
Technical Communications of ICLP 2015. Copyright with the Authors. 1

Handling Probability and Inconsistency in Answer
Set Programming

Yi Wang
School of Computing, Informatics, and Decision Systems Engineering

Arizona State University, Tempe, USA
(e-mail: {ywang485}@asu.edu)

submitted 29 April 2015; accepted 5 June 2015

Abstract

Answer Set Programming (ASP) is a powerful declarative computing paradigm that is especially
suitable for modeling commonsense reasoning problems. However, the crisp nature of the underly-
ing semantics, the stable model semantics, makes it difficult to handle reasoning domains involving
probability and inconsistency. To address this issue, we present an extension of logic programs under
the stable model semantics, where rules are associated with weights. Under our semantics, prob-
abilistic commonsense domains where inconsistency might be involved can be represented in an
intuitive and elaboration tolerant way. Our semantics extends MLN and logic programming under
stable model semantics. We have shown that probabilistic action domains and Pearl’s probabilisitic
causal models can be represented, and various existing probabilistic logic programming frameworks
can be embedded in our language. Future work includes further investigating the property of this lan-
guage, devising algorithms for inference and learning in our language, and exploring various possible
extensions of our language.

1 Introduction

Answer Set Programming (ASP) is a powerful logic programming paradigm that can model
various commonsense reasoning problems elegantly and efficiently, thanks to useful con-
structs and efficient solvers developed. However, there are still many common reasoning
problems that ASP cannot handle. A significant weakness of ASP that limits its appli-
cability to real-world domains comes from the crisp nature of the underlying semantics,
the stable model semantics. On one hand, statements involving probability cannot be ex-
pressed, on the other hand, no useful information can be derived when the knowledge
based is inconsistent. In real-world applications where the knowledge base is often noisy,
the capability of expressing probabilistic information is essential in specifying certainty
degrees, and since information usually comes from many different sources which are not
necessarily reliable, consistency should not be assumed. To see the problem, consider the
following two situations:

Example 1
Consider the wolf, sheep, cabbage puzzle, where the objects left by themselves without
the farmer can be eaten in accordance with the food chain. It is known that the puzzle can
be modeled in ASP. Suppose we have an elaboration which says there is a chance that the
wolf does not eat the sheep, or the sheep does not eat the cabbage, even when the farmer is

2 Y. Wang

absent. We want to make the elaboration based on the formalization of the original problem
description without dramatically changing the formalization.

Example 2
Suppose we have a knowledge base in ASP that says migratory birds and resident birds are
two disjoint sets, and normally, every migratory bird or resident bird can fly. Properties on
specific entities come from different data sources which are not necessary consistent with
each other. There can be one data source saying Jo is a migratory bird and another saying
Jo is a resident bird. In this case, we still want to conclude that Jo can fly.

In each of the two examples, the nonmonotonicity of ASP plays an essential role in
modeling the problem. In Example 1, it is important in expressing the commonsense law
of inertia, and in Example 2, it is important in expressing a defeasible rule. However,
ASP cannot handle the inconsistency that can appear in Example 2, and probabilistic state
definitions in Example 1.

To address the first aspect of the issue, i.e., handling probabilistic information in logic
programming, various approaches to combining probability and logic programming have
been proposed over the past decades, such as Poole’s ICL (Poole 1997), CP-Logic (Ven-
nekens et al. 2009), LPADs (Vennekens et al. 2004), ProbLog (Fierens et al. 2013). These
frameworks allow a set of exogenous variables to be associated with probability, thus ad-
dress the first aspect of the issue mentioned above. However, the expressivity of these lan-
guages is limited by their underlying logic programming semantics. For example, ProbLog
is defined based on well-founded model semantics, which is not able to express generate-
test style plan generation as allowed in ASP. Moreover, these languages are only defined
for the case where the knowledge base is consistent, and thus do not address the second
aspect of the issue mentioned above.

