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Abstract

Declarative programming allows the expression of properties of the desired solution(s), while the
computational task is delegated to a general-purpose algorithm. The freedom from explicit control
is counter-balanced by the difficulty in working out what properties are missing or are incorrectly
expressed, when the solutions do not meet expectations. This can be particularly problematic in the
case of answer set semantics, because the absence of a key constraint/rule could make the difference
between none or thousands of answer sets, rather than the intended one (or handful). The debugging
task then comprises adding or deleting conditions on the right hand sides of existing rules or, more
far-reaching, adding or deleting whole rules. The contribution of this paper is to show how inductive
logic programming (ILP) along with examples of (un)desirable properties of answer sets can be used
to revise the original program semi-automatically so that it satisfies the stated properties, in effect
providing debugging-by-example for programs under answer set semantics.
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1 Introduction

Answer Set Programming (ASP) is a declarative programming paradigm for logic pro-
grams under answer set semantics. Like all declarative paradigms it has the advantage of
describing the constraints and the solutions rather than the writing of an algorithm to find
solutions to a problem. In recent years we have seen the rise of ASP applications1. As
with all programming languages, initial programs contain bugs that need to be eradicated.

1 In 2009, LPNMR (Erdem et al. 2009) had a special track on successful applications of ASP.



2 T.Li, M.De Vos, J.A.Padget, K. Satoh, T. Balke

While syntactic errors can easily be picked up by the compiler, interpreter or solver, logi-
cal errors are harder to spot and to debug. For imperative languages, debugger tools assist
the programmer in finding the source of the bug. In declarative programming, the flow of
the program is not necessarily known by the programmer (unless he or she is intimately
familiar with the implementation of the solver and its many flags) and probably should not,
to be in keeping with the declarative philosophy.

With the development of applications in ASP, the need for support tools arises. In im-
perative languages, the developer is often supported by debugging tools and integrated
development environments. Following the same approach, the first debugging tool was
introduced by Brain et al. (2005). Since then, new debugging techniques have been put
forward, which range from visualisation tools (Calimeri et al. 2009; Cliffe et al. 2008; K-
loimüllner et al. 2013), through meta-language extensions (Gebser et al. 2009) to idealised
theoretical models (Denecker and Ternovska 2008). In our opinion Pührer’s (Oetsch et al.
2011) stepping technique is the most practical approach. It allows the programmer to select
at each choice point which atom(s) should be added to the current candidate answer sets.
The tool will then update the candidate with the atoms become true/false as a consequence
of this choice. It offers the closest resemblance to the debugging techniques used in imper-
ative languages, so programmers might be more familiar with this approach. Nevertheless,
it requires the user to step through the computation of the answer set which causes a cog-
nitive overhead, which ideally should be avoided. It also reveals the procedural aspect of
the answer set computation. Another promising approach is that by Mikitiuk et al. (2007),
which uses a translation from logic-program rules to natural language in order to detect
program errors more easily.

In this paper we propose a debugging technique for normal logic programs under an-
swer set semantics, based on inductive logic programming. By allowing the programmer
to specify those features that should appear in an answer set (positive examples) and those
that should not appear in any answer set (negative examples), the inductive logic program
can suggest revisions to the existing answer set program such that the positive examples
feature in at least one answer set of the revised program, while none exhibit the negative
examples. The implementation of the theory revision is done in ASP using abductive logic
programming techniques.

The rest of the paper is organised as follows: In Section 2 we provide brief introduction
to answer sets programming before defining the debugging task for answer set programs.
In Section 3 we start with an intuitive description of our debugging approach (Section 3.1).
The most important component – revision tuples – of the debugging process is elaborated
in Section 3.2. After describing the process formally (Section 3.3), we present its imple-
mentation based on Inductive Logic Programming (Section 3.4). We conclude this paper
with a discussion of the related and future work.

2 Bugs in Answer Set Programming

2.1 Answer Set Programming

The basic component of a normal ASP program is an atom or predicate e.g. r(X, Y) denotes
XrY . X and Y are variables which can be grounded with constants. For this paper we
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will assume there are no function symbols with a positive arity. Each ground atom can
be assigned the truth value true or false. ASP adopts negation as failure to compute the
negation of an atom, i.e. not a is true if there is no evidence to prove a in the current
program. Literals are atoms a or negated atoms not a.

