
Technical Communications of ICLP 2015. Copyright with the Authors. 1

Higher Order Support in Logic Specification
Languages for Data Mining Applications

Matthias van der Hallen

KU Leuven
(e-mail: firstname.lastname@cs.kuleuven.be)

submitted 29 April 2015; accepted 5 June 2015

Abstract

In this paper, we introduce our work on our doctorate with title “Higher Order Support in
Logic Specification Languages for Data Mining Applications”. Current logic specification
languages, such as FO(·) provide an intuitive way for defining the knowledge within a
problem domain.

Extended support for data representation is lacking however, and we want to introduce
structured recursive types and generic types, together with a first class citizen approach
to predicates. These additions correspond to higher order concepts.

We provide a background of the current techniques that might be of interest when
implementing these higher order abstractions, such as lazy grounding and oracles. We
sketch the eventual goal of our research, and give an overview of the current state and
research questions that are being considered.

KEYWORDS: Logic Specification, Higher Order, Grounding, Lifted Reasoning

1 Introduction and Problem Description

Current logic specification languages, like FO(·) (Denecker and Ternovska 2008),

offer many intuitive ways to specify the knowledge within a problem domain: aggre-

gates, inductive definitions, . . . However, it is still lacking abstractions that are com-

monplace in other paradigms, for example structured recursive types and generic

types. Furthermore, some additional abstractions are possible in logic programming,

such as the treatment of relations as first class citizens. These abstractions are very

powerful and recognized ways of data representation, and they all correspond to

higher order concepts.

We believe that the addition of these abstractions will make the life of program-

mers and other people who write logic specifications easier, and therefore will open

up additional interest in logic specification languages. Additionally, it will allow one

to write more modular specifications, and reuse them many different times in many

different applications.

One example of an often reusable specification is the transitive closure of a binary



2 Matthias van der Hallen

relation, as shown below:

∀a, b : Closure(a, b)← P (a, b).

∀a, b : Closure(a, b)← ∃ : P (a, c) ∧ P (c, b).

Another example within the context of data mining is the concept of a graph homo-

morphism. A graph homomorphism is a constrained relation between two graphs.

As such, it is natural to represent it as a predicate. However, data mining applica-

tions frequently use homomorphisms, isomorphisms or other ‘relationships’ as an

object of their reasoning. For example, we want something to hold for no, some,

or all homomorphisms. This treats these predicates as a first class citizen as it

introduces quantification over these predicates.

The idea that modularity benefits from an expressive higher order language can

be found in earlier work done conjunction with I. Dasseville et al. (Dasseville et al.

2016). Here, logic specification languages are extended with templates, a popular

way of defining reusable concepts in a modular way, using second order definitions.

The main roadblock towards implementing the forementioned abstractions is that

many logic specification languages use a ground-and-solve technique. The grounding

phase transforms a logic specification theory to an equivalent theory on proposi-

tional level, allowing SAT techniques to be used. It achieves this by enumerating

over finite domains, instantiating the theory for every possible substitution of vari-

ables by domain elements. However, we often do not want to fix our domain be-

forehand: we do not want to fix the number of connections or elements in pattern

mining, or the names of items in item set mining. Furthermore, structured recursive

types and generic types introduce infinite domains of their own, for example the set

of all possible lists. As a result, it will be necessary to develop grounding techniques

that can handle infinite domains.

2 Background and Overview of the Existing Literature

This research is focussed on providing higher order support to ground-and-solve

systems such as IDP (Imperative Declarative Programming) (de Cat et al. 2014).

The IDP system allows specifications specified in the FO(·) language which it

subsequently grounds, i.e. translates to an equivalent theory on a propositional

level. These translations can then be solved using a SAT-solver.

Other systems, such as Flora-2 (Kifer 2005), take a different approach. Flora-2

can translate specifications directly to Prolog for which it can use the XSB sys-

tem (Warren 1998) with tabling as an inference engine. The Flora-2 system is

based on F-Logic (Kifer et al. 1995) and HiLog (Chen et al. 1993). F-logic extends

classical logic with the concepts of objects, classes, and types, and allows an object-

oriented syntax. One of HiLogs defining characteristics is that it combines a higher

order syntax with first order semantics so as to remain decidable. As any language

with inductive definitions under the well-founded or the stable semantics is unde-

cidable, this is less of an issue for a system with a language such as FO(·). Also,

in recent times various other, simpler inference techniques such as model checking,

model expansion or querying have gained importance with respect to deduction.