On the other hand, Markov Logic Networks (MLN) is a prominent approach in statistical
relational learning. A Markov Logic Network is a set of weighted formulas, representing
various pieces of knowledge of different confidence levels, based on which the subjective
belief of each possible world can be determined. The weight-based semantics naturally
handles probabilistic information and inconsistencies in logic knowledge base. However,
since MLN is based on standard first-order semantics, it is weak for commonsense rea-
soning. For example, since transitive closure cannot be efficiently represented in MLN,
inductive definitions such as “a friend of a friend is also a friend’ can hardly be expressed.

My research focuses on an extension of logic programs under the stable model seman-
tics, called LPMLN(Lee and Wang 2015). The language combines MLN and ASP in a
single framework without sacrificing any of their expressivity. Various probabilistic logic
programming frameworks can be embedded in LPMLN. Moreover, the weight-based se-
mantics of LPMLN handles inconsistency in an elegant way.

The goal of the research consists of the following: Firstly, we want to investigate the
properties of LPMLN. It is worth considering whether many known results from classical
ASP can be carried over to this new framework, such as strong equivalence and splitting
theorem. We also would like to have formal comparisons with other related works and
in this way examine the applicability of the framework theoretically. Secondly, we want
to design efficient algorithms for inference and learning under our semantics to have an

Handling Probability and Inconsistency in Answer Set Programming 3

implementation. This will help us further understand this semantics from a practical per-
spective and produce an experiment platform to facilitate applications of this framework.
Finally, we would like to consider possible extensions of the language, such as introducing
advanced constructs in ASP to this probabilistic setting and defining a probabilistic action
language based on the semantics. Based on this work, we hope to achieve a single frame-
work where machine learning and knowledge representation seamlessly work together.
Knowledge provided by humans and machine learnt rules are tightly combined to facilitate
commonsense reasoning over domains involving uncertainty.

This paper will give a summary of my research, including the background (Section 2),
preliminary results accomplished (Section 3), related work (Section 4) and the current
status of the research (Section 5).

2 Background

2.1 Stable Model Semantics

We review the stable model semantics in this section. For simplicity, we only discuss the
special case where each formula is of the rule form.

Throughout this paper, we assume a first-order signature σ that contains no function
constants of positive arity. There are finitely many Herbrand interpretations of σ.

A rule over σ is of the form

A1; . . . ;Ak ← Ak+1, . . . , Am, not Am+1, . . . , not An, not not An+1, . . . , not not Ap
(1)

(0 ≤ k ≤ m ≤ n ≤ p) where all Ai are atoms of σ possibly containing object variables.
We write {A1}ch ← Body to denote the rule A1 ← Body, not not A1. This expression is
called a “choice rule” in ASP.

We will often identify (1) with the implication:

A1 ∨ · · · ∨Ak ← Ak+1∧. . .∧Am∧¬Am+1∧. . .∧¬An∧¬¬An+1∧. . .∧¬¬Ap .
(2)

A logic program is a finite set of rules. A logic program is called ground if it contains
no variables.

We say that an Herbrand interpretation I is a model of a ground program Π if I satisfies
all implications (2) in Π. Such models can be divided into two groups: “stable” and “non-
stable” models, which are distinguished as follows. The reduct of Π relative to I , denoted
ΠI , consists of “A1 ∨ · · · ∨ Ak ← Ak+1 ∧ · · · ∧ Am” for all rules (2) in Π such that
I |= ¬Am+1∧· · ·∧¬An∧¬¬An+1∧· · ·∧¬¬Ap. The Herbrand interpretation I is called a
(deterministic) stable model of Π (denoted by I |=SM Π) if I is a minimal Herbrand model
of ΠI . (Minimality is in terms of set inclusion. We identify an Herbrand interpretation with
the set of atoms that are true in it.) For example, the stable models of the program

P ← Q Q← P P ← not R R← not P (3)

are {P,Q} and {R}. The reduct relative to {P,Q} is {P ← Q. Q← P. P.}, for which
{P,Q} is the minimal model; the reduct relative to {R} is {P ← Q. Q← P. R.}, for
which {R} is the minimal model.

4 Y. Wang

The definition is extended to any non-ground program Π by identifying it with grσ[Π],
the ground program obtained from Π by replacing every variable with every ground term
of σ.

