: Input language format.
Available at https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.0.pdf.

Ferraris, P. and Lifschitz, V. 2005. Weight constraints as nested expressions. Theory
and Practice of Logic Programming 5, 1–2, 45–74.

Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V., and Schaub, T. 2015.
Abstract Gringo. In Proceedings of International Conference on Logic Programming
(ICLP). http://www.cs.utexas.edu/users/vl/papers/AG.pdf; to appear.

Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T. 2011. Challenges in an-
swer set solving. In Logic programming, knowledge representation, and nonmonotonic
reasoning. Springer, 74–90.

Gebser, M., Kaminski, R., Ostrowski, M., Schaub, T., and Thiele, S. 2009. On the
input language of ASP grounder gringo. In LPNMR.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic program-
ming. In Proceedings of International Logic Programming Conference and Symposium,
R. Kowalski and K. Bowen, Eds. MIT Press, 1070–1080.

Glivenko, V. 1929. Sur quelques points de la logique de M. Brouwer. Académie Royale
de Belgique. Bulletins de la Classe des Sciences, série 5 15, 183–188.

Harrison, A., Lifschitz, V., Pearce, D., and Valverde, A. 2014a. Infinitary equi-
librium logic. In Working Notes of the 7th Workshop on Answer Set Programming and
Other Computing Paradigms (ASPOCP).

Harrison, A., Lifschitz, V., Pearce, D., and Valverde, A. 2015. In-
finitary equilibrium logic and strong equivalence. In Proceedings of Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR).
http://www.cs.utexas.edu/users/vl/papers/iel lpnmr.pdf; to appear.

Harrison, A., Lifschitz, V., and Yang, F. 2014b. The semantics of Gringo and infini-
tary propositional formulas. In Proceedings of International Conference on Principles
of Knowledge Representation and Reasoning (KR).

8 Amelia Harrison

Karp, C. R. 1964. Languages with expressions of infinite length. North-Holland, Ams-
terdam.

Lee, J., Lifschitz, V., and Palla, R. 2008. A reductive semantics for counting and
choice in answer set programming. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI). 472–479.

Lee, J. and Meng, Y. 2012. Stable models of formulas with generalized quantifiers.
In Working Notes of the 14th International Workshop on Non-Monotonic Reasoning
(NMR).

Lifschitz, V. 2008. What is answer set programming? In Proceedings of the AAAI
Conference on Artificial Intelligence. MIT Press, 1594–1597.

Lifschitz, V., Pearce, D., and Valverde, A. 2001. Strongly equivalent logic programs.
ACM Transactions on Computational Logic 2, 526–541.

Scott, D. and Tarski, A. 1958. The sentential calculus with infinitely long expressions.
In Colloquium Mathematicae. Vol. 6. 165–170.

Truszczynski, M. 2012. Connecting first-order ASP and the logic FO(ID) through
reducts. In Correct Reasoning: Essays on Logic-Based AI in Honor of Vladimir Lif-
schitz, E. Erdem, J. Lee, Y. Lierler, and D. Pearce, Eds. Springer, 543–559.