Higher Order Support in Logic Specification Languages for Data Mining Applications 3

2.1 Relevant Techniques

Currently, systems that depend on a grounding phase do not combine with specifi-

cations including infinite domains as grounding introduces an exponential blowup

when done in a naive way.

However, there are several interesting problems where it is not wise to restrict

ourselves to a finite domain. Moreover, as argued in Section 1, our proposed addi-

tions and abstractions to allow more user-friendly data representations introduce

these infinite domains.

Because of the possible blowup when working with large, (possibly infinite) do-

mains, the design and implementation of novel grounding and inference techniques

is necessary. These techniques must be capable of reasoning on the infinite domain

in only finite time. While this is in general undecidable, various fields of computa-

tional logic and declarative problem solving have developed techniques that provide

effective solutions for a broad and practically important class of such problems. We

envision to combine existing methods, to generalize them and to add novel ones.

Our main context for this work will be the field of lifted reasoning. Possible (and

interrelated) techniques in this field that aid with reasoning over infinite domains

are:

Lazy grounding (De Cat et al. 2015; De Cat et al. 2012; Palù et al.

2009): The current state-of-the-art ground-and-solve systems keep a strict

separation between the grounding and the solving phase. This means that a

lot of computing time and storage space is spent on grounding the theory be-

fore the solver starts its search in solution space. For modellings where large

or infinite domains are used, this grounding phase can be impossible, or at

the very least, terribly inefficient. Lazy grounding is a technique that remedies

this by (operationally) weaving these two phases together. This means that

the solver can solve everything that is already grounded: i.e. make decisions

and propagate them. These propagations and decisions then cause ground-

ing to be generated for other sentences on demand, postponing as much of

the grounding as possible and beneficial to the systems performance. This

grounding behavior is called lazy, as it only does the work (and incurs the

costs) related to grounding when it proves to be necessary for the solver.

Quantifier elimination and rewriting: Various techniques for the removal of

quantifiers, or replacement of existential quantifiers by universal quantifiers

(e.g. Skolemization) exist. Skolemization introduces functions; few state of

the art solvers support functions, however the IDP system does and already

makes use of Skolemization to reduce grounding size (De Cat et al. 2013).

Other elimination and rewriting techniques are possible, for example quan-

tifier eliminations techniques inspired by the quantifier elimination used in

Presburger arithmetic (Cooper 1972).

Bounds propagation for sets: Using several set-axioms and number-theoretic

properties, it might be possible to deduce bounds for sets which are not con-

strained to a finite domain explicitly by the modelling. This greatly reduces



4 Matthias van der Hallen

the costs of grounding as it can cause large domains to be limited to much

smaller, better tractable domains.

Propagation of homogeneity in subdomains for cofinite sets: Even if a

set contains an infinite number of elements, its elements might deviate from

a simple default rule in only a finite number of situations. This means that

there is a certain homogeneity or simple defining relation for the remainder

of the sets domain, and, given this prescription for the set, only a small set

of additional values carries additional (meaningful) information. Because of

this, for several inference tasks it can prove unnecessary to enumerate the

entire set, instead reasoning only on the combination of the prescription and

the small complementary set to solve the task at hand.

Specialized algorithms: specialized and efficient algorithms for set operations (Dovier

et al. 2006) and enumerations can be conceived, for example the exhaustive

enumeration of graphs that satisfy certain logical conditions.

Oracles: The use of subsolvers as oracles is a promising avenue for supporting

higher order quantification over predicates. The necessary search is performed

by a subsolver which is given a theory that describes all constraints over the

quantified predicate. Using negation, universal quantification over a predicate

is turned into existential quantification. As a result, it is possible to rewrite

every quantification into an existential Second Order theory (or search prob-

lem) that a subsolver can tackle.

The subsolver answers whether the new theory is satisfiable, and if so, the

correct conclusions about the super-theory are inferred, and if possible, prop-

agated. The performance of these subsolvers, as well as how much information

can be shared between them and the optimal level of granularity that decides

when a subsolver must run, is the subject of ongoing research.

