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Abstract

Algebraic effect handlers are a great way for modularizing side effects in Prolog, but they
suffer from poor performance due to nested use of delimited control.

Our aim is to propose a systematic program transformation that merges a composition
of multiple modular handlers into a single monolithic one. Our transformation combines
definition folding/unfolding with rewrite rules that exploit the semantics of delimited
control to eliminate their runtime overhead.

This approach enables the programmer to write programs in a modular fashion and at
the same time to benefit from the good performance of monolithic code. Our experimental
evaluation indicates that merged handlers are twice as fast on average.

1 Introduction

In recent work, Schrijvers et al. (2013) have introduced support for delimited con-
trol (Felleisen 1988; Danvy and Filinski 1990) in Prolog. Delimited control enables
the definition of new high-level language features at the program level (e.g., in
libraries) rather than at the meta-level as program transformations. As a conse-
quence, feature extensions based on delimited control are more robust with respect
to changes and do not require pervasive changes to existing code bases.

Algebraic effect handlers (Plotkin and Pretnar 2009) are a particularly attractive
application of delimited control. They are an elegant way to add many kinds of
side-effectful operations (eg. mutable states, reading and writing to files, . . . ) to a
language (far less intrusive than monads (Moggi 1991)) in a compositional fashion.
Schrijvers et al. give various examples in Prolog, including handlers for implicit
state, DCGs and co-routines.

While the compositionality of effect handlers is one of its main attractions, this
modularity comes at the cost of considerably reduced runtime performance. Our
experiments in Prolog show programs that are up to 2× or 3× slower due to handler
composition. Hence, the efficient implementation of modular effect handlers is very
much an active topic of research.



2 Amr Hany Saleh

get(S):- shift(get(S)).
put(S):- shift(put(S)).

run_state(G,Sin,Sout) :-
reset(G,Cont,Command),
( Cont = 0 ->

Sin = Sout
; Command = get(S) ->

S = Sin,
run_state(Cont,Sin,Sout)

; Command = put(S) ->
run_state(Cont,S,Sout)).

c(X) :- shift(c(X)).

phrase(G,Lin,Lout) :-
reset(G,Cont,Command),
( Cont = 0 ->

Lin = Lout
; Command = c(X) ->

Lin = [X|NL],
phrase(Cont,NL,Lout)).

Fig. 1. State and DCG handlers

2 Background

2.1 Delimited Control

Prolog extended with delimited continuations provides two predicates for delimited
control:

• reset(G,Cont,T) executes goal G untill a shift/1 call occurs inside G.
• shift(T1) suspends the execution of the current goal and captures the re-

mainder up to the nearest surrounding reset/3. This remainder is called the
continuation. It unifies the captured continuation with Cont and T with T1.
The control is then returned to the call just after the reset/3.

The following example shows delimited control in action.

main :- reset(p,Cont,Term), p :- write('a '), ?- main.
write('b '). write('c '). a c b

Because p terminates without shifting, the variables Cont and Term are unified with
0. The next example illustrates the interaction between shift/1 and reset/3.

main :- reset(p,Cont,Term), p :- write('a '), ?- main.
write(Term), shift('hi '), a hi b c
write('b '), write('c ').
call(Cont).

Executing ?-main. calls p inside the reset, prints a, then suspends the execution
due to shift('hi '), giving the control back to the main clause after the reset/3
and unifying Term with 'hi ' and Cont with (write('c ')).

2.2 Effect Handlers

Effect handlers (Plotkin and Pretnar 2009) provide a high level interface to delim-
ited control. They are an elegant way to add many kinds of side-effectful operations
to a language.
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Figure 1 shows two handlers, for mutable states and for parsing. The State han-
dler on the left provides two operations: get/1 for reading an implicit state and
put/1 for writing it. The State handler executes the goal G in the scope of the
reset/3 and afterwards discriminates between the different possible outcomes. If
the goal finishes without shifting, then the handler unifies the input state Sin with
the output state Sout. If the goal shifts the term get(S), the handler unifies S with
Sin and recurses over the continuation. If the term put(S) was shifted, it recurses
over the continuation with S as the new state.