A normal logic programP is a conjunction of rules r of the general form: a :− b1, ..., bm,
not c1, ...,not cn. where r ∈ P , and a, bi and cj are atoms from a set of atoms A. Intu-
itively, this means if all atoms bi are known/true and no atom cj is known/true, then a must
be known/true. a is the head part of the rule head(r) = a , while bi and not cj are body parts
of the rule body(r) = {b1, ..., bm,not c1, ...,not cn}. A rule is a fact rule if body(r) = ∅
or a constraint rule if head(r) = ∅, indicating that no solution should be able to satisfy the
body.

The finite set of all constants that appears in the program P is referred as the Herbrand
universe, denoted UP . Using the Herbrand universe, we can ground the entire program.
Each rule is replaced by its grounded instances, which can be obtained by replacing each
variable symbol by an element of UP . The ground program, denoted ground(P ), is the
union of all ground instances of the rules in P . The set of all atoms grounded over the
Herbrand universe of a program is called the Herbrand base, denoted by BP . These are
exactly those atoms that will appear in the grounded program.

An interpretation is a subset of the Herbrand base. Those atoms that are part of the
interpretation are considered true while the others are false through negation as failure. An
interpretation is a model iff for each rule holds that the head is true whenever the body is
true. The model M is minimal if no other model N exists that is a subset of M (N 6⊆M ).

The semantics of an ASP program P is defined in terms of answer sets, i.e. assignments
of true and false to all atoms in the program that satisfy the rules in a minimal and consistent
fashion. Let P be a program. The Gelfond-Lifschitz transformation of ground(P ) w.r.t S,
a set of ground atoms, is the program ground(P )S containing the rules a :− B such that
a :− B,not C ∈ ground(P ) with C ∩ S = ∅, and B and C are sets of atoms.
A set of ground atoms S ⊆ BP is an answer set of P iff S is the minimal model of
ground(P )S . A program P may have zero or more answer sets, and ΠP denotes all the
possible answer sets of P .

2.2 Debugging ASP programs

In some cases, the obtained answer sets in ΠP might not be consistent with our expectation,
although they satisfy all the current rules of the program. In other words, there is a bug.
Thus we need to track back to revise the program, in order to produce the expected results
only. First of all, we need a way to represent the goal of debugging, i.e. what we expect
the program is able to produce or not. The representation needs to be accessible for human
inspection, but also be compatible with the semantics of ASP. Therefore, we use sets of
ground literals to indicate desirable and undesirable properties of a program. For instance,
we use the atom state(X, Y, N) to denote that the square on row X and column Y in a
Sudoku puzzle has value N. Now if we want to express that it is desirable a particular
square has a certain value, or avoids having certain values, such expectations can be directly
captured by ground literals of state(X, Y, N).

By expressing a desirable or undesirable property using a set of ground literals, we can
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define the goals of debugging an ASP program. These goals guide the debugging process to
produce necessary revisions for the original program. We also expect the revised program
to be as close as possible to the original, so we use a cost function to measure the difference
between the original and revised program. An ASP debugging task is guided by a set of
literals that can be used to revise the program. A revision alternative for a program can only
use these literals to add to or delete from existing rules, create new rules or delete entire
existing rules.

Definition 1 (ASP Debugging Task)

A logic program debugging task is denoted as a tuple 〈P,Lit,Φ,Ψ, cost〉 where P is a
normal logic program, where Lit ⊆ BP is the set of literals that can be used for revision,
Φ,Ψ ⊆ 2BP∪not BP are sets of desirable and undesirable properties of P respectively,
such that Φ ∩ Ψ = ∅. The cost function computes a difference metric between two logic
programs. A debugging task is valid iff: 6 ∃I ∈ ΠP : ∀φ ∈ Φ, I |= φ, or ∃ψ ∈ Ψ : ∃I ∈
ΠP , I |= ψ.
A program P ′ is a revised alternative for P if:
• ∀r′ : A :−B,not C ∈ P ′ : ∃r : A :−B′,not C ′ ∈ P : B \ B′ ⊆ Lit,B′ \ B ⊆
Lit, C \ C ′ ⊆ Lit, C ′ \ C ⊆ Lit or A ∪B ∪ C ⊆ Lit
• ∀r : A :−B,not C ∈ P : ∃r′ : A :−B′,not C ′ ∈ P ′ : B \ B′ ⊆ Lit,B′ \ B ⊆
Lit, C \ C ′ ⊆ Lit, C ′ \ C ⊆ Lit or A ∪B ∪ C ⊆ Lit

