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Abstract

Answer-Set Programming (ASP) is a successful branch of the logic programming paradigm
with many applications in modelling and solving of NP-hard problems. Combinatorial
problems are the main application domain of ASP and it seems unsuitable for serving as
a programming language for interactive applications. However, we conjecture that there
is no theoretical obstacle for using ASP to that end. As witnessed by functional pro-
gramming, it can be useful to use a declarative paradigm for creating applications. In
this work we explore possibilities, benefits, and drawbacks, of programming an interactive
application in ASP. We find that this is hard mainly for the following reasons: managing
change over time, interaction with the user, generating output that is ordered (i.e., not a
set), handling persistence of certain data, and ensuring efficiency. ASP and related fields
provide powerful techniques for representing actions and change, executing programs with
respect to external environments, and processing external events. Even if the full power
of these techniques is not required to build an interactive application, combining them
is necessary, and putting together these concepts in a practical framework is challenging.
We realize such an integration in a framework we call Answer Set Application Program-
ming framework which is based on the HEX language and features syntactic shortcuts
to make application programming more intuitive. We describe design decisions and dis-
cuss alternative possibilities. Our sample application is a playable version of Tetris which
demonstrates that ASP can be used as a general-purpose programming-language.
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Fig. 1. ASPeTris screenshots: game and main menu (Highscores entry is selected).

1 Introduction

Answer-Set Programming (ASP) is a successful approach for modelling and solv-

ing NP-hard problems. We propose a framework for general-purpose application-

programming based on ASP and realize Tetris as a case study.

Using ASP instead of imperative languages like Java would likely be met with

skepticism. We think this is mainly due to the following reasons: firstly, ASP is

lacking features such as input/output facilities and programming libraries; secondly,

Prolog aimed for the same but it set a negative example since it forced programmers

to think in terms of the evaluation underlying Prolog (e.g., using red cuts). The

resulting application programs cannot be understood in a declarative way since

their (temporal) behavior is based on the Prolog search/evaluation algorithm.

We therefore consider it paramount to maintain declarativity when aiming to

broaden the scope of ASP. In this work we realize a small application, the game

Tetris, to investigate from a practicioner’s perspective how far ASP can serve as a

basis for application programming. We identified several critical points: the inter-

action of real time, logical time (steps) and state of a program, external effects that

influence ASP reasoning, and causing change in the outside world.

We present a theoretical framework to achieve the above and we report on an

implementation of this framework. The feasibility of our approach is demonstrated

by ASPeTris, an interactive and playable implementation of Tetris which features

editing the player name, playing the game, interrupting and continuing a game

later, and a persistent high score list. Figure 1 shows two screenshots of ASPeTris.

Our Answer-Set Application-Programming framework (ASAP) allows declara-

tive reasoning between two logical time points: the closest time point in the past

(called prev) and the closest time point in the future (called next). ASAP enables

interaction with the real world through external atoms and actions, similar as in

acthex (Basol et al. 2010). Program states that change over time are represented

by fluents similar as in ASP planning (Gelfond and Lifschitz 1993). Logical time
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Fig. 2. Real time and declarative reasoning in the ASAP framework.

and real time are coupled via events. An event, such as keyboard activity or a

timer, triggers evaluation of ASP semantics to determine the effect of the event.

An ASAP program defines the reaction of the application to an event in terms of

new fluent values and actions to be executed as a consequence of the event, such

as drawing the user interface or starting a timer. Actions have an execution order

and ASAP provides specific syntax for comfortably defining that order. After ex-

ecuting actions, the framework waits for arrival of the next event which triggers

evaluation of ASP semantics anew. Fluent inertia is realized using the encoding of

Lee et al. (2012) which yields a declarative management of changing program state

over time. ASP evaluation requires time itself, therefore we cannot guarantee that

events are handled immediately. However ASAP guarantees that events are handled

in exactly the order they occurred and as soon as possible after all previous events

have been evaluated, similar as in the Event Calculus (Kowalski and Sergot 1986).

