
Technical Communications of ICLP 2015. Copyright with the Authors. 1

Logic Programming for Cellular Automata

Marcus Völker

RWTH Aachen University

Thomashofstraße 5, 52070 Aachen, Germany
(e-mail: marcus.voelker@rwth-aachen.de)

Katsumi Inoue

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

(e-mail: inoue@nii.ac.jp)

submitted 29 April 2015; accepted 5 June 2015

Abstract

Cellular automata can represent real-world phenomena studied in physics and biology,
and have been applied to intelligent systems like artificial life and multi-agent systems.
In this paper, we study a semantic preserving transformation between cellular automata
and normal logic programs based on the TP -operator. In particular, a subset of normal
logic programs is shown to precisely correspond to the classic grid-based cellular automata
such as Conway’s Game of Life. We use two automaton models: one-way bounded cellular
automata, for simplicity of construction, and unbounded cellular automata, which corre-
spond to the classic definition of grid-based cellular automata. Using this construction,
some computational theorems are easily proved regarding phenomena in the configurations
of one-way bounded cellular automata, and some decidability results are newly obtained
on the orbits of normal logic programs.

KEYWORDS: semantic foundations, TP -operator, supported models, cellular automata,
decidability

1 Introduction

The study of dynamic systems has become more and more important recently, espe-

cially in the context of simulation and prediction of complex, physical or biological

systems. One possible structure that is of importance for modeling dynamic sys-

tems is the cellular automaton, which has been studied extensively for half a century

(Gardner 1970; Langton 1986; Wolfram 2002; Kari 2005). Cellular automata have

also been applied to artificial life and multi-agent systems.

On the other hand, to analyze a system governed by the notion of state transition,

logic programming can be a good tool to describe and model dynamic systems. As

shown by (Inoue 2011), there is a correspondence between ground normal logic

programs and Boolean networks (Kauffman 1993). This correspondence is realized

by mapping configurations of a Boolean network to Herbrand interpretations of the

equivalent logic program. The result is that calculating the next configuration of a

2 M. Völker and K. Inoue

Boolean network is equivalent to using the TP -operator introduced by (Apt, Blair,

and Walker 1988).

In this paper, we will introduce a lifted correspondence based on the fact that

a cellular automaton can be viewed as a Boolean network with multiple cell states

and an infinite amount of nodes. We will map configurations of a cellular automa-

ton to interpretations of the corresponding logic program, and will show as well

a translation to calculate one of these structures from the other. The cellular au-

tomata structure in this paper is defined as grid-based cellular automata, which

include Conway’s Game of Life (Gardner 1970). We will show a mapping from

these automata to a subset of normal logic programs, using the TP -operator and

the supported model semantics (Apt, Blair, and Walker 1988).

There are a few works that apply logic programming to cellular automata in

the literature. A way to simulate a cellular automaton with a logic program has

been brought up by (Syrjänen 2000). However, their approach is to simulate a

cellular automaton with a logic program, so that some problems can be computed

using Answer Set Programming, rather than to regard a cellular automaton as a

logic program, which lends itself to different applications than our approach. A

similar simulation has been considered by (Sakama and Inoue 2013), who model

finite cellular automata and use the modelling to investigate the unpredictability

of cellular automata such as the existence of a Garden of Eden for Game of Life.

Normal logic programs have been regarded as cellular automata by (Blair, Dushin,

and Humenn 1997; Blair et al 1997). The main difference in our approaches lies in

the structure of cellular automata we consider. While Blair et al. work with a very

general automata model that can be used to capture a large class of logic programs

(the class of covered logic programs (Subrahmanian 1987)), the cellular automata

they consider are so general that reasoning about their properties becomes difficult.

Having obtained a translation between cellular automata and logic programs, we

can then apply several theorems from classical logic to prove theorems for cellular

automata, about the existence of still lives and other phenomena in the configura-

tions, for example. Especially, some (un)decidability results can be easily obtained

for configurations of one-way bounded cellular automata as well as for orbits of

logic programs.