The semantics is extended to allow some useful constructs, such as aggregates and ab-
stract constraints (e.g., (Niemelä and Simons 2000; Faber et al. 2004; Ferraris 2005; Son
et al. 2006; Pelov et al. 2007)), which is proved to be useful in many KR domains.

2.2 Markov Logic Network

The following is a review of MLNs from (Richardson and Domingos 2006). A Markov
Logic Network (MLN) L of signature σ is a finite set of pairs 〈F,w〉 (also written as a
“weighted formula” w : F), where F is a first-order formula of σ and w is either a real
number or a symbol α denoting the “infinite weight.” We say that L is ground if its formulas
contain no variables.

We first define the semantics for ground MLNs. For any ground MLN L of signature σ
and any Herbrand interpretation I of σ, we define LI to be the set of formulas in L that are
satisfied by I . The weight of an interpretation I under L, denoted WL(I), is defined as

WL(I) = exp

(∑
w:F ∈ L
F ∈ LI

w

)
.

The probability of I under L, denoted PrL [I], is defined as

PrL[I] = lim
α→∞

WL(I)∑
J∈PW WL(J)

,

where PW (“Possible Worlds”) is the set of all Herbrand interpretations of σ. We say that
I is a model of L if PrL[I] 6= 0.

The basic idea of MLNs is to allow formulas to be soft constrained, where a model does
not have to satisfy all formulas, but is associated with the weight that is contributed by
the satisfied formulas. For every interpretation (i.e., possible world) I , there is a unique
maximal subset of formulas in the MLN that I satisfies, which is LI , and the weight of
I is obtained from the weights of those “contributing” formulas in LI . An interpretation
that does not satisfy certain formulas receives “penalties” because such formulas do not
contribute to the weight of that interpretation.

The definition is extended to any non-ground MLN by identifying it with its ground in-
stance. Any MLN L of signature σ can be identified with the ground MLN, denoted grσ[L],
by turning each formula in L into a set of ground formulas as described in (Richardson and
Domingos 2006, Table II). The weight of each ground formula in grσ[L] is the same as the
weight of the formula in L from which the ground formula is obtained.

3 Preliminary results accomplished

In this section, we briefly review the results published in (Lee and Wang 2015) and (Lee
et al. 2015).

Handling Probability and Inconsistency in Answer Set Programming 5

3.1 Language LPMLN

The syntax of LPMLN defines a set of weighted rules. More precisely, an LPMLN program
P is a finite set of weighted rules w : R, where R is a rule of the form (1), and w is either
a real number or a symbol α denoting the “infinite weight.” We call rule w : R soft rule if
w is a real number, and hard rule if w is α.

We say that an LPMLN program is ground if its rules contain no variables. We identify
any LPMLN program P of signature σ with a ground LPMLN program grσ[P], whose rules
are obtained from the rules of P by replacing every variable with every ground term of σ.
The weight of a ground rule in grσ[P] is the same as the weight of the rule in P from which
the ground rule is obtained.

By P we denote the logic program obtained from P by dropping the weights, i.e., P =

{R | w : R ∈ P}. By PI we denote the set of rules in P which are satisfied by I .
The semantics of LPMLN is inspired by Markov Logic Networks ((Richardson and

Domingos 2006)). In MLN, a model does not have to satisfy all formulas, but each model is
associated with the weight that is contributed by the subset of the formulas that the model
satisfies. Likewise, in LPMLN, a stable model does not have to be obtained from the whole
program, but each stable model is associated with the weight that is contributed by the
subset of the rules from which the stable model is obtained.

Thus we define the weight of an interpretation I w.r.t. P, denoted WP(I), as

WP(I) = exp

(∑
w:R ∈ P

I|=R

w

)
.

Let SM[P] be the set {I | I is a stable model of PI}. Notice that SM[P] is never empty
because it always contains the empty set. It is easy to check that the set ∅ always satisfies
P ∅, and it is the smallest set that satisfies the reduct (P ∅)∅.

Using this notion of a weight, we define the probability of an interpretation I under P,
denoted PrP[I], as follows. For any interpretation I ,

PrP[I] =

 lim
α→∞

WP(I)∑
J∈SM[P]

WP(J) if I ∈ SM[P];

0 otherwise.