The conceptual view of time in ASAP is shown in Figure 2. Real time and logical

time are synchronized via the order of events. Reasoning is based on the previous

logical time point, and actions are executed after computing the next logical time

point. (Events that occur in the meantime are enqueued and processed later.)

This paper contributes a framework for ASP application programming which

features the following concrete solutions: (i) inertial fluents for declarative reason-

ing about program state; (ii) event- and action-based interaction with the outside

world; (iii) a syntax to specify the execution order of actions; (iv) out-of-the box

persistence for selected fluents; (v) a working prototype implementation of the

framework in hex and a playable version of Tetris.1 We found that Tetris is a

demanding application scenario which points to necessary improvements of ASP

syntax, software engineering tools, and solvers. At the same time our realization

of Tetris shows that the declarative nature of ASP can be exploited as a strength

in application programming. We believe that this work can be beneficial both for

application programming and for ASP.

We give preliminaries in Section 2, discuss fluents and time in Section 3, events in

Section 4, actions in Section 5, persistence and the overall framework in Section 6.

We discuss related work in Section 7 and conclude with Section 8.

1 Source code is available at https://bitbucket.org/peterschueller/asap-aspetris .

https://bitbucket.org/peterschueller/asap-aspetris
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2 Preliminaries

Answer Set Programming (ASP). We assume familiarity with ASP (Gelfond

and Lifschitz 1988; Lifschitz 2008; Gebser et al. 2012) and give only brief preminaries

of logic programs with (uninterpreted) function symbols and aggregates and a brief

overview of hex. A logic program consists of rules of the form

α1 ∨ · · · ∨ αk←β1, . . . , βn,not βn+1, . . . ,not βm

where αi and βi are head and body atoms, respectively. Atoms can contain con-

stants, variables, and function terms, and a program must allow for a finite instan-

tiation. Details of these restrictions and syntax/semantics of ASP are described

in the ASP-Core-2 standard (Calimeri et al. 2012) of which we will mainly use

aggregates. An aggregate literal can occur in the body of a rule; it accumulates

truth values from a set of atoms, e.g., 2 = #count { X : p(X) } is true in an

answer set candidate I iff the extension of p in I contains exactly 2 elements. hex

(Eiter et al. 2006; Eiter et al. 2015) extends ASP with external atoms of the form

&atom[p1, . . . , pn](q1, . . . , qm) where atom is the name of the external atom, and

pi and qj are lists of input and output terms. We denote by AS(P, {f, f ′}) the

set of answer sets of a program P which is defined using its Herbrand universe,

ground instantiation, the FLP-reduct (Faber et al. 2011) which intuitively reduces

a program using assumptions in an answer set candidate, and oracle functions f , f ′

of form f&atom(I, p1, . . . , pn, q1, . . . , qm)∈{0, 1} to represent semantics of external

atoms. For example &setminus[a, b](X) could have its oracle function defined as

f&setminus(I, a, b,X) = 1 for all X such that a(X)∈ I and b(X) /∈ I.

Tetris. Tetris is played in a grid that is initially empty. A piece is a set of four stones

arranged such that they are connected by adjacency. Pieces are created randomly

and appear on the top center of the grid. They fall down with a certain speed that

increases with the score. The user can rotate pieces by 90 degree, or move them left

or right by one stone. If a piece hits the bottom or another stone then it becomes

fixed and the next random piece starts to fall. If a grid row becomes filled, these

stones are removed, stones above move down by one row and the score increases.

The game ends when the new random piece hits stones before falling down.

3 Application State and Time: Fluents

Applications that interact with users are usually driven by the input from the user.

If the user clicks the menu button, the menu should appear, if the user clicks on exit,

the program stops, if the user gives no input, then the application should remain

in its current state (or the state evolves in a pre-defined manner). Altogether, the

behaviour of an application is driven not only by a sequence of inputs but also

by the passage of time. Hence managing the change of state over time is one of

the most important concepts that distinguishes classical usage of ASP for solving

combinatorial problems from its usage for programming applications. Fortunately,

ASP has been applied to perform reasoning with time, in particular (i) in planning

(e.g., (Gelfond and Lifschitz 1993)), where we reason about a hypothetical sequence
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of possible future worlds; and (ii) in stream reasoning (e.g., (Gebser et al. 2012)),

where we reason about a possibly infinite sequence of data.