2 Cellular Automata

A cellular automaton consists of the following components (Blair et al 1997): A cell

space, which is a finite or countably infinite set of cells, a set of states, one of which

is assigned to each cell of the cell space, and a transition function, which maps one

configuration (which is an assignment of states to cells) of the cellular automaton to

a successor configuration. We will define a cellular automaton with two properties

in mind:

• Cells are arranged on an infinite Cartesian grid.
• The cells that determine a cell’s successor state are in the neighborhood of

the cell. This neighborhood is defined via a maximum distance with respect

to some norm on the Cartesian space.

Logic Programming for Cellular Automata 3

From these two properties, we define a cellular automaton as follows (Wolfram

1984):

Definition 1

A d-dimensional unbounded cellular automaton (UCA) is a quadruple (Zd, Q, r, ρ),

where

• Zd is the cell space of the automaton, where Z is the set of integers.

• Q is the set of states a cell can have.

• r is the radius of a cell’s neighborhood, which is a square of cells around the

original cell. We can calculate the area of the neighborhood as a := (2r+1)d. If

r = 1 and d = 2, this neighborhood is equivalent to the Moore neighborhood

(Kari 2005).

• ρ : Qa → Q is a local transition function that maps the current states of a

cell’s neighbors to the next state of that cell.

Furthermore, we define a function σ : Zd → Q to be the configuration of the cellular

automaton, assigning a state to each cell of the cell space. Finally, the transition

function of the whole cellular automaton δ : (Zd → Q) → (Zd → Q) is given

by (δ(σ))(c) = ρ(σ(c1), . . . , σ(ca)), where c1, . . . , ca are the neighbors of the cell c.

A consecutive sequence of configurations obtained by state transitions is called a

trajectory (or an orbit) of the cellular automaton.

While this definition allows us to define well-known cellular automata such as

Conway’s Game of Life (Gardner 1970), it is not ideal for a translation from logic

programs. Therefore, we will first consider the following modified definition in this

paper:

Definition 2

A d-dimensional one-way bounded cellular automaton (OBCA) is a quadruple

(Nd, Q, r, P), where

• Nd is the cell space of the automaton, where N is the set of natural numbers.

• Q is the set of states a cell can have.

• r is the radius of a cell’s neighborhood. In contrast to an UCA, this neighbor-

hood is not of the same size for all cells; cells that are close to the boundary of

the cell space (i.e., at least one of the coordinates is smaller than the radius)

have a smaller neighborhood. The area is given by ac := Πd
i=1(yi + r+ 1), c =

(x1, . . . , xd), yi = min(r, xi).

• P = {ρk | k ∈ {0, . . . , r}d} is a set of local transition functions. The transition

function ρk(c) assigned to a cell c is given by k(c) = (min(r, c1), . . . ,min(r, cd)).

As a shorthand, we write the function assigned to a cell c as ρc. This function

has a signature of ρc : Qac → Q

Again, we define a function σ : Nd → Q to be the configuration of the cellular

automaton and give the transition function by (δ(σ))(c) = ρc(σ(c1), . . . , σ(cac)).

4 M. Völker and K. Inoue

3 Normal Logic Programs

We follow the definition of logic programs given in (Apt, Blair, and Walker 1988;

Inoue 2011), which is based on the supported model semantics. A normal logic

program (NLP) P is a set of rules of the form

A ← A1 ∧ · · · ∧Am ∧ ¬Am+1 ∧ · · · ∧ ¬An

where A and Ai’s are atoms (n ≥ m ≥ 0). For each rule R, we define that h(R) = A,

b+(R) = {A1, . . . , Am} and b−(R) = {Am+1, . . . , An}. A set of ground atoms is a

model of P, if for any rule R and any substitution of variables θ, b+(R)θ ⊆ I and

b−(R)θ ∩ I = ∅ imply that h(R)θ ∈ I. A model I is a supported model if, for any

A ∈ I, there exists a rule R ∈ P and a substitution θ such that (i) A = h(R)θ, (ii)

b+(R)θ ⊆ I, and (iii) b−(R)θ ∩ I = ∅. Furthermore, we use the TP -operator given

by (Apt, Blair, and Walker 1988):

TP(I) =
{
h(R)θ | R ∈ P, b+(R)θ ∈ I, b−(R)θ ∩ I = ∅

}
.