The predicate inc/0 uses the two operations to increment the implicit state.

inc :- get(S), S1 is S + 1, put(S1).

The query ?- run_state( (inc,inc), 0, Sout) uses the State handler to incre-
ment the state twice, unifying Sout with 2.

The right part of Figure 1 defines a handler for Definite Clause Grammars
(DCG).1 This effect handler introduces one operation c(E) to consume the head E
of the input list Lin. For instance, the ab/0 predicate defines the (ab)∗ grammar.

ab.
ab :- c(a), c(b), ab.

The query ?- phrase(ab,[a,b,a,b],[]). checks whether the string abab matches
the grammar. We refer to Schrijvers et al. (2013) for more examples of effect han-
dlers in Prolog.

2.2.1 Combining Effect Handlers

Effects become more interesting when they are combined. For example, ab_inc
combines the State and DCG effects. It counts the number occurrences of ab.
ab_inc.
ab_inc:- c(a), c(b), inc, ab_inc.

How can we handle these combined effects? We see two possible ways:

Modular Handlers. We can handle multiple effects by composing modularized
versions of the handlers. A modular handler is one that propagates unknown op-
erations to the next handler in line. We modularize a handler by adding a default
case that takes care of such propagation. For instance, in the State handler, we add
the following disjunct.

; shift(Command),
run_state(Cont,Sin,Sout)

This disjunct shifts unknown Commands upwards to the next handler and then han-
dles the continuation recursively. We modify the DCG handler in the same fashion.

Now it is easy to combine both handlers: The query ?-run_state(phrase(ab_
inc,[a,b,a,b,a,b],[]),0,Sout). unifies Sout with 3.

1 DCGs are a well-known Prolog extension to sequentially access the elements of an implicit list.
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state_phrase(G,Lin,Lout,Sin,Sout) :-
reset(G,Cont,Command),
( Cont = 0 ->

Sin = Sout,
Lin = Lout

; Command = get(S) ->
S = Sin,
state_phrase(Cont,Lin,Lout,Sin,Sout)

; Command = put(S) ->
state_phrase(Cont,Lin,Lout,S,Sout)

; Command = c(X) ->
Lin = [X|NL],
state_phrase(Cont,NL,Lout,Sin,Sout)).

Fig. 2. state_phrase handler

Monolithic Handlers. Another way of combining multiple effects is to write a
single monolithic handler that handles all effects.

The state_phrase handler in Figure 2 tackles the state and DCG effects to-
gether using only one reset/3. The query ?-state_phrase(ab_inc,[a,b,a,b,
a,b],[],0,Sout). unifies Sout with 3.

3 Research Goal and Current Status

3.1 Research Goal

Both ways to handle multiple effects have their strengths and weaknesses.
Modular handlers nicely isolate separate effects in components that can be reused

independently in arbitrary combinations. In contrast, monolithic handlers are highly
inflexible; they only serve one combination of effects. However, monolithic handlers
can be much more efficient. This is due to the overhead generated by going through
many reset layers in the case of modular handlers, which is mostly eliminated in
the case of monolithic handlers. Therefore, the main aim of this research is to have
the flexibility of modular handlers without sacrificing efficiency.

3.2 Current Status

Currently, our approach consists of systematically deriving the monolithic definition
of handlers from the modular ones. This way the programmer can write his programs
in terms of the modular handlers, but the Prolog system can actually run the
corresponding monolithic handler. Hence we get both modularity and efficiency.

Our main technique for the systematic derivation is the folding/unfolding frame-
work of Pettorossi and Proietti (1994; 1999), a well-established static program trans-
formation technique. We complement the basic folding/unfolding with a number of
transformation rules that capture the semantics of delimited control and enable us
to eliminate its runtime overhead.