Let RP be the set of all alternatives to P . A revised program P ′ ∈ RP is a solution to
the task, iff:

(i) P ′ ∈ argmin{cost(P, P ′′) : P ′′ ∈ RP },
(ii) ∃I ∈ ΠP ′ : ∀φ ∈ Φ, I |= φ,

(iii) ∀ψ ∈ Ψ : ∀I ∈ ΠP ′ , I 6|= ψ.

Given a revised rule r′ of the revised program P ′, comprising head literals A, positive
body literals B and negative body literals not C there is a corresponding rule r in the
original program P , comprising head literals A, positive body literals B′ and negative
body literals not C ′ where the new added literals to B′(or C ′) or removed literals from
B′(or C ′) must be in the set Lit. Conversely, given a rule r in the original program P ,
comprising head literalsA, positive body literalsB and negative body literals not C, there
is a corresponding rule r′ of the revised program P ′ comprising head literals A, positive
body literals B′ and negative body literals not C ′, where the new added literals to B (or
C) or removed literals from B(or C ′) must be in the set Lit.

Thus, the revised program P ′ is a debugged program in terms of the specified properties.
As described in the definition, the purpose of debugging an ASP program is to produce a
revised program P ′, which is able to produce at least one answer set with the all specified
desirable literals Φ present and none of the answer sets contain any undesirable literals in
Ψ. Intuitively, the program P ′ eliminates all the undesirable properties while preserving
the desirable ones. Additionally, the revised program P ′ has minimal difference with the
original one, as measured by the cost function. A detailed example of debugging a program
is given in Section 3.5.
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3 Debugging ASP programs with ILP

3.1 Overview

Given a normal logic program P , and desirable and undesirable properties Φ and Ψ, the
debugging task is to revise P to satisfy the specified properties, that is, the revised program
P ′ can produce at least one answer set satisfying all properties in Φ while no answer set
contains any component in Ψ. In order to obtain such a solution, we first need to compute
all the possible changes we could make to P , which includes adding/removing a literal
to/from a rule, or adding or deleting a rule all together. Given a set of literals Lit, we
provide structural and content specifications (called mode declarations: see Section 3.2)
of the rules that can be constructed with Lit, which determine the learning space for the
alternatives to the rules currently specified in the program P . By encoding the properties
Φ and Ψ as constraints, the debugging task can be converted into a boolean satisfiability
problem (SAT) and solved by existing techniques. In this paper, we employ Inductive Logic
Programming.

Inductive Logic Programming (ILP) (Muggleton 1995) is a machine learning technique
used to obtain logic theories by means of generalising (positive and negative) examples
with respect to a prior base theory. In this paper we are interested in the revision of logic
programs in light of desirable and undesirable properties. We want to support the synthe-
sis of new rules and the deletion or revision of existing ones by means of examples. A
positive (negative) example in this context is a collection of ground literals that represents
(un)desirable properties for the debugging task. The task then is not learning a new theory,
but rather revising an existing one. The space of possible solutions, i.e the revised theories,
needs to be well-defined to make the search space as small as possible. This is achieved
by a so-called “language bias”. Only theories satisfying this bias can be learned. Mode
declarations (Muggleton 1995) are one way of specifying this language bias, determining
which literals are allowed in the head and body of the rules of the theory. In this paper,
we also employ mode declarations to constrain the structure of rules, and we encode mode
declarations as revision tuples (details are given in Section 3.2), which represent all revi-
sion operations we could apply to a program to derive a debugged program satisfying the
language bias.