We say that I is a (probabilistic) stable model of P if PrP[I] 6= 0.
The intuition here is similar to that of MLNs. For each interpretation I , we try to find

a maximal subset (possibly empty) of P for which I is a stable model (under the standard
stable model semantics). In other words, the LPMLN semantics is similar to the MLN se-
mantics except that the possible worlds are the stable models of some maximal subset of P,
and the probability distribution is over these stable models.

For any proposition A, PrP[A] is defined as usual:

PrP[A] =
∑

I: I|=A

PrP[I].

As an example, consider an LPMLN program P.

1 : P ← Q (r1) 1 : Q← P (r2) 2 : P ← not R (r3) 3 : R← not P. (r4)

6 Y. Wang

The probability of each interpretation are shown in the
following table, where Z is e2 + e6 + 2e7.

The (deterministic) stable models {P,Q} and {R} of
ΠP are the (probabilistic) stable models of P with the
highest probability. In addition, P has two other (proba-
bilistic) stable models, which do not satisfy some rules
in ΠP and is thus less probable.

Representing Transitive Closure in LPMLN: The
following example illustrates that unlike MLN, transi-
tive closure can be represented in LPMLN. Consider that

there is a chance x influences y if x is a friend to y.

α : Friend(A,B).

α : Friend(B,C).

w : Influences(x, y)← Friend(x, y)

α : Influences(x, y)← Influences(x, z), Influences(z, y).

Note that the third rule is a soft rule: a person does not always influence his/her friend.
Under the LPMLN semantics, A has a high probability to influence B, and so does B to

C. The third rule leads to that A influences C with some smaller probability that is related
to the two probabilities.

Handling Inconsistency in LPMLN: Example 2 can be easily handled in LPMLN. The
ASP knowledge base is simply represented using hard rules:

α : Fly(x)←MigratoryBird(x), not ab(x).
α : Fly(x)← ResidentBird(x), not ab(x).
α : ← ResidentBird(x),MigratoryBird(x).

Data source 1 says Jo is migratory bird, which is added to the knowledge base:

α : MigratoryBird(Jo).

Similarly, data source 2 says Jo is resident bird:

α : ResidentBird(Jo).

It can be checked that under LPMLN semantics, we have

• Pr [Fly(Jo)] = 1, and
• Pr [MigratoryBird(Jo)] = Pr [ResidentBird(Jo)] = 2

3 .

Representing Probabilistic Action Domain in LPMLN: Example 1 can be modeled in
LPMLN as well. In addition to the ASP rules that define the original problem, we introduce
auxiliary atoms Pi and Qi for each step i, and specify the probabilities as follows.

ln(p) : Pi ln(q) : Qi

ln(1− p) : ← Pi ln(1− q) : ← Qi.

The success of a plan is defined by

α : SheepEaten ← Loci(Wolf , l), Loci(Sheep, l), not LocBoati(l), not Pi

α : CabbageEaten ← Loci(Sheep, l), Loci(Cabbage, l), not LocBoati(l), not Qi

α : Success ← Locmaxstep(Wolf , L2), Locmaxstep(Sheep, L2), Locmaxstep(Cabbage, L2),
not SheepEaten, not CabbageEaten.

Handling Probability and Inconsistency in Answer Set Programming 7

While the minimal length plan for the original puzzle involves 17 actions of loading,
moving and unloading, the elaboration has 6 new minimal length plans involving 11 actions
only, two of which with p× p probability of success, two with q× q, and two with p× p×
q × q.

3.2 Relation to ASP and MLNs

Embed ASP in LPMLN: Any logic program under the stable model semantics can be
turned into an LPMLN program by assigning the infinite weight to every rule. That is,
for any logic program Π = {R1, . . . , Rn}, the corresponding LPMLN program PΠ is
{α : R1, . . . , α : Rn}.

Theorem 1
For any logic program Π, the (deterministic) stable models of Π are exactly the (proba-
bilistic) stable models of PΠ whose weight is ekα, where k is the number of all (ground)
rules in Π. If Π has at least one stable model, then all stable models of PΠ have the same
probability, and are thus the stable models of Π as well.