The main job of basic folding and unfolding of predicate definitions is to ex-
pose the delimited control built-ins, but the actual job of simplifying their uses is
performed by a number of additional tranformation rules.
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3.2.1 Simplification of Delimited Control

pure(G)
reset(G,C,T) ≡ G, C=0, T=0

(ResetPure)

reset((shift(S),G),C,T) ≡ C=G, T=S (ResetShift)

pure(G1)
reset((G1,G2),Cont,Term) ≡ G1,reset(G2,Cont,Term)

(ResetConj)

pure(C)

reset((C->G1;G2),Cont,Term) ≡
(C->reset(G1,Cont,Term);reset(G2,Cont,Term))

(ResetCond)

((C->G1;G2),G3) ≡ (C->G1,G3;G2,G3) (Distributivity)

Fig. 3. Simplification Rules of Delimited Control

Figure 3 formulates these as inference rules2 of the judgement G ≡ G′. The
interpretation of this judgement is that G and G′ are denotationally equivalent.
Even though the judgement is in principle symmetric, we have oriented the sides
in all inference rules in such a fashion that the more complex form is in the left
and the simpler on the right. This way the inference rules can be easily used as
left-to-right rewrite rules. We also proved the correctness of the rules in operational
semantics settings.

Four of the rules allow us to narrow the scope of a reset/3 or make it disappear
altogether. Rule (ResetPure) states that a reset/3 around a pure goal G can be
dropped. A pure goal is one that does not call shift/1. Formally, we can define
this property in terms of the meta-interpreter as follows:

pure(G) ⇔ @ T, C : eval(G,shift(T,C))

Examples of pure goals are unifications, calls to reset/3 and user-defined predicates
that are exclusively defined in terms of pure goals.

Rule (ResetShift) captures the interaction between reset and shift in the simple
case where the continuation is a conjunct of the shift/1 call.

Rule (ResetConj) expresses that a reset/3 can be pushed into the second goal
of a conjunction if the first goal is pure. Similarly, Rule (ResetCond) says that
a reset/3 can be be pushed into the branches of a conditional if the condition is
pure.

Finally, the fifth rule is not strictly speaking related to delimited control; never-
theless, it is important for our transformation. This rule expresses the distributivity
of conjunction with respect to conditionals.

2 Inference rules provide a vertical layout for Horn clauses, with a consequence below the bar and
optional antecedents above the bar. Variables are implicitly quantified like in Prolog.
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3.3 Transformation Example

The aim of the transformation is to eliminate the nested use of reset/3 and the
delegation with shift/1 of unknown commands from the first to the second handler.
Because the handlers are recursive, we follow the usual transformation strategy for
recursive predicates:

1. Unfolding: We unfold the nested handlers to expose opportunities for simpli-
fication.

2. Local transformation: We improve one level of the recursion using the trans-
formation rules, constant propagation and more unfolding.

3. Folding: We massage the recursive calls into variants of the toplevel call to
tie the knot and distribute the improvement over all levels of the recursion.

We now explain the transformation in detail in terms of our running example.

3.3.1 Unfolding

We start with the toplevel query that uses the modular handlers:
?- run_state( phrase( G, Lin, Lout), Sin, Sout).

Step 1. We abstract over the query with a new predicate query/5.3

query(G,Lin,Lout,Sin,Sout) :- run_state( phrase( G, Lin, Lout), Sin, Sout) .

Then the original query can be rewritten as:
?- query(G,Lin,Lout,Sin,Sout).

Step 2. Now we unfold the State and DCG handlers in the query/5 predicate to
expose opportunities for fusing the handlers:

query(G,Lin,Lout,Sin,Sout) :-
reset(reset(G,Contin,Commandin),

( Contin = 0 -> Lin = Lout
; Commandin = c(E) -> Lin = [E|Lmid], phrase(Contin,Lmid,Lout)
; shift(Commandin),phrase(Contin,Lin,Lout)
)
, Cont, Command),

( Cont = 0 -> Sin = Sout
; Command = get(S) -> S = Sin, run_state(Cont,Sin,Sout)
; Command = put(S) -> run_state(Cont,S,Sout)
; shift(Command), run_state(Cont,Sin,Sout)).

3.3.2 Local Transformation

Now we simplify the unfolded handler code. This comprises a series of steps that
simplify the goal arguments of the reset/3 calls.