In our system, users are firstly prompted to provide examples characterising properties,
and a set of (head and body) literals, from which mode declarations are generated to, in
turn, produce all revision tuples. The ILP debugger then selects the revision tuples that are
able to derive the debugged program that satisfies the stated properties. It is considered
preferable (Corapi et al. 2011) that a revised program should be as similar to the origi-
nal one as possible. This suits the purpose of debugging while maintaining, as much as
possible, the aims and design of the program being revised. One measure of minimality,
similar to (Wogulis and Pazzani 1993), can be defined in terms of the number of revision
operations. Revision operations are: (i) deleting a rule (i.e. removing an existing rule), (i-
i) adding a rule (i.e. forming a new rule), and (iii) adding or deleting body elements (i.e.
revising an existing rule). We define a cost function cost(P, P ′) to determine the cost of
revising program P to P ′.

The revision process can be applied repeatedly, but the results at each step depend on
the set of (un)desired literals that are specified and it is important to note that the revision
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process is non-monotonic. Specifically, P R1−→ P ′ R2−→ P ′′ may not result in the same
program as P R2−→ P ′ R1−→ P ′′. Thus for incremental revision, the (un)desired literals must
be accumulated to ensure that revisions made at one step are not undone at another. This
iterative process is driven by the programmer, when she finds more issues with the program
she is debugging. At each revision step all the desired and undesired literals are taken into
account.

3.2 Mode Declaration and Revision Tuples

In the definition of the ASP debugging task (Definition 1) we defined revision alterna-
tives for a given program and set of literals. In ILP, this is determined by means of mode
declarations.

Definition 2 (Mode Declaration)
A mode declaration is a tuple of the form 〈id, pre(l), var(l)〉 with l ∈ Lit, Lit a set of
literals and id the unique label of a mode declaration. pre(l) is the predicate associated
with the literal l, var(l) the associated variables.
Lit can be divided into head literals Lith and body literals Litb, such that Lit = Lith ∪
Litb. For a set of mode declarations M , we have head mode declarations Mh = {m|m =

〈id, pre(l), var(l)〉, l ∈ Lith}, and body mode declarationsM b = {m|m = 〈id, pre(l), var
(l)〉, l ∈ Litb}.

We next define literal compatibility, where a literal might be a constituent of a logic
program. Consequently, we define rule compatibility in terms of literal compatibility. Thus,
given a set of literals compatible with M , a set of compatible rules can be formed to derive
a constrained search space for a debugging task.

Definition 3 (Literal Compatibility)
Given a mode declaration m, a literal l′ is compatible with m iff (i) l′ has the predicate
defined in pre(l) of m, and (ii) l′ has the variables in var(l) of m.

Definition 4 (Rule Compatibility)
Given a rule r formed by a head literal h and several body literals bi: h ← b0, . . . , bn, the
rule r is compatible with the mode declarations M iff: (i) there is a head mode declaration
m ∈Mh compatible with h, and (ii) there is a body mode declarationm ∈M b compatible
with bi, i ∈ [0, n].

We have described the purpose of mode declarations in the revision process but to realize
a computational solution, we need a representation. That is the purpose of this section and
as such, it is just a technical explanation of the means to synthesize the revisions of the rules
of a given set of literals. The revision of a rule takes one of two forms: (i) specialization:
in which a literal is added to the body, thus adding a constraint or (ii) generalization: in
which a literal is removed from the body, thus removing a constraint. In order to guide
this process, we use mode declarations that constrain the search space and lead to the
construction of revision tuples rev that describe specific rule revisions, i.e. following a
revision tuple, a rule can be revised to be another. One or more revision tuples comprise
the final solution to the debugging task in the later sections.
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The key to forming revision tuples is to generate them for all possible revisions that
could be applied to the rules of a program. A deletion operation is quite simple, but addi-
tion is more complicated, because we need to consider not only which literal to add, but
also the relation between existing variables and those carried by the new literal. Each pos-
sible relation may result in different rule structures. To operationalise this process, bound
variable tuples, denoted Ξh

b , are defined over a pair of head h and body literal b, where
each element of the tuple corresponds to a body variable and collects the indices of head
variables whose type is the same as the body variable. For instance, suppose we add a
new body literal b to a rule with the head literal h, we have var(h) = 〈P1, P2, Q1〉 and
var(b) = 〈P3, Q2〉, such that P1, P2 and P3 are of one type and Q1 and Q2 are of another.
The corresponding Ξh

b is then 〈〈0, 1〉, 〈2〉〉 in which the first inner tuple is a collection of
head variable indexes for P3 and the second for Q2. If there is no related variables between
the head literal and the new body literal, then the Ξh

b is null.