From this definition, it follows that I is a supported model iff TP(I) = I.

Given a logic program P and an Herbrand interpretation I, the orbit of I with

respect to the TP operator is the sequence 〈TPk(I)〉k∈ω, where TP
0(I) = I and

TP
k+1(I) = TP (TP

k(I)) for k = 0, 1, . . . (Blair, Dushin, and Humenn 1997).

4 From Cellular Automata to Logic Programs

Before we will discuss the construction for a UCA, we will introduce the easier

construction for OBCAs as a preliminary construction.

4.1 OBCA to NLP

Given an OBCAA = (Nd, Q, r, P), we want to construct an NLP with the semantics

that a configuration σ of the OBCA corresponds to an Herbrand interpretation I

of the NLP. The configuration σ′ = δ(σ) corresponds to the set I ′ = TP(I). To this

end, we construct a logic program with the following structure:

• A constant symbol 0.

• A unary function symbol s/1

• A set of predicates {pi/d | 1 ≤ i ≤ dlog2|Q|e}

The relation between the elements of the logic program’s Herbrand base and the

cell states of the automaton is as follows: A cell c = (x1, . . . , xd) is encoded as the

tuple (sx1(0), . . . , sxd(0)). (sx(0) denotes x applications of s to 0) This cell’s state

is encoded by the truth assignment of the predicates over this tuple in the given

model. This encoding is done in a binary fashion, that is, we enumerate the states

in Q as Q =
{
q0, . . . , q|Q|−1

}
. We then choose predicates {pb1 , . . . , pbm} such that

m∑
i=1

2bi−1 = t, σ(c) = qt

Logic Programming for Cellular Automata 5

For example, if in a two-dimensional automaton with 6 states the cell c = (1, 2) has

the state q5, we encode this in I as p1(s(0), s(s(0))) ∈ I, p3(s(0), s(s(0))) ∈ I and

p2(s(0), s(s(0)) /∈ I, since 5 = 20 + 22 implies that p1(c) and p3(c) are true while

p2(c) is false.

We want to generate rules for the NLP from the local transition functions ρc
according to the following algorithm. Let k := dlog2|Q|e. We can use a binary

encoding (see above) to encode each qi ∈ Q as an element of the Boolean product

Bk. Using this encoding, we generate a set of functions ϕc : Bk·ac → Bk. We can then

split the resulting vector of Booleans into its k components and create k separate

functions ϕc,i : Bk·ac → B. These functions are classical propositional formulas;

therefore, we can convert them to disjunctive normal form, i.e.,

ϕc,i(x1, . . . , xk·ac) =
∨
j

ψc,i,j(x1, . . . , xk·ac)

where ψc,i,j only contains (possibly negated) literals and the conjunction operator.

These ψc,i,j will form the basis for the logic program, and there will be exactly one

rule for each ψc,i,j . In the following, ν(c, i) calculates the i-th cell of the cell c’s

neighborhood by some enumeration. This enumeration has to be equivalent to the

one used for the ordering of the arguments of ψc,i,j . The rules have the following

form:

pi(ϑc,c,1(X1), . . . , ϑc,c,d(Xd)) ← ψc,i,j(p1(ϑc,ν(c,1),1(X1), . . . , ϑc,ν(c,1),d(Xd)),

. . .

pk(ϑc,ν(c,1),1(X1), . . . , ϑc,ν(c,1),d(Xd)),

p1(ϑc,ν(c,2),1(X1), . . . , ϑc,ν(c,2),d(Xd)),

. . .

pk(ϑc,ν(c,ac),1(X1), . . . , ϑc,ν(c,ac),d(Xd)))

The functions ϑ ensure that the correct amount of applications of the successor

function s are applied to the variables, or alternatively to the constant 0. They are

defined as follows:

ϑc,c′,d(X) =

{
sc

′
d(0) if cd < r

sr+c
′
d−cd(X) otherwise

The next theorem can be proved in a similar way to (Inoue 2011, Theorem 3.2).