Embed MLNs in LPMLN: Any MLN L whose formulas have the form (2) can be turned
into an LPMLN program PL so that the models of L coincide with the stable models of PL,
keeping the same probability distribution.

LPMLN program PL is obtained from L by adding

w : A← not not A

for every ground atom A of σ and any weight w. The effect of adding such a rule is to
exempt A from minimization under the stable model semantics.

Theorem 2
For any MLN L whose formulas have the form (2), L and PL have the same probability dis-
tribution over all interpretations, and consequently, the models of L and the stable models
of PL coincide.

The rule form restriction imposed in Theorem 2 is not essential. For any MLN L con-
taining arbitrary formulas, one can turn the formulas in clausal normal form as described
in (Richardson and Domingos 2006), and further turn that into the rule form. For instance,
P ∨Q ∨ ¬R is turned into P ∨Q← R.

Turning LPMLN programs into MLNs: It is known that the stable models of a logic pro-
gram coincide with the models of a logic program plus all its loop formulas (Ferraris et al.
2006). This allows us to compute the stable models using SAT solvers. The method can be
extended to LPMLN so that their stable models along with the probability distribution can
be computed using existing implementations of MLNs, such as Alchemy 1 and Tuffy. 2

We define LP to be the union of P and {α : LFΠP(L) | L is a loop of ΠP}.

1 http://alchemy.cs.washington.edu
2 http://i.stanford.edu/hazy/hazy/tuffy

8 Y. Wang

Theorem 3
For any LPMLN program P such that

{R | α :R ∈ P} ∪ {LFΠP(L) | L is a loop of ΠP}

is satisfiable, P and LP have the same probability distribution over all interpretations, and
consequently, the stable models of P and the models of LP coincide.

It is known that the number of loop formulas may blow up (Lifschitz and Razborov
2006). As LPMLN is a generalization of answer set programs, this blow-up is unavoidable
also in the context of LPMLN. This calls for a computational method such as the incremen-
tal addition of loop formulas as in ASSAT (Lin and Zhao 2004). Or, when the program is
tight (that is, its dependency graph is acyclic), the size of loop formulas is linear in the size
of input programs (Lee 2005).

3.3 Relation to ProbLog, CP-Logic and LPADs

We have shown that LPMLN is a proper generalization of ProbLog, a well-developed
probabilistic logic programming language that is based on the distribution semantics by
Sato (1995). The formal result can be found in (Lee and Wang 2015). Here we illustrate
the idea by an example.

The following ProbLog program

0.6 :: p r ← p

0.4 :: q r ← q

corresponds to the LPMLN program

ln(0.6) : P
ln(0.4) : ← P
ln(0.4) : Q
ln(0.6) : ← Q

α : R← P
α : R← Q.

Syntactically, LPMLN allows more general rules than ProbLog, such as disjunctions in
the head, as well as the empty head and double negations in the body. Further, LPMLN

allows rules to be weighted as well as facts, and do not distinguish between probabilistic
facts and derived atoms. Semantically, ProbLog is only well-defined when each total choice
leads to a unique well-founded model, while LPMLN handles multiple stable models in a
flexible way similar to the way MLNs handle multiple models.

It has been shown that Logic Programs with Annotated Disjunctions (LPADs) (Ven-
nekens et al. 2004) and CP-logic (Vennekens et al. 2009) can be turned into ProbLog, and
thus can be embedded in LPMLN as well. It is worth noting that a main difference between
ProbLog/ CP-Logic/LPADs and LPMLN is that the former is based on the well-founded
model semantics and the latter is on the stable model semantics. In the deterministic case,
the similarity and the difference between them is well-known, and this carries over to the
probabilistic setting.

Handling Probability and Inconsistency in Answer Set Programming 9

3.4 Embedding Pearl’s Probabilistic Causal Model

Pearl’s Probabilistic causal model can be embedded in LPMLN. Again, here we only illus-
trate the idea by an example.

Consider the Firing Squad example discuss in (Pearl 2000, Sec 7.1.2).