Definition 5 (Revision Tuple)
A revision tuple rev is the representation of a revision operation in respect of a particular
rule: rev = 〈rId,Θ, cost〉, where rId is the unique identifier of the rule in a program. Θ

denotes the structure of the revised rule. cost is the metric associated with each revision
operation. By default, cost is 1 unit. There are two forms of Θ, defining addition and
deletion operations, respectively:
1. Θ = 〈h!id, b!id, Ξh

b 〉, where h ∈ Mh, b ∈ M b and Ξh
b is the bound variable tuple. A

revision tuple rev with such Θ implies an addition operation which extends the rule with
a new body literal b in terms of Ξh

b .
2. Θ = 〈h!id, i〉 where h ∈ Mh and i is the index of an existing body. A revision tuple
rev with such Θ implies a deletion operation to remove the ith body literal.
A set of revision tuples is denoted by R. The relation P R→ P ′ indicates a program P is
revised to P ′ by applying revision tuples inR. For now, the cost of a set of revision tuples
R is determined by the sum of the cost of each individual tuple in the set.

The revision tuples express all applicable revisions to the current program. As we em-
ploy ASP to implement the whole procedure, we translate revision tuples to corresponding
ASP facts. Concrete examples of revision tuples can be found in the case study in Sec-
tion 3.5. For instance, in line 32 of Fig.2, the revision tuple is encoded as rev(1, (hNull,

bEqNeg, null), 1), denoting that a new body literal with id bEqNeg should be added to
rule 1 at cost 1 unit.

3.3 Formal Procedures for Debugging

Now we can formalize the procedures of a program debugging task, building on the pre-
sented definitions. We rephrase a debugging task into a theory revision task such that the
solution results in a debugged program satisfying the properties. Given a debugging task
〈P,Lit,Φ,Ψ, cost〉, the following steps compute the solution:

1. Construct M based on Lit; mode declarations for the given set of literals.
2. Encode C from Φ and Ψ; encode the set of properties as constraint rules.
3. DeriveR from M ; all revision tuples compatible to the rules in P .
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4. Derive P̃ d and P̃ a from P ; convert a program P to revisable forms by applying
certain syntactic transformations. P̃ d is to learn any necessary deletion operations
and P̃ a for addition operations. These revisable forms use abducibles to indicate
whether an existing rule remains unchanged or has literals deleted or added.

5. Learn ΠR′ to form P ′, where ∀R′ ∈ ΠR′ ,R′ ⊆ R, P R′

→ P ′, P ′ |= C; A set of
solutions ΠR′ is learned. Each solution R′ revises rules in P , giving P ′ which is a
debugged program with regard to the specified properties.

6. Select R′
min to optimise P ′: select the solution R′

min ∈ ΠR′ with minimum cost,
resulting the P ′ with the minimum difference from P .

As defined in Def. 1, the optimisation is guaranteed by the cost function, which com-
putes the differences between two programs in terms of the operations needed to revise one
to the other. For now, we assign a unit cost to each operation, so the total cost is the number
of operations. If there is a desire to weight operations differently, the cost associated with
each operation can be customized.

3.4 Implementation

Inductive Logic Programming (ILP), as discussed in Section 3.1, is a symbolic machine
learning technique which is capable of generating revisions to a problematic program P in
order to satisfy some specified properties expressed by examples (i.e. ground literals). The
solutions preserve the desirable properties while eliminating undesirable properties. In our
case, properties reflect our debugging goals, by which some ground literals are expected or
not expected to appear in the resulting answer sets. All the solutions produced by the ILP
debugger are guaranteed to satisfy those properties. Furthermore, we use the cost criterion
to make the revised program to as close as possible to the original, for convenience of
human inspection and to minimize the cost of grounding and runtime.