Theorem 1

Let A be an OBCA, and σ any configuration of A. Let PA and Iσ be an NLP

and an Herbrand interpretation obtained from A and σ by the above translation,

respectively. Then, there is a one-to-one correspondence between the trajectory of

A starting from σ and the orbit of Iσ with respect to PA.

Example 1

Consider the one-dimensional OBCA A = (N, {0, 1, 2} , 1, {ρ0, ρ1}), where

ρ0(c, r) = r

ρ1(l, c, r) = l + r (mod 3)

6 M. Völker and K. Inoue

p1(0)
p1(s(0))
p1(0),p1(s

2(0))
p2(s(0)),p1(s

3(0))
p2(0),p1(s

4 (0))
p2(s(0)),p1(s

3(0)),p1(s
5(0))

p2(0),p2(s
4 (0)),p1(s

6(0))
p2(s(0)),p2(s

3(0)),p1(s
7(0))

p2(0),p1(s
2(0)),p2(s

4(0)),p1(s
6(0)),p1(s

8(0))

Fig. 1. Cellular automaton and corresponding Herbrand interpretations. For the states,
white is 0, light grey is 1, and dark grey is 2

.

Splitting these functions into Boolean formulas yields:

ϕ0,1(c1, c2, r1, r2) = r1

ϕ0,2(c1, c2, r1, r2) = r2

ϕ1,1(l1, l2, c1, c2, r1, r2) = (l1 ∧ ¬r1 ∧ ¬r2) ∨ (r1 ∧ ¬l1 ∧ ¬l2) ∨ (l2 ∧ r2)

ϕ1,2(l1, l2, c1, c2, r1, r2) = (l2 ∧ ¬r1 ∧ ¬r2) ∨ (r2 ∧ ¬l1 ∧ ¬l2) ∨ (l1 ∧ r1)

Further splitting the disjunctions yields the conjunctions:

ψ0,1,0(c1, c2, r1, r2) = r1

ψ0,2,0(c1, c2, r1, r2) = r2

ψ1,1,0(l1, l2, c1, c2, r1, r2) = l1 ∧ ¬r1 ∧ ¬r2
ψ1,1,1(l1, l2, c1, c2, r1, r2) = r1 ∧ ¬l1 ∧ ¬l2
ψ1,1,2(l1, l2, c1, c2, r1, r2) = l2 ∧ r2
ψ1,2,0(l1, l2, c1, c2, r1, r2) = l2 ∧ ¬r1 ∧ ¬r2
ψ1,2,1(l1, l2, c1, c2, r1, r2) = r2 ∧ ¬l1 ∧ ¬l2
ψ1,2,2(l1, l2, c1, c2, r1, r2) = l1 ∧ r1

These functions are converted into rules of the logic program, exemplarily done for

ψ0,1,0 and ψ1,2,2:

p1(ϑ0,0,1(X1))← ψ0,1,0(p1(ϑ0,0,1(X1)), p2(ϑ0,0,1(X1)),

p1(ϑ0,1,1(X1)), p2(ϑ0,1,1(X1)))

p1(ϑ0,0,1(X1))← p1(ϑ0,1,1(X1))

Hence, p1(0)← p1(s(0))

p2(ϑ1,1,1(X1))← p1(ϑ1,0,1(X1)) ∧ p1(ϑ1,2,1(X1))

Hence, p2(s(X1))← p1(X1) ∧ p1(s(s(X1)))

The run of the CA on a configuration and the corresponding interpretations are

depicted in Figure 1.