In an interactive application, reasoning is done on-line while the application is

running and while future input is not yet known, which is similar to stream rea-

soning. At the same time, applications mostly have one deterministic future, and

running an application means to determine what changes from the present to the

future. This is similar to executing an action in planning and it also requires to

solve the frame problem, i.e., the problem of what does not change.

We next combine notions of planning and stream reasoning to obtain a declar-

ative treatment of time and change in ASP applications. We use inertial fluents

(McCarthy and Hayes 1969) for modelling the state of the application, and we

limit the number of situations of interest to just two: the closest point in the past,

and the closest point in the future. We call these two time points previous situation

and next situation. In the (real) time that passes between the previous and next

situation, we evaluate ASP semantics to determine what happens next. Events that

happened during evaluation are enqueued for later processing (see next section).

To work with fluents we define fluent atoms that are of the form

fluent=v@prev or fluent=v@next (1)

where fluent is the name of the fluent, v is its value, and prev/next refer to the

situation of interest. Both v and fluent may contain terms with uninterpreted

functions, constants, and variables. Fluent atoms can be used in the head or the

body of rules. A fluent and its initial value is declared using a statement of the form

#initially fluent=v (2)

in the head of a rule, with fluent and v as above.

Example 1

The Tetris game area is defined using a rule with an #initially head:

#initially area(X,Y)=empty :- xcoo(X), ycoo(Y).

where xcoo and ycoo represent x and y coordinates of the game area.

The stones in a falling piece are represented in an atom fallingStone(X,Y,S)

with coordinates X and Y and stone of type S. If a piece cannot fall further, fixPiece

becomes true and the game area is changed to contain the stones of the falling piece:

area(X,Y)=S@next :- fixPiece, fallingStone(X,Y,S). �

All fluents are inertial: if the value is not changed by any rule, it stays at

the value from the previous situation. This is realized by a rewriting to ordinary

ASP atoms and an inertia encoding inspired by existing ASP planning systems.

A fluent fluent=v@prev is transformed into an atom val(fluent,v,1), similarly

fluent=v@next becomes val(fluent,v,0). The reserved predicate val is used

throughout the program to represent the values of fluents, 1 denotes the previ-

ous situation and 0 the next. We decided to use 0 and 1 in this way to allow a

straightforward extension for programs that need to look further into the past with

increasing integers, e.g., 2 would be the situation before 1.

An initialization atom of form #initially fluent=v can only occur in the head
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of a rule and is rewritten to ifluentinit(fluent,v). Initialization and inertia of

fluents is handled by the following rules, inspired by (Lee 2012).

sit(0). sit(1). prevsit(0). (3)

ifluent(F) :- ifluentinit(F,_). (4)

val(F,V,S+1) :- &event[first], ifluentinit(F,V), prevsit(S). (5)

val(F,V,S+1) :- not &event[first], &prevval[F](V,S),

prevsit(S), sit(S+1), ifluent(F). (6)

val(F,V,0) :- not nval(F,V,0), val(F,V,1). (7)

nval(F,V,0) :- not val(F,V,0), val(F,V,1). (8)

:- 2 <= #count { V : val(F,V,S) }, ifluent(F), sit(S). (9)

:- 0 = #count { V : val(F,V,S) }, ifluent(F), sit(S). (10)

Facts (3) define situations of interest: we can access the previous situation’s fluent

values with time point S=1 and in every evaluation of the program we consider two

situations: prev=1 and next=0 (see also Fig. 2). Rule (4) represents which fluents

exist, (5) manages initialization where &event[first] is true in the first evaluation

of semantics (see Algorithm 1). External atom &prevval[F](V,S) provides access

to the value of fluent F in the answer set of the previous evaluation of the program.