As an example, consider a shipping dock with multiple separate docking seg-

ments and ships. We want to package a large payload in (as few as possible)

smaller load that we can later distribute over the ships. However, we do not

know which ship will be placed in which dock, and every dock and ship has a

maximal load capacity that it can bear. We can express this as follows:

∃Weight[Package 7→ Int] : ∀Place[Ship 7→ Dock] : ∃Distri[Package 7→ Ship] :

∀ship : sum{pack[Package] : Distri(pack) = ship : Weight(pack)}
< min(dockCap(Place(ship)), shipCap(ship)).

Informally, this must be read as follows: there exists a function Weight that

gives the weight for each package, such that for every placement of ships in

docking segments there exists a distribution Distri of the packages over the

ships such that the maximal capacity of neither ship nor dock is exceeded.

Here, the universal quantification over the placement predicate Place can be

transformed to existential quantification by negating the remainder of the

logical sentence, which will be solved by a subsolver. We will require that

this subsolver proves unsatisfiability, as the transformation from universal to

existential quantification introduces a negation before and after the quantifi-

cation. Note that this introduces a negation before the existential quantifi-



Higher Order Support in Logic Specification Languages for Data Mining Applications 5

cation of the Distri predicate, which in the naive schemes results in another

subsolver.

These techniques are called “lifted reasoning” because the reasoning task is partly

done at the predicate level, as opposed to the current state-of-the-art that defers

all reasoning until after the grounding phase, when it can be done on propositional

level.

The development and adaptation of these techniques will pose theoretical and

implementation challenges.

Furthermore, significant software architectural questions must be answered to

insert these techniques in the classical two phase system with the appropriate level

of modularity and encapsulation.

3 Goal

The goal of this research is to add higher order support to logic specification lan-

guages running on ground-and-solve systems, specifically with data representation

and data mining applications in mind. These higher order support will come in the

form of structured recursive types, generic types, and relations as first class citizens.

We expect that these additional features make data handling and reasoning more

natural, and that they allow us to write shorter, more specific and modular specifi-

cations. These modular specifications should then be combined into a larger specifi-

cation for solving larger problems, leading the way for a software design methodology

for logical specifications.

We expect to provide an implementation of the ideas and results stemming from

this research for the FO(·) language and the IDP system that supports and provides

inferences for this language.

4 Current State and Future Work

Current research topics consist of analyzing how the work on lazy grounding (De Cat

et al. 2015), justifications (Denecker et al. ) and relevance can be leveraged to

work with infinite domains. The idea behind justifications is that given a certain

interpretation, the truth value of every ground literal can be justified on the basis

of the program. For example, given a true literal its justification could be the body

of one of its rules for which the body is true. This is called a direct justification.

Combining all these justifications results in the justification graph.

From all possible justification graphs, the relevance of certain literals can be

deduced. Some literals are irrelevant: the truth values of these literals does not

matter for the truth value of the program. Combining relevance derived from the

justification graph together with lazy grounding will likely lead to ways of efficiently

handling predicates with an infinite domain by not providing an interpretation for

subdomains where the predicate can be chosen freely.

This hypothesis of course needs an experimental evaluation on a well-chosen set

of real world problems. We expect to publish at least one summary of the devised



6 Matthias van der Hallen

methods and their evaluation to be written for publication, as well as an IDP release

with full support for lazy grounding.

Furthermore, we investigate our hypothesis that the justification graph of predi-

cates will allow us to learn characterizations of the ‘behavior’ of a predicate on large

(infinite) parts of its domain, which can be used for lifted clause learning. The idea

is that these clauses can then adequately describe the properties of the predicate,

without having to compute it fully. For example, an arbitrary predicate could, by

analysis of its justification graph, be detected to be an ordered list of five elements

of a generic type, leading to a new representation as:

• five constants of a generic type,

• a constraint that all 5 constants have the same type a,

• a constraint that a must contain at least 5 domain elements, and provide an

ordering.

Moreover, we are exploring how the concept of oracles can be implemented using

the idea of subcalls to the same solver. To this effect, we are looking at ways to

share information, data structures and other necessary information between differ-

ent solver calls, with the aim of reducing overhead and setup costs. Later, we will

round up our findings regarding oracles for publication.