Logic Programming for Cellular Automata 7

4.2 Extending the Construction for UCAs

To obtain the construction for a UCA A = (Zd, Q, r, ρ) , we take the above con-

struction and modify it to accomodate the bidirectionally infinite cellspace. One

can view the cellspace Nd as one orthant of the d-dimensional space Zd. The basic

idea of our construction is to view each orthant of Zd as a seperate OBCA with

the same, albeit mirrored behaviour. We accordingly generate similar rules for each

orthant, and a set of rules for the hyperplanes at which at least one coordinate is

in a radius around zero, i.e. where the orthants touch. There are multiple ways one

can extend our previous construction to accomodate this cellspace. We chose the

following idea: Instead of using one successor function s, we use two functions, s+
and s−. A cell c = (x1, . . . , xd) is now encoded as the tuple

(s
|x1|
sgn(x1)

(0), . . . , s
|xd|
sgn(xd)

(0))

with sgn defined as:

sgn(x) =

{
+ x ≥ 0

− x < 0

For example, the cell (−2, 0, 3) is encoded as (s2−(0), 0, s3+(0)). The encoding of

state using this cell encoding proceeds as with OBCAs, via a binary encoding

using the predicates. To generate the rules, we reuse the concept from our OBCA

construction. The key difference is that a UCA only has a single transition function

ρ, but we have to generate multiple sets of rules depending on the orthant. To be

specific, there need to be (2r + 3)d rulesets. For example, take a two-dimensional

UCA with r = 1. This UCA needs 25 rulesets, with the following 5 terms for both

coordinates: s−(s−(X)) for general negative values, s−(0) for −1, 0 for 0, s+(0) for

1, and s+(s+(X)) for general positive values.

Why we need to treat −1 and 1 seperately is easily shown with an example. Suppose

we want a UCA in which every cell copies the cell to its left. If we just take s−(X), 0

and s+(X) as terms, we will generate a rule p(s+(X), Y)← p(X,Y). However, this

rule would also fire for p(s−(0), 0), leading to a configuration with p(s+(s−(0)), 0) in

its Herbrand interpretation. This is a forbidden atom, since it has no corresponding

cell.

To prevent such inconsistencies, we have to ensure function symbols cannot be

mixed, and this is achieved by adding these extra rules, so that the aforementioned

automaton would instead generate the rules p(s+(s+(X)), Y) ← p(s+(X), Y) and

p(s+(0), Y)← p(0, Y).

To generate the rulesets, we use the same structure as in the OBCA construction,

but with the following adapted function ϑ:

ϑc,c′,d(X) =

s
|c′d|
sgn(c′d)

(0) if |cd| ≤ r
s
|c′d|
sgn(c′d)

(X) otherwise

Example 2

Consider the one-dimensional OBCAA = (Z, {0, 1} , 1, ρ), where ρ(l, c, r) = min(l, r)

8 M. Völker and K. Inoue

p1(s-
4(0)),p1(s-

2(0)),p1(0),p1(s+(0)),p1(s+
2(0)),p1(s+

4(0))
p1(s-

3(0)),p1(s-(0)),p1(s+(0)),p1(s+
3(0))

p1(s-
2(0)),p1(0),p1(s+

2(0))
p1(s-(0)),p1(s+(0))
p1(0)

Fig. 2. Cellular automaton and corresponding Herbrand interpretations. For the states,
white is 0, and grey is 1

.