If an evaluation yields a fluent value at time point S, in the next evaluation this

fluent value is provided as &prevval[F](V,S) and shifted to time point S+1 using

(6). Inertia is realized using (7) and (8): a value in the past possibly remains like

that in the future, moreover (9) and (10) ensure that each fluents has a single unique

value per situation. This encoding has the advantage that it does not require to

define a fluent domain, which is particularly important for fluents with a practically

infinite domain such as player names and highscores. The encoding relies on the

&prevval[.](.,.) external atom to ‘remember’ the history of fluent values, i.e,

the values f=v@prev. Note that determining the next state f=v’@next with the

help of inertia is realized purely in ASP (without any outside machinery).

Note that the above rules can handle an arbitrary amount of previous situations

by adding situations to the extension of sit and prevsit predicates in (3). In

ASPeTris we did not encounter a need for more than one previous situation.

A natural question is whether all atoms in an ASP application should be fluents.

Similar to the notion of the volatile part of a program in incremental answer set

programming (Gebser et al. 2008) we decided to allow non-fluent atoms that can

be used in reasoning but are not preserved among situations.

In an interactive application we must forget past information, since every point

in time adds new atoms, meaning that eventually atoms with information about the

past occupy all available memory. This is mainly a practical issue which we solve by

using a fixed window of size k = 2. Several more involved aspects of such reasoning

have been analyzed in stream-based reasoning (Gebser et al. 2012; Beck et al. 2015)

and these could be useful for applications, e.g., for deducing a maximum required

window size for certain atoms, or giving each predicate its own fixed windows size.

Regarding the future values of fluents, one can model just the next point in time,
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or several future steps. The latter may allow easier modelling but it is not strictly

necessary, since anything deduced for k steps in the future may be deduced at k− 1

steps in the future by looking back k− 1 steps into the past. We here consider a

minimal setting with a single future time point.

4 External Input: Events

The ASP semantics of the application program are evaluated repeatedly. But how

often should the ASP program be evaluated? In principle, one could evaluate imme-

diately after evaluation of the previous time step finished. This realizes a busy-loop

which is easy to implement but wastes resources. We therefore decided to evaluate

the program only if some event occurred, e.g., a key press or an expired timer.

Conceptually, the only thing happening between the previous and the next situ-

ation is the evaluation of an ASP program to determine the future. This takes time

in practice, therefore a thread collects all events that happen during this time in

an event queue which preserves the order of events.

Events are exposed to the application program through external atoms, so their

occurrence and the properties of an event can be obtained through hex as truth

values. For example, &event["keyboard","special"]("Esc") becomes true if the

‘Esc’ key is pressed on the keyboard. Multiple events may be treated by the same

rules, for example &event["keyboard","normal"](Key) becomes true if any char-

acter or number key is pressed and the key is instantiated in the variable Key.

Example 2

Displaying the name of the player in fluent player and editing that name is achieved

by the following short set of ASP rules,

#initially player="New Player". (11)

@drawTextCentered(P) :- playerName=P@next. (12)

player=New@next :- &event["keyboard","normal"](Key),

player=Old@prev, &concat[Old,Key](New). (13)

player=New@next :- &event["keyboard","special"]("Backspace"),

player=Old@prev, &chop[Old](New). (14)

where (11) declares the fluent, (12) displays it, (13) appends a pressed key to the

fluent’s value, and (14) removes the last character if Backspace is pressed. The

required string operations are realized in external atoms &concat and &chop. �

An important design issue regarding events is the question whether one iteration

should handle a single or multiple events. Handling multiple events at once requires

to process them in a particular order or as if they happened simultaneously. The

former strategy means to represent multiple steps in one evaluation, which would

make application programs more complex. Moreover, we already handle multiple

time steps using repeated evaluation, hence this strategy would introduce redun-

dancy in the framework. The latter possibility creates additional complexity as
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several events potentially compete for what should happen in the program, e.g., to

move the Tetris piece to the right and to the left simultaneously.

While realizing ASPeTris we observed that handling only a single event at a time

greatly simplifies the application program and helps to avoid bugs. Moreover, in

case an event depends on complex conditions, one may be tempted to check these

conditions in the framework and outside of ASP. However, this makes the inter-

face between ASP and the outside world more complex and duplicates reasoning

facilities. We decided that the ASAP framework should provide only basic events,

whereas complex conditions are supposed to be represented in ASP.