We are also collecting a benchmark set and use this to test how eager the system

must be to perform a subsolver call, as well as how detailed the learned clauses

should be when a subsolver does not produce the wanted result, i.e. represents a

conflict. Using this benchmark set, we will evaluate the different answers to the

questions above and publish a paper detailing these experimental results. It will

also provide us with an important indication on whether to publish an IDP version

incorporating these techniques.

Lastly, we’re looking at set theory as supported by the B method (Cansell and

Méry 2003): The B method provides many set comprehensions and set operations.

Currently, our view on predicates is that they double as sets: P (a). is the same

as a ∈ P . Studying this use of sets and their operations and relating them to the

view where a set is exclusively defined by its ‘elementOf’ relation P will lead to

interesting new insights in porting the capabilities of reasoning about higher order

as available in B method systems (e.g. ProB) to ground-and-solve systems (such

as IDP). We believe that this comparison and the derived insights will provide

material for another publication.



Higher Order Support in Logic Specification Languages for Data Mining Applications 7

References

Cansell, D. and Méry, D. 2003. Foundations of the B method. Computers and Artificial
Intelligence 22, 3-4, 221–256.

Chen, W., Kifer, M., and Warren, D. S. 1993. HILOG: A foundation for higher-order
logic programming. J. Log. Program. 15, 3, 187–230.

Cooper, D. C. 1972. Theorem proving in arithmetic without multiplication. Machine
Intelligence 7 , 91–99.

Dasseville, I., van der Hallen, M., Janssens, G., and Denecker, M. 2016. Seman-
tics of templates in a compositional framework for building logics. TPLP 16. Accepted
for publication.

de Cat, B., Bogaerts, B., Bruynooghe, M., and Denecker, M. 2014. Predicate logic
as a modelling language: The IDP system. CoRR abs/1401.6312.

De Cat, B., Bogaerts, B., Denecker, M., and Devriendt, J. 2013. Model expan-
sion in the presence of function symbols using constraint programming. In IEEE 25th
International Conference on Tools with Artificial Intelligence, ICTAI 2013, Washinton,
USA, November 4-6, 2013, International Conference on Tools For Aritificial Intelli-
gence, Washington D.C., 4-6 Nov 2013. 1068–1075.

De Cat, B., Denecker, M., and Stuckey, P. 2012. Lazy model expansion by incre-
mental grounding. In Technical Communications of the 28th International Conference
on Logic Programming, ICLP 2012, September 4-8, 2012, Budapest, Hungary, Inter-
nationcal Conference on Logic Programming, Budapest, 4-8 Sept 2012, A. Dovier and
V. Santos Costa, Eds. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 201–211.

De Cat, B., Denecker, M., Stuckey, P., and Bruynooghe, M. 2015. Lazy model
expansion: Interleaving grounding with search. The Journal of Artificial Intelligence
Research 52, 235–286.

Denecker, M., Brewka, G., and Strass, H. A formal theory of justifications. Accepted.

Denecker, M. and Ternovska, E. 2008. A logic of nonmonotone inductive definitions.
ACM Trans. Comput. Log. 9, 2.

Dovier, A., Pontelli, E., and Rossi, G. 2006. Set unification. TPLP 6, 6, 645–701.

Kifer, M. 2005. Nonmonotonic reasoning in FLORA-2. In Logic Programming and Non-
monotonic Reasoning, 8th International Conference, LPNMR 2005, Diamante, Italy,
September 5-8, 2005, Proceedings, C. Baral, G. Greco, N. Leone, and G. Terracina, Eds.
Lecture Notes in Computer Science, vol. 3662. Springer, 1–12.

Kifer, M., Lausen, G., and Wu, J. 1995. Logical foundations of object-oriented and
frame-based languages. J. ACM 42, 4, 741–843.

Palù, A. D., Dovier, A., Pontelli, E., and Rossi, G. 2009. GASP: answer set pro-
gramming with lazy grounding. Fundam. Inform. 96, 3, 297–322.

Warren, D. S. 1998. Programming with tabling in XSB. In Programming Concepts
and Methods, IFIP TC2/WG2.2,2.3 International Conference on Programming Con-
cepts and Methods (PROCOMET ’98) 8-12 June 1998, Shelter Island, New York, USA,
D. Gries and W. P. de Roever, Eds. IFIP Conference Proceedings, vol. 125. Chapman
& Hall, 5–6.