Splitting this function into Boolean formulas yields:

ϕ1(l1, c1, r1) = ψ1,0(l1, c1, r1) = l1 ∧ r1

This function is converted into rules of the logic program:

p1(ϑ−2,−2,1(X1))← p1(ϑ−2,−3,1(X1)) ∧ p1(ϑ−2,−1,1(X1))

Hence, p1(s−(s−(X1)))← p1(s−(s−(s−(X1)))) ∧ p1(s−(X1))

p1(ϑ−1,−1,1(X1))← p1(ϑ−1,−2,1(X1)) ∧ p1(ϑ−1,0,1(X1))

Hence, p1(s−(0))← p1(s−(s−(0))) ∧ p1(0)

p1(ϑ0,0,1(X1))← p1(ϑ0,−1,1(X1)) ∧ p1(ϑ0,1,1(X1))

Hence, p1(0)← p1(s−(0)) ∧ p1(s+(0))

p1(ϑ1,1,1(X1))← p1(ϑ1,0,1(X1)) ∧ p1(ϑ1,2,1(X1))

Hence, p1(s+(0))← p1(0) ∧ p1(s+(s+(0)))

p1(ϑ2,2,1(X1))← p1(ϑ2,1,1(X1)) ∧ p1(ϑ2,3,1(X1))

Hence, p1(s+(s+(X1)))← p1(s+(X1)) ∧ p1(s+(s+(s+(X1))))

The run of the CA on a configuration and the corresponding interpretations are

depicted in Figure 2.

4.3 A Note on the Inverse Construction

As we have demonstrated, there are constructions for both OBCAs and UCAs that

give an equivalent NLP. The converse, however, is not generally true. It is trivially

easy to construct an NLP that has no corresponding cellular automaton, because

it violates locality.

Example 3

Consider the NLP

p(0)← p(X)

Taken as a one-dimensional OBCA, the cell 0 is influenced by an infinite number

of cells, which cannot be represented as a finite neighborhood in a grid.

To obtain a set of NLPs for which we can find a corresponding cellular automaton,

we have to place strong restrictions on the form of the NLPs. By doing this, we

essentially obtain the set of NLPs that are generated by our construction from

cellular automata, plus transformations that do not change the meaning of the

NLP.

Logic Programming for Cellular Automata 9

Essentially, the NLPs we can translate back to OBCAs have to use only predicates

of the same arity, the terms in the heads can be only 0 to si(0) and si+1(Xj), and

the terms in the body have to be the terms in the head at the same position, with

the only difference being the application depth of s.

Example 4

This is an LP that can be translated back to a CA

p(s2(X1), s(0), 0)← p1(s3(X1), 0, s(0)), p2(s(X1), s2(0), 0)

Hence, to obtain cellular automata for a larger set of NLPs, one would have to

use a more general model of cellular automata, such as the one proposed by (Blair

et al 1997). However, that is out of scope of this paper.

5 Decidability Results

Now that we have derived a construction between logic programs and cellular au-

tomata, we are able to view problems from cellular automata theory as problems

of logic programming and, by extension, first-order logic. We now show how some

computational problems can be translated to first-order logic programs, and which

conclusions we can draw from this. Before we can examine these problems, we first

give definitions of well-known objects from cellular automata theory, as well as a

definition of Turing machines that will be used in various proofs. Note that some

results about the decidability of infinite behavior of general (i.e., non-OB) cellu-

lar automata have been found in (Packard and Wolfram 1985). Here, we provide

new (but more specific) theorems and proofs on OBCAs as illustration of how our

construction can be used to effortlessly solve problems in CA theory. At the same

time, we show new results on properties of orbits with respect to the TP operator of

NLPs, including the existence of supported models (Apt, Blair, and Walker 1988)

and supported sets (Inoue and Sakama 2012).

Definition 3

A still life is a configuration c of a cellular automaton which is a fixpoint of the

transition function δ, that is, a configuration fulfilling δ(c) = c.

Note that a fixpoint of δ translates to a fixpoint of the TP operator, i.e., a supported

model of the logic program (Inoue 2011).

Definition 4

An oscillator is a sequence of configurations (c1, . . . , cn) of a cellular automaton

that form an attractor of the transition function δ, that is, they fulfill δ(ci) = ci+1

for i < n, and δ(cn) = c1.