3.4.1 Obtaining the Revision Tuples

When given a program and a set of (un)desirable literals, our aim is to find out which
rules, or more precisely which parts of some rules, need to be revised. The revisions typ-
ically involve deletion of existing body atoms, or addition of new body atoms. Therefore,
we need to adapt the existing rules to be ready for searching for possible changes. The
following adaptations are designed for such purpose: we first use the try/3 predicate to
label each body atom of the existing rules. Next we collect all possible revision tuples for
deletion. Each try/3 literal is extended by a pair of use-delete rules, from which we can
construct two variants: one with the atom referenced in the try/3 literal while the oth-
er with the to-be-deleted atom. The two variants will be then examined later against the
specified properties in the resulting answer sets. If the variant with the to-be-deleted atom
succeeds, it implies a deletion operation is needed. The relevant revision tuples are also
generated as part of this process and are used to capture the required operations. Next we
need to obtain all the revision tuples for addition. We use the predicate extension/2 to label
each head atom of the rules, and extend the extension/2 rules with other valid literals to
derive different variants. If any of those variants satisfy all the properties, then an addition
operation is required.
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By means of these syntactic transformations, a normal program P is converted into
its revisable forms P̃ d and P̃ a. More importantly, all possible revision operations for a
program are explored, with the corresponding revision tuples collected in the set R. Now
we move to the abductive stage to learn solutions usingR.

3.4.2 Abduction and Optimisation

Both inductive and abductive learning take examples as inputs, from which inductive learn-
ing aims to learn a rule to generalise the example, while abductive learning seeks explana-
tions/causes for the example. In the our ASP debugger, we achieve inductive learning by
abductive learning, through learning revision tuples for rules that invalidate the examples.
In our case, examples are the literals characterising desirable and undesirable properties.

Given a set of desirable and undesirable literals, a set of revision tuples collected in R
and the revisable forms P̃ d and P̃ a of the program P , we are ready for abductive learn-
ing. All solutions are computed by the ILP debugger, which is the program comprising:
B ∪ P̃ d ∪ P̃ a ∪ R ∪ C. B is the fixed parts of P , including grounding and other domain
facts. The set of constraint rulesC captures desirable and undesirable properties. Each gen-
erated answer set represents a solution to the problem, i.e. a set of revision tuples denoting
alternative suggestions to revise the original program to satisfy the stated properties.

As stated earlier, we are only interested in the revision with the minimum cost between
P and P ′. The total difference in cost between P and P ′ is the number of revision op-
erations stated in a solution. In order to find the solution resulting in the minimum cost,
we take advantage of the aggregate statement provided by CLINGO (Gebser et al. 2007),
specifying a lower and an upper bound by which the weighted literals can be constrained,
: −not [rev( , , Cost) = Cost]Max. We apply an incremental strategy for the variable
Max, for example, if no solution can be found when Max = 1, then we continue incremen-
tally until a solution is found. A direct encoding in ASP using minimise statements or
weak constraints, would require the grounding of more eleborate revisions which may not
be needed. Our incremental approach only grounds what is necessary.

As the cost Max increases, the computation time increases accordingly, but the cost is
bounded because the whole search space of rules is finite, so the number of possible opera-
tions is therefore bounded. Thus, there is a maximum cost Max. While this guarantees that
the program terminates, it does not guarantee that the program always returns a solution,
as the user might have provided unsatisfiable properties.

3.5 Example: Debugging Sudoku Solver

In this section, we present a simple but illustrative example to demonstrate the proposed
debugging approach. In the example, a Sudoku solver P is implemented of which Fig.2
lists part in lines 1–11. Rule 1 (line 6-7) is a constraint specifying that a digit cannot appear
twice in a column. However, we intentionally omitted the body condition not equal(XA, XB)

to give us a problematic solver P . Rule 2 (line 9 to 10) states a digit cannot appear twice
in a row. We omit the constraint rules for sub-square and other fact rules for grounding to
save space. The most important atom is state(X, Y, N), which is true when the number N
is placed at the square X in row Y.
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3 2 4 1

4 1 2 3

1 4 3 2

2 ? ? ?