C = U

A = C ∨W
B = C

D = A ∨B

P (U= t) = p

P (W = t) = q

U denotes “The court orders the execution,” C denotes “The captain gives a signal,” A
denotes “Rifleman A shoots,” B denotes “Rifleman B shoots,” D denotes “The prisoner
dies,” and W denotes “Rifleman A is nervous.” There is a probability p that the court
has ordered the execution; rifleman A has a probability q of pulling the trigger out of
nervousness.

This example can represented in LPMLN as the following program:

ln(p) : U

ln(1− p) : ← U

ln(q) : W

ln(1− q) : ←W

α : C ← U
α : A← C ∨W
α : B ← C
α : D ← A ∨B.

Counterfactual reasoning can also be handled in LPMLN, but it requires a more compli-
cated translation that captures the twin network method (Balke and Pearl 1994).

4 Related Work

Our approach is closely related to P-Log (Baral et al. 2009), which is another approach
to extending ASP to handle probabilistic reasoning. Probabilistic information can be ex-
pressed in P-log in quite an intuitive way altogether with classical ASP rules. However,
P-log does not have an efficient implementation. Another problem with this framework is
that it is mainly designed for human-written knowledge base, and it is not easy to incorpo-
rate machine learnt rules. Some other approaches include (Nickles and Mileo 2014), (Ng
and Subrahmanian 1994), and (Saad and Pontelli 2005).

There are quite a few other approaches to extending logic programming to probabilistic
settings. ProbLog (Fierens et al. 2013) is a well-known framework under this category.
It combines a probabilistic semantics with the well-founded model semantics, making it
possible to incorporate probabilistic information in a logic program. Poole’s ICL (Poole
1997), CP-Logic (Vennekens et al. 2009) and LPADs (Vennekens et al. 2004) are also
languages which allow probabilistic information to be represented through a logical rule
based semantics. CP-logic is a probabilistic extension of FO(ID) (Denecker and Ternovska

10 Y. Wang

2007). It is shown in (Vennekens et al. 2006), that CP-logic “almost completely coincides”
with LPAD. It has been shown that CP-logic can be embedded in ProbLog. In (Vennekens
et al. 2004), it is shown that Poole’s ICL can be viewed as LPADs, and that acyclic LPAD
program can be turned into ICL. As we mentioned in 3.3, these languages can be embedded
in LPMLN.

5 Current status of the research

In (Lee and Wang 2015), we have presented the semantics of this probabilistic extension
of stable model and have shown that it properly generalizes ASP and MLNs. It is also
shown in the paper that ProbLog can be embedded in our language and probabilistic action
domains can be represented in our language.

After the publication of (Lee and Wang 2015), we further showed that Pearl’s proba-
bilistic causal model (Pearl 2000) can be embedded in our language. The relations between
some other related works, such as (Poole 1997), (Vennekens et al. 2009) and (Vennekens
et al. 2004), have also been discussed. These results are presented in the paper (Lee et al.
2015).

Currently we are working on formally characterizing LPMLN’s capability of handling in-
consistency, and developing a compiler for a simple but useful subset of programs (“tight”
programs). As the next step, we will focus on designing native inference algorithms and
establishing a learning framework.

Acknowledgements Sincere thanks to my mentor Joohyung Lee, and the anonymous
reviewers for their useful comments. This work was partially supported by the National
Science Foundation under Grant IIS-1319794.

References

BALKE, A. AND PEARL, J. 1994. Counterfactual probabilities: Computational methods, bounds
and applications. In Proceedings of the Tenth international conference on Uncertainty in artificial
intelligence, pp. 46–54. Morgan Kaufmann Publishers Inc.

BARAL, C., GELFOND, M., AND RUSHTON, J. N. 2009. Probabilistic reasoning with answer sets.
TPLP 9, 1, 57–144.

DENECKER, M. AND TERNOVSKA, E. 2007. Inductive situation calculus. Artificial Intelli-
gence 171, 5-6, 332–360.

FABER, W., LEONE, N., AND PFEIFER, G. 2004. Recursive aggregates in disjunctive logic pro-
grams: Semantics and complexity. In Proceedings of European Conference on Logics in Artificial
Intelligence (JELIA).