The corresponding attractor of the TP forms a supported class of the logic program

(Inoue and Sakama 2012).

Definition 5

A spaceship is an infinite sequence of configurations (ci)i∈N+ a period n ∈ N+ and

a translation t ∈ Nd of a cellular automaton with the following properties:

10 M. Völker and K. Inoue

• δ(ci) = ci+1

• ci + t = ci+n

A classic example of a spaceship is the glider in Game of Life (Gardner 1970). As

far as the authors know, the corresponding concept of spaceships has never been

formalized in the semantics of logic programming. In the following sections, we will

use the names oscillator and spaceship also for any configuration that is part of an

oscillator or a spaceship.

5.1 Turing Machine

There are many largely equivalent definitions of a Turing machine. We will use the

following definition:

Definition 6

A one-way bounded Turing Machine (OBTM) consists of a quintuple (Q,Σ, q0,�, δ),
where Q is the set of states, Σ is the tape alphabet, fixed to Σ = {0, 1,�}, q0 is the

initial state, � is the blank tape symbol, and δ : Q × Σ → Q × Σ × {←, ↓,→} is

the transition function. The tape of this Turing machine is bounded to the left and

infinite to the right, much like the cell space of a one-dimensional OBCA. Further-

more, we define that the machine halts if a transition is taken where the direction

of the head movement is ↓.

Since logic programs and Turing machines are both computationally universal, it

is possible to encode one as the other. However, here it is important to guarantee

that encoding of a Turing machine into an NLP can be done within the class of

NLPs that can be translated to cellular automata.

5.2 Orbit Problems

The orbit problems we are considering have the form: Given an OBCA A and a

configuration c, does the orbit of c contain a configuration that exhibits a property

P?

Theorem 2

The orbit problem of still lives is undecidable.

Proof

Given an OBTMM, construct the corresponding logic program and from that the

corresponding OBCA. Observe that the head always moves, unless the OBTM halts.

The OBTM reaches a still life iff it halts. Therefore, the orbit of a configuration c

leads to a still life iff M halts on c. Therefore, if there was an algorithm to decide

the orbit problem of still lives, this algorithm could be used to decide the halting

problem, which is known to be undecidable (Turing 1937).

Corollary 1

The question whether an orbit of the TP operator leads to a supported model is

undecidable.

Logic Programming for Cellular Automata 11

Theorem 3

The orbit problem of spaceships is undecidable.

Proof

Given an OBTM M, construct an OBTM M′ that does the following:

• Move the input one cell to the right;

• Write a 1 to the now free first cell;

• Simulate M on the moved input;

• If M terminates, clear the tape and simulate any spaceship.

IfM terminates, the orbit of the starting configuration onM′ leads into a spaceship.

If M does not terminate, the first cell of the tape never clears, which means that

the whole configuration does not perform a translation, so there is no spaceship.

Therefore, if there was an algorithm to decide the orbit problem of spaceships, this

algorithm could be used to decide the halting problem.

Similar arguments can be made for oscillators or other orbit problems, therefore:

Theorem 4

The question whether an orbit of the TP operator leads to an attractor is undecid-

able.

The other two problems are the testing problem (Given an OBCA A and a

configuration c, does c exhibit a property P?) and the existence problem (Given

an OBCA A, is there a configuration c that exhibits a property P?).

6 Perspectives

There is a variety of avenues in which research still is ongoing. First of all, one of

the most restrictive conditions in the given construction lies in the translation from

logic programs to cellular automata. Since only a limited class of logic programs

is captured by that construction, we cannot readily use it to perform proofs or

create models for general logic programs; therefore, we are interested in a more

general class of cellular automata that is capable of modeling a wider range of logic

programs. Since such a construction inevitably sacrifices the grid-based cellular

automaton model as well as a notion of locality, it remains to be seen whether

there is a general structure that retains some useful properties, or if the general

automaton model is so unspecific that it has no value over using the logic program

directly. Another possible result of research in this area is obtaining an automaton

model that is not general, but more powerful than the given OBCAs and UCAs,

for instance with a tree-based structure to transcend the carthesian cell space.