5 Executing Actions

The syntax of actions in our framework is inspired by acthex: an action is an atom

preceeded by @ and contains as the last argument a number which is called the

action’s priority. For example, @exit(27,0) states that the program execution

shall end with return code 27 and that the action has priority 0, i.e., it shall be

executed as one of the first actions. Multiple actions in an answer-set are executed

in ascending order of their last argument (ties are broken arbitrarily).

Action ordering is especially important for drawing user interfaces: it makes a

big difference whether a blue rectangle is drawn and then some red text, or if the

red text is drawn first and then some blue rectangle (erasing the text).

We observe from imperative languages that establishing the order in which state-

ments are executed is no problem at all: the execution order is given straight by the

order of statements in the input program. This implicit ordering based on the se-

quence of statements in the code is missing in ASP, because of the guiding principle

of declarativity: to treat programs and many aspects of semantics as (unordered)

sets instead of lists. Because the order of actions is relevant in an application, having

the possibility of ordering actions comfortably makes programs more maintainable

and readable. In functional programming, Monads (Wadler 1995) were introduced

to achieve an ordering of events within a declarative formalism. To the best of our

knowledge, such a mechanism does not exist in ASP.

In the ASAP framework we therefore propose a minor syntactic addition, namely

code blocks enclosed by [ and ] brackets. Actions in these blocks are automatically

ordered in the same order as they appear in the source program, without the need to

explicitly specify their priorities. We consider this syntactic sugar for specifying an

order, although one might say this weakens declarativity. For example, the program
[

@drawTextCentered("ASPeTris Game Menu") :- draw_main_menu.

@drawTextCentered("\n") :- draw_main_menu.

@drawTextCentered("New Game") :- draw_main_menu.

]

draws a main menu consisting of the headline “ASPeTris Game Menu”, followed

by a newline, followed by the menu item “New Game”.

In practice we realize this implicit action priority using a rewriter which trans-

forms this into an ordinary hex program by removing the ‘@’ symbol and adding to
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Fig. 3. Components and data flow in the ASAP framework.

each atom a priority argument. Actions that are not inside square brackets receive

priority 0, and if multiple square brackets occur, then the actions inside are ordered,

but no order is enforced across both brackets, e.g., [ @aa. @bb. ] [ @cc. @dd. ]

is rewritten to aa(0). bb(1). cc(0). dd(1). This guarantees that aa is executed

before bb as well as that cc is executed before dd, but enforces no further ordering.

Timers and Soft Events. In Tetris, pieces are falling from the top to the bottom

without any user interaction, so a timer is required to trigger evaluation of a new

situation. Timers are started using the action @startTimer(name,delay) where

name indicates an identifier for the timer and delay is an integer in milliseconds.

Timers produce events of the form &event[timer](name) which trigger evaluation

of a new situation and can be handled like other events.

In ASPeTris, when the falling piece stops and is fixed in the game area we also

need to handle the elimination of full rows. This intuitively happens sequentially. To

perform both, fixing the piece and eliminating full rows in one time step, requires

an extra copy of the gaming area, however. As an alternative, we introduce soft

events which create a new time step and cause immediate reevaluation of the ASP

program (bypassing all queued events). In our case this allows some separation of

concerns and makes the program easier to write and read (at the potential cost of

losing some declarativity).

6 The Application Execution Framework

An overview of the components of the ASAP framework is given in Figure 3, where

arrows indicate information flow. The ASPeTris game is implemented purely as

an ASP application program (top left component); the ASAP framework itself is

mainly implemented as a Python program (center components) that controls the

ASP evaluation and communicates with the operating system (right).

In addition to the above features, the ASAP framework also provides facilities

for persistence, since this is an important topic for applications. Information is

persistent if it remains known to the application across runs.