FERRARIS, P. 2005. Answer sets for propositional theories. In Proceedings of International Con-
ference on Logic Programming and Nonmonotonic Reasoning (LPNMR), pp. 119–131.

FERRARIS, P., LEE, J., AND LIFSCHITZ, V. 2006. A generalization of the Lin-Zhao theorem. Annals
of Mathematics and Artificial Intelligence 47, 79–101.

FIERENS, D., VAN DEN BROECK, G., RENKENS, J., SHTERIONOV, D., GUTMANN, B., THON, I.,
JANSSENS, G., AND DE RAEDT, L. 2013. Inference and learning in probabilistic logic programs
using weighted boolean formulas. Theory and Practice of Logic Programming, 1–44.

LEE, J. 2005. A model-theoretic counterpart of loop formulas. In Proceedings of International Joint
Conference on Artificial Intelligence (IJCAI), pp. 503–508. Professional Book Center.

Handling Probability and Inconsistency in Answer Set Programming 11

LEE, J., MENG, Y., AND WANG, Y. 2015. Markov logc style weighted rules under the stable
model semantics. In Technical Communications of the 31st International Conference on Logic
Programming. To appear.

LEE, J. AND WANG, Y. 2015. A probabilistic extension of the stable model semantics. In Inter-
national Symposium on Logical Formalization of Commonsense Reasoning, AAAI 2015 Spring
Symposium Series.

LIFSCHITZ, V. AND RAZBOROV, A. 2006. Why are there so many loop formulas? ACM Transac-
tions on Computational Logic 7, 261–268.

LIN, F. AND ZHAO, Y. 2004. ASSAT: Computing answer sets of a logic program by SAT solvers.
Artificial Intelligence 157, 115–137.

NG, R. AND SUBRAHMANIAN, V. 1994. Stable semantics for probabilistic deductive databases.
Information and computation 110, 1, 42–83.

NICKLES, M. AND MILEO, A. 2014. Probabilistic inductive logic programming based on answer
set programming.

NIEMELÄ, I. AND SIMONS, P. 2000. Extending the Smodels system with cardinality and weight
constraints. In J. MINKER (Ed.), Logic-Based Artificial Intelligence, pp. 491–521. Kluwer.

PEARL, J. 2000. Causality: models, reasoning and inference, Volume 29. Cambridge Univ Press.
PELOV, N., DENECKER, M., AND BRUYNOOGHE, M. 2007. Well-founded and stable semantics of

logic programs with aggregates. TPLP 7, 3, 301–353.
POOLE, D. 1997. The independent choice logic for modelling multiple agents under uncertainty.

Artificial Intelligence 94, 7–56.
RICHARDSON, M. AND DOMINGOS, P. 2006. Markov logic networks. Machine Learning 62, 1-2,

107–136.
SAAD, E. AND PONTELLI, E. 2005. Hybrid probabilistic logic programming with non-monotoic

negation. In In Twenty First International Conference on Logic Programming.
SATO, T. 1995. A statistical learning method for logic programs with distribution semantics. In

Proceedings of the 12th International Conference on Logic Programming (ICLP), pp. 715–729.
SON, T. C., PONTELLI, E., AND TU, P. H. 2006. Answer sets for logic programs with arbitrary

abstract constraint atoms. In Proceedings, The Twenty-First National Conference on Artificial
Intelligence (AAAI).

VENNEKENS, J., DENECKER, M., AND BRUYNOOGHE, M. 2006. Representing causal information
about a probabilistic process. In Logics In Artificial Intelligence, pp. 452–464.

VENNEKENS, J., DENECKER, M., AND BRUYNOOGHE, M. 2009. Cp-logic: A language of causal
probabilistic events and its relation to logic programming. TPLP 9, 3, 245–308.

VENNEKENS, J., VERBAETEN, S., BRUYNOOGHE, M., AND A, C. 2004. Logic programs with an-
notated disjunctions. In Proceedings of International Conference on Logic Programming (ICLP),
pp. 431–445.