Going in the other direction, while OBCAs are ideal to model this restricted class

of logic programs, the classical notion of cellular automata (for instance, Conway’s

Game of Life) utilizes an unbounded grid, as described in the UCA structure.

Problems in this area include the fact that the application depth of a function

to a constant is a natural number, while the coordinates in a UCA are integers.

Although there exist several bijections between the natural and integer sets, it is

12 M. Völker and K. Inoue

difficult to use one of these bijections properly, as we have to preserve the notion

of locality, that is, whether an integer is positive or negative, its neighborhood (as

modelled by different application depths in the NLP) has to be the same. Other

approaches, such as using one function for positive and one for negative integers,

have the problem that only a subset of all Herbrand interpretations translate to

legal configurations of the CA. Therefore, existence proofs on the logic program do

not trivially correspond to existence proofs on the cellular automaton.

References

Apt, K. R.; Blair, H. A.; and Walker, A. Towards a theory of declarative knowledge.
In: Foundations of Deductive Databases and Logic Programming, Morgan Kaufmann,
pp.89–148, 1988.

Blair, H. A., Dushin, F., and Humenn, P. R. Simulations between programs as cellular
automata. In: Dix, J.; Furbach, U.; and Nerode, A., eds., LPNMR, volume 1265 of
Lecture Notes in Computer Science, pp.115–131, Springer, 1997.

Blair, H. A., Chidella, J., Dushin, F., Ferry, A., and Humenn, P. R. A continuum of
discrete systems. Annals of Mathematics and Artificial Intelligence, 21:153–186, 1997.

Gardner, M. Mathematical games—the fantastic combinations of John Conway’s new
solitaire game “Life”. Scientific American, 223:120–123, 1970.

Grädel, E. Decidable fragments of first-order and fixed-point logic—from prefix vocabulary
classes to guarded logics. 2003.

Inoue, K. Logic programming for Boolean networks. In Proceedings of the 22nd Interna-
tional Joint Conference on Artificial Intelligence, pp.924–930, 2011.

Inoue, K. and Sakama, C. Oscillating behavior of logic programs. In: Erdem, E.; Lee,
J.; Lierler, Y.; and Pearce, D., eds., Correct Reasoning—Essays on Logic-Based AI
in Honour of Vladimir Lifschitz, volume 7265 of Lecture Notes in Computer Science,
pp.345–362, Springer, 2012.

Kari, J. Theory of cellular automata: A survey. Theoretical Computer Science, 334(1-
3):3–33, 2005.

Kauffman, S. A. The Origins of Order: Self-Organization and Selection in Evolution.
Oxford University Press, 1993.

Langton, C. G. Studying artificial life with cellular automata. Physica D, 2(1-3):120–149,
1986.

Packard, N. and Wolfram, S. Two-dimensional cellular automata. Journal of Statistical
Physics, 38(5-6):901–946, 1985.

Sakama, C. and Inoue, K. Abduction, unpredictability and Garden of Eden. Logic Journal
of the IGPL 21(6):980–998, 2013.

Subrahmanian, V. S. On the semantics of quantitative logic programs. In: Proc. SLP,
pp.173–182, IEEE Computer Society, 1987.

Syrjänen, T. Modelling the game of life using logic programs. In: Leksa Notes in Computer
Science: Festschrift in Honour of Professor Leo Ojala, Helsinki University of Technology,
2000.

Turing, A. On computable numbers, with an application to the Entscheidungsproblem.
In: Proceedings of the London Mathematical Society, pp.230–265, 1937.

Wolfram, S. Computation theory of cellular automata. Communications in Mathematical
Physics, 96(1):15–57, 1984.

Wolfram, S. A New Kind of Science. Wolfram Media Inc., 2002.