3 We highlight each time in gray the code that changes in the next step.
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Step 3. Because reset/3 is pure, Rule (ResetConj) can flatten the nested reset/3.

query(G,Lin,Lout,Sin,Sout) :-
reset(G,Contin,Commandin),
reset(( Contin = 0 -> Lin = Lout

; Commandin = c(E) -> Lin = [E|Lmid], phrase(Contin,Lmid,Lout)

; shift(Commandin),phrase(Contin,Lin,Lout)), Cont, Command) ,
( Cont = 0 -> Sin = Sout
; Command = get(S) -> S = Sin, run_state(Cont,Sin,Sout)
; Command = put(S) -> run_state(Cont,S,Sout)
; shift(Command), run_state(Cont,Sin,Sout)).

Step 4. Rule (ResetCond) simplifies the second reset/3 as the unification con-
ditions are pure.

query(G,Lin,Lout,Sin,Sout) :-
reset(G,Contin,Commandin),
( Contin = 0 -> reset(( Lin = Lout) ,Cont,Command)
; Commandin=c(E)-> reset(( Lin=[E|Lmid], phrase(Contin,Lmid,Lout)),Cont,Command)
; reset((shift(Commandin),phrase(Contin,Lin,Lout)), Cont, Command)
),
( Cont =0 -> Sin = Sout ; Command = get(S) -> S = Sin, run_state(Cont,Sin,Sout)
; Command = put(S) -> run_state(Cont,S,Sout)
; shift(Command), run_state(Cont,Sin,Sout)).

Step 5. Now Rule (ResetPure) applies to the second reset/3.

query(G,Lin,Lout,Sin,Sout) :-
reset(G,Contin,Commandin),
( Contin = 0 -> Lin=Lout, Cont = 0 , Command = 0
; Commandin=c(E)-> reset(( Lin = [E|Lmid] ,phrase(Contin,Lmid,Lout)),Cont,Command)
; reset((shift(Commandin),phrase(Contin,Lin,Lout)), Cont, Command) ),
( Cont = 0 -> Sin = Sout
; Command = get(S) -> S = Sin, run_state(Cont,Sin,Sout)
; Command = put(S) -> run_state(Cont,S,Sout)
; shift(Command), run_state(Cont,Sin,Sout)).

Step 6. Rule (ResetConj) simplifies the second reset/3.

query(G,Lin,Lout,Sin,Sout) :-
reset(G,Contin,Commandin),
( Contin = 0 -> Lin=Lout, Cont = 0 , Command = 0
; Commandin=c(E)-> Lin = [E|Lmid], reset(phrase(Contin,Lmid,Lout),Cont,Command)
; reset((shift(Commandin),phrase(Contin,Lin,Lout)), Cont, Command)) ,
( Cont = 0 -> Sin = Sout
; Command = get(S) -> S = Sin, run_state(Cont,Sin,Sout)
; Command = put(S) -> run_state(Cont,S,Sout)
; shift(Command), run_state(Cont,Sin,Sout)).

Step 7. Rule (ResetShift) eliminates the last reset/3 call.
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query(G,Lin,Lout,Sin,Sout) :-
reset(G,Contin,Commandin),
( Contin = 0 -> Lin=Lout, Cont = 0 , Command = 0
; Commandin=c(E)-> Lin = [E|Lmid], reset(phrase(Contin,Lmid,Lout),Cont,Command)
; Cont = phrase(Contin,Lin,Lout), Commandin = Command ),
( Cont = 0 -> Sin = Sout

; Command = get(S) -> S = Sin, run_state(Cont,Sin,Sout)

; Command = put(S) -> run_state(Cont,S,Sout)

; shift(Command), run_state(Cont,Sin,Sout)) .

Step 8. We now use Rule (Distributivity) to move the second conditional into the
branches of the first one. For the sake of brevity, we refer to the second conditional
as 〈StateConditional〉.

query(G,Lin,Lout,Sin,Sout) :-
reset(G,Contin,Commandin),
( Contin = 0 -> Lin=Lout, Cont = 0 , Command = 0,〈StateConditional〉)
; Commandin=c(E)->

Lin = [E|Lmid],reset(phrase(Contin,Lmid,Lout),Cont,Command),〈StateConditional〉
; Cont = phrase(Contin,Lin,Lout), Commandin = Command,〈StateConditional〉) .