As we use fluents in our framework, we chose to realize a selective persistence

for fluents. A declaration of the form ‘#persistent name.’ in the program causes

the code that takes care of &prevval[.](.,.) to store those fluents that match
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Algorithm 1: Core ASAP Algorithm.

input: Answer Set Application Program P (after rewriting, including fluent engine)
1 A← {val(Flu,V al,0) | (Flu, V al) in persistent storage on disk } // can be ∅
2 f&event ← {(first) 7→ 1} // initial event

repeat
4 f&prevval ← {(Flu, V al, 0) 7→ 1 | val(Flu,V al,0) ∈ A}
5 S ← AS(P, {f&prevval , f&event}) // evaluate ASP application program

if S 6= {A′ } then return ”Error: zero or more than one answer set found.”
if @exit∈A′ then return ”Application finished.”
Execute actions in A′ ordered by their last argument.
Store to disk: {(Flu, V al) | val(Flu,V al,0) ∈ A′ and Flu is #persistent }

10 Ev ← next event in queue // waits for next event if queue is empty

11 f&event ← {(Ev) 7→ 1}
12 A← A′

forever

name to disk. The name matches if it matches the complete fluent name, or if the

fluent name is a function term and the name matches the outermost function (for

example ‘#persistent area.’ makes all area(X,Y) fluents persistent).

To restore a serialized state, the ASAP framework initializes &prevval[.](.,.)

with the stored fluent values. In the first situation fluents are then initialized using

these previous values and if none is available, the #initial value of the fluent is

taken. The following rules achieve this when we use them instead of (5).

prevFluent(F) :- &event[first], ifluent(F), &prevval[F](V,0).

val(F,V,1) :- &event[first], prevFluent(F), &prevval[F](V,0).

val(F,V,1) :- &event[first], not prevFluent(F),

ifluentinit(F,V), ifluent(F).

(15)

In ASPeTris we found it useful to make only selected fluents persistent. For

example the highscore list and the player name are persistently stored, however,

the currently active menu item is not persistent (otherwise starting the game would

always select ‘exit’ from the previous run).

This notion of persistence makes it significantly easier to return to previous states

of the application compared with imperative programming. In ASPeTris, simply by

adding persistence of the game field and the score and falling stones, we realized

a ‘Continue Game’ functionality. Note that we do not require explicit reading or

writing of persistence, although using actions to that end might improve efficiency.

Evaluation Algorithm. The core behaviour of the ASAP framework is given by

Algorithm 1. Line 1 loads persistent fluent values from disk. Line 2 prepares the

initial event which causes loading persistence or falling back to initialization values

in the first iteration of the loop using encoding (15).

In the loop, line 4 configures &prevval[.](.,.) to provide fluent values in A to

the next evaluation of P . Line 5 evaluates the program with respect to the prepared

oracle functions for external atoms. We ensure that there is a single answer set (this

check could be replaced by mechanisms for selecting a preferred single answer set

as described in (Fink et al. 2013)). After executing actions from answer set A′ and
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storing persistent fluent values to disk, line 10 obtains the next event from the

queue. If no event is in the queue, this step waits for an event to become available.

Line 11 prepares the oracle function of &event[.](.) for the next iteration and

line 12 stores the answer set as the basis for the next iteration where it will be

communicated to the hex program via line 4. The algorithm loops indefinitely

until the ASP application program yields an @exit action or an error occurs. Note

that other external atoms (such as &concat) can be used but we do not show them

as they are not specific to the ASAP framework.

7 Related Work

This work is related to several important papers in the areas of planning and in-

teracting with an (infinitely) changing world. Therefore we will only give a brief

discussion of some important related work.

Our framework manages program state as fluents and situations as already de-

scribed by McCarthy and Hayes (1969). Planning with ASP was analyzed in several

projects, for example (Gelfond and Lifschitz 1993; Eiter et al. 2004; Lifschitz 2002;

Lee 2012) (we realize fluent inertia based on the last of these papers). Our frame-

work preserves the order of events but not their absolute time, which is similar to

one of the guiding principles of the Event Calculus (Kowalski and Sergot 1986).