3 2 4 1

4 1 2 3

1 4 3 2

2 3 1 4

(a) (b) 

Fig. 1. Example: (a) Sudoku puzzle 4×4; (b) solution

Case Study: a Sudoku solver debugging task 〈P,Lit,Φ,Ψ, cost〉, where:
the original (partial) program for the solver P is given as below:

1 %--- 4 possible locations and vaules
2 position(1 .. 4). value(1 .. 4).
3 %------ Each square may take any value
4 1{state(X,Y,N) : value(N) }1 :- position(X), position(Y).
5 %--- Rule 1: a number can appear twice in a column
6 :- state(XA,Y,N), state(XB,Y,N), position(XA), position(XB),
7 position(Y), value(N).
8 %--- Rule 2: a number cannot appear twice in a row
9 :- state(X,YA,N), state(X,YB,N), position(X), position(YA),

10 position(YB),value(N), not equal(YA, YB).
11 ......

Desirable Φ and undesirable properties Ψ are converted into constraint rules:

12 :- not state(4, 1, 2).
13 :- state(4,2,2). :- state(4,2,1). :- state(4,2,4).
14 :- state(4,3,4). :- state(4,3,2). :- state(4,4,3).
15 :- state(4,4,1). :- state(4,3,3). :- state(4,4,2).

Revisable forms of Rule 1:

16 :- try(1, 1, state(XA,Y,N)), try(1, 1, state(XB,Y,N)),
17 extension(1, (XA, XB)).
18
19 % keep or not the body literal state(XA,Y,N)
20 try(1, 1, state(XA,Y,N)) :- state(XA,Y,N).
21 try(1, 1, state(XA,Y,N)) :- not state(XA,Y,N), rev(1, (1, b1), 1).
22 % keep or not the body literal state(XB,Y,N)
23 try(1, 1, state(XB,Y,N)) :- state(XB,Y,N).
24 try(1, 1, state(XB,Y,N)) :- not state(XB,Y,N), rev(1, (2, b2), 1).
25
26 % add new body literal equal(A,B)
27 extension(1,(XA, XB)) :- equal(XA,XB),rev(1,(hNull,bEqPos,null),1).
28 % add new body literal not equal(A, B)
29 extension(1,(XA, XB)) :- not equal(XA,XB),rev(1,(hNull,bEqNeg,null),1).
30 % nothing needs to add
31 extension(1,(XA, XB)) :- rev(1,(hNull,null,(0,0)),1).

One of the optimised solutions (represented by revision tuples) is:

32 rev(1,(hNull,bEqNeg,null),1)

which suggests to add a new body literal not equal(XA, XB) to the Rule 1:

33 :- state(XA,Y,N), state(XB,Y,N), position(XA), position(XB),
34 position(Y), value(N), not equal(XA, XB).

Fig. 2. Debugging the Sudoku Solver
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A 4×4 puzzle is given with known digits for the first three rows in Fig.1(a). The current
solver produces 24 possible guesses for the last row, but only one of them (as in Fig.1(b)) is
correct according to Sudoku rules. Next we can declaratively specify desirable and unde-
sirable properties to navigate the debugging for the solver in order to produce the expected
answer sets only. Desirably, the first square on row 4 has the number 2 (state(4, 1, 2)).
Undesirably, the second square on row 4 cannot be 2, 1 or 4, which have already appeared
in other squares on the same column. Similar undesirable properties are specified for the
other squares on row 4. Both desirable and undesirable properties are encoded as constrain-
t rules in lines 12–15 in Fig.2. Using Rule 1 as an example, we then demonstrate how to
convert the rule into its revisable form and collect relevant revision tuples as rev/3 atoms.
We assume each revision tuple has unit cost. The produced optimal solution comprises a
single revision tuple rev(1, (hNull, bEqNeg, null), 1), indicating that Rule 1 needs a new
body literal bEqNeg, which corresponds to not equal(XA, XB). Consequently, a debugged
Sudoku solver is obtained with the revised Rule 1 as shown in lines 33–34 in Fig.2.

4 Related and Future Work

In this paper we present an open-loop debugger and automatic reviser for normal logic
programs under answer set semantics. We use inductive logic programming with an ab-
ductive implementation in ASP to revise the original program based on the desirable and
undesirable properties specified by the user/programmer.