Step 9. With constant propagation we propagate Cont = 0 in the first branch. Then
we simplify the 〈StateConditional〉 conditional with the statically known condition.
In the same fashion, we simplify the last branch using constant propagation on
Cont = phrase(Contin,Lin,Lout) and Commandin = Command.

query(G,Lin,Lout,Sin,Sout) :-
reset(G,Contin,Commandin),
( Contin = 0 -> Lin=Lout, Cont = 0 , Command = 0, Sin = Sout),
; Commandin=c(E)->

Lin = [E|Lmid], reset(phrase(Contin,Lmid,Lout),Cont,Command),〈StateConditional〉
; Commandin = get(S) -> S = Sin, run_state(phrase(Contin,Lin,Lout),Sin,Sout)
; Commandin = put(S) -> run_state(phrase(Contin,Lin,Lout),S,Sout)
; shift(Commandin), run_state(phrase(Contin,Lin,Lout),Sin,Sout)
).

3.3.3 Folding Phase

Step 10. In the second branch, we can fold the state handler.

query(G,Lin,Lout,Sin,Sout) :-
reset(G,Contin,Commandin),
( Contin = 0 -> Lin = Lout, Sin = Sout),
; Commandin=c(E) -> Lin = [E|Lmid], run_state(phrase(Contin,Lmid,Lout),Sin,Sout)

; Commandin =get(S) -> S = Sin, run_state(phrase(Contin,Lin,Lout),Sin,Sout)

; Commandin =put(S) -> run_state(phrase(Contin,Lin,Lout),S,Sout)

; shift(Commandin), run_state(phrase(Contin,Lin,Lout),Sin,Sout)
).
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Step 11. Finally, we fold the four occurrences of the composite handlers run_
state(phrase(_,_,_),_,_) to obtain a tight and tidy definition of query/5.

query(G,Lin,Lout,Sin,Sout) :-
reset(G,Contin,Commandin),
( Contin = 0 -> Lin = Lout, Sin = Sout),
; Commandin = c(E) -> Lin = [E|Lmid], query(Contin,Lmid,Lout,Sin,Sout)
; Commandin = get(S) -> S = Sin, query(Contin,Lin,Lout,Sin,Sout)
; Commandin = put(S) -> query(Contin,Lin,Lout,S,Sout)
; shift(Commandin), query(Contin,Lin,Lout,Sin,Sout)
).

3.3.4 Preliminary Results

Figure 4 shows that the monolithic handler is about 1.4 times faster than the
composition of two modular handlers, and Figure 5 shows that a monolithic handler
is about 2 times faster than the composition of three modular handlers. Moreover,
there are more cases that show that the performance gain can reach up to 4×
times faster when using the transformed monolithic handler in comparison with
the composite handler.

4 Open Issues

The main open issue of this project is to develop a correct and terminating algorithm
to automate the transformation using the rules we developed. We are considering
either an adhoc heuristic-based approach or a more systematic embedding in a
partial evaluation framework (Lloyd and Shepherdson 1991).

We are currently leaning towards the first option. Starting by developing a higher
abstract syntax to define handlers in order to restrict the programmer to define
handlers in a transformable fashion. We are aiming to do program analysis to know
the positions of the shifts and nested resets to ease the process of the automation.

In some handlers, there are multiple shifts within the same branch of a handler.
This can occur due to a recursive predicate call within the branch of the handler.
Capturing the recursive pattern of these predicates and transforming them to elim-
inate the delimited control code within them is still another open issue. However,
conjunctive partial deduction (CPD) approach of De Schreye et al. (1999) seems
to be a a promising solution. It has recently been extended by De Schreye and
Nys (2014) to cope with linear recursion patterns.
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One other solution that we are currently investigating for capturing recursive
patterns is a technique developed by Pettorossi and Proietti (2002). It adds a list
to the inputs arguments of the recursive predicate. Then it puts the calls needed
to be executed after the recursion is finished.

This technique is close to explicit continuation-passing style (CPS), similar to
BinProlog’s binarization (Tarau 2012). With the program in CPS form the delimited
control primitives can be expressed in terms of plain Prolog and optimized with
partial evaluation. The downside is that CPS is rather indiscriminate and introduces
lots of meta-calls.

In the future, we are aiming to eliminate all delimited control code from a program
by using these transformation techniques.
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