The acthex formalism (Basol et al. 2010; Fink et al. 2013) extends hex with ac-

tions and an environment. Actions are extracted from answer sets similar as in our

framework, however acthex immediately repeats semantic evaluation after execut-

ing actions, until no more actions are generated. Actions in our framework can have

implicit execution order using the [ ] notation, while in acthex an explicit assign-

ment of priorities is required. The acthex formalism is designed for programs that

act in the world, driven by their own actions. Different from that, our framework is

driven by outside events and can remain idle between subsequent semantic evalua-

tions. Another difference is that our framework includes mechanisms for managing

inertia and persistence (which requires additional work in acthex).

The oClingo framework and reactive ASP (Gebser et al. 2011) deal with ASP

in the context of reacting to external events. To that end an incremental solving

approach was defined which has a performance advantage over repeated complete

re-evaluation (as done in our framework). Partial incremental evaluation comes

at the price of a modularity condition (Oikarinen and Janhunen 2006) that makes

programming cumbersome. As a result, Online Agent Logic Programming (Cerexhe

et al. 2014) was defined to satisfy modularity automatically at the cost of restricting

use of negation. In ASPeTris we consider efficiency to be future work and concen-

trate on ease of use. Clingo-4 (Gebser et al. 2014) allows to control grounding and

solving using Python. We decided to allow Python and nondeclarative code only

within the boundaries of our framework, i.e., to realize actions and external atoms.

We believe this helps to maintain declarativity and provides sufficient flexibility

for creating applications. Realizing ASAP in Clingo-4 is possible, but requires to

change the program at each time point (e.g., realizing (11)-(14) for editing the

player name in Clingo-4 is challenging). hex as a foundation has the advantage
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that the same program is used for all time points, only oracle functions of external

atoms change (see Alg. 1).

Stream reasoning (Gebser et al. 2012; Beck et al. 2015) focuses on processing

continuous data streams with ASP; the main issue is to limit the amount of data

being processed. The ASAP framework discards all historical information beyond

the previous state, while stream reasoning uses more sophisticated techniques.

Dedalus (Alvaro et al. 2011) is a Datalog framework for modeling distributed,

asynchronous systems, where each atom obtains an additional time argument. Rules

can define truth within a timepoint or one timepoint into the future.

Different from ASPeTris, most ASP research related to games focuses on combi-

natorial problems of generating new game instances (Smith and Mateas 2011) or

solving existing instances (Denecker et al. 2009; Calimeri et al. 2014).

8 Conclusion and Future Work

In this paper we showed that ASP can be used for application programming, an

area with many potential applications. We took inspirations from several existing

areas of ASP and related areas and developed the ASAP framework which captures

application programming and time-dependent interaction in a declarative way.

To demonstrate the feasibility of our approach, we implemented ASAP using

the Python extension of the dlvhex solver, and within ASAP we realized ASPeTris,

an implementation of the well-known game of Tetris. ASPeTris is a fully playable

game: interactive input from the user is processed, the game is drawn, a list of

highscores is persistenly stored, and the player name can be edited interactively.

Our key contribution is a framework for interactive and declarative problem solving.

We furthermore proposed syntactic shortcuts that ease application programming:

ordering actions implicitly by using their order of appearance in the input program,

and an engine for fluents to reason between logical points in time.

The work shown here is only a case study from which we have learned that the

following important issues need to be addressed in the future: (i) the full ASP code is

instantiated and evaluated over and over, which makes ASPeTris slow (2 frames per

second) and could be avoided if the solver would automatically disregard large sets

of irrelevant rules for evaluation; (ii) a declarative concept of modularity should

be integrated into the syntax to ease programming and simultaneously facilitate

automatic optimizations in the solver; (iii) a declarative method for error handling

to catch and treat exceptional cases within ASP itself would be useful; (iv) enabling

usage of nondeterminism within ASAP programs is an open issue; finally (v) a

notion of library functions to avoid ‘reinventing the wheel’ over and over again

(e.g., (Ianni et al. 2004)) and also to integrate existing functionalities written in

imperative programming languages, possibly through the use of external atoms.
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