The approach we have outlined is both less and more than the classic reference on the
algorithmic debugging of logic programs (Shapiro 1983). Less, in that it is coarse-grained,
because ASP is a batch process from input to output, rather than a steppable, proof tree
creation process, through which the contribution of different program fragments can be
observed. But more, in that it offers whole program debugging through the specification of
input and (un)desired output. While algorithmic debugging depends upon an oracle (aka
the programmer) to say whether the input/output relation is correct for a single case, in our
approach the developer provides several positive/negative examples against which to test
the program at the same time. Algorithmic debugging isolates the fragment of code that
demonstrates an incorrect input/output relation in the case of the current input, but working
out how to fix the code is the programmer’s responsibility. In contrast, the mechanism
described here proposes changes to fix the code with respect to all the examples supplied.

In earlier work (Corapi et al. 2011; Athakravi et al. 2012), we showed that the use of
ILP, implemented as an abductive logic program under answer set semantics, can be used
to revise a subclass of answer set programs. Those programs were the result of an auto-
matic translation of an action language in the domain of normative multi-agent systems
and demonstrated a very small range of variation in grammatical structure. Furthermore,
that revision process only handles negative examples and each revision is just one nega-
tive example. In this paper, we extend the approach to be able to deal with general answer
set programs and allow each revision to take as many positive and negative examples as
possible into account.

As discussed in the introduction, a number of other debugging tools for answer set pro-
gramming already exist (Brain et al. 2005; Calimeri et al. 2009; Cliffe et al. 2008; K-
loimüllner et al. 2013; Gebser et al. 2009; Oetsch et al. 2011; Mikitiuk et al. 2007). They
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all offer in some form a mechanism to locate where the solving process goes wrong, but
provide little support for fixing it. (Oetsch et al. 2011) is probably the most advanced in
terms of language support, notably being capable of dealing with aggregates.

Arguably, the mode of development we have set out has more in common with (Lieber-
man 1981), in that it encourages a form of “programming-by-example” through the user’s
provision of inputs and examples of (un)satisfactory outputs, than with (Shapiro 1983),
which directs the user’s knowledge at identifying which part of a program is behaving
(in)correctly. However, that approach may be more comprehensible because it focusses
attention on localised fragments of the program, whereas revision is a whole program pro-
cess. This raises the question of how to make whole program debugging accessible given
the volume of data involved. (Calimeri et al. 2009) takes some steps in this direction, but
how well suited this might be to understanding the revision process is less clear, while
a more general purpose approach to visualising inference (Lieberman and Henke 2015)
seems potentially more appropriate.

Our current system can improve in a number of ways. The user support at present is
minimal. We plan to provide the tool as plug-in for SEALION (Busoniu et al. 2013), an
IDE for answer set programming. While users can specify (un)desirable properties of the
program, they are currently very basic. Even with the current implementation it would
be relatively easy to extend them from sets of literals to sets of rules. The language bias
determines the search space for the revised program. At the moment, the bias is fixed
through our mode declaration including all literals of the program. In future versions, we
want it to be possible for the programmer to steer the revisions if he/she knows were the
problem might lie. This will reduced the run-time of the system, but the resulting revisions
will be the same, asssuming that the programmer has specified an appropriate bias. Equally,
based on the properties provided, the language bias can be adjusted to for example those
literals that could influence the properties provided.

A major and more complex future task is to extend the capability of the system to deal
with aggregates. The abstract semantics provided by (Pührer 2014) can make a good start-
ing point for our system.

As programs evolve over time, we might still want them to adhere to the same prop-
erties as the ones the program started off with. Unit testing for answer set programming
(Janhunen et al. 2010; Janhunen et al. 2011; Febbraro et al. 2011; De Vos et al. 2012) is
not new. The approach presented in this paper allows for the specification of properties the
system has to adhere to, and it will revise the program when the system is no longer satis-
fying the properties. In that respect, one might forese using this approach as an automated
test-driven development method for answer set programming.

Our current system is using minimal number of revisions steps for selecting the most
appropriate revision to the original programme. We plan to investigate whether for an e-
volving system, this results in the best possible programs.
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