
Technical Communications of ICLP 2015. Copyright with the Authors. 1

Towards a Generic Interface to Integrate CLP
and Tabled Execution (Extended Abstract)

Joaquín Arias1

Manuel Carro1,2

joaquin.arias@imdea.org, manuel.carro@{imdea.org,upm.es}
1IMDEA Software Institute, 2Technical University of Madrid

submitted 29 April 2015; accepted 5 June 2015

Logic programming systems featuring Constraint Logic Programming (Jaffar and Ma-
her 1994) and tabled execution (Tamaki and Sato 1986; Warren 1992) have been shown
to increase the declarativeness and efficiency of Prolog, while at the same time making it
possible to write very expressive programs. Previous implementations fully integrating
both capabilities (i.e., forcing suspension, answer subsumption, etc. where it is neces-
sary in order to avoid recomputation and terminate whenever possible) did not have a
simple, well-documented, easy-to-understand interface which made it possible to in-
tegrate arbitrary CLP solvers into existing tabling systems. This clearly hinders a more
widespread usage of this combination.

In our work, we examine the requirements that a constraint solver must fulfill to be
easily interfaced with a tabling system. We propose a minimal set of operations which
the constraint solver has to provide to the tabling engine. These operations are based
in only four objects (Vars, Dom, ProjStore and Store). Vars is a list with the constrained
variables of a call. Dom and ProjStore are the representation of the projection of the
constraint store of a call. Store is the representation of the constraint store of a gener-
ator and is used by the external constraint solver to reinstall it when the generator is
complete.

The two main operations to be provided by the solver are: (i) entailment,
entail(+VarsA, +DomA, +DomB , +ProjStoreB ), which checks if the call/answer
constraint store (VarsA and DomA) is entailed by the previous call/answer con-
straint store (DomB and ProjStoreB ) and (ii) projection, executed in two steps:
project_domain(+Vars, -Dom), that pre-computes an object (Dom) used during the en-
tailment, and project_gen_store(+Vars, +Dom, -ProjStore), which is executed when
the entailment fails.

The compiler performs a shallow program transformation adding tabled_call/1 to
control the tabled execution and new_answer/0 to collect the answers. These two pred-
icates invoke the operations of the interface during tabled execution. Fig. 1 contains a
Prolog version of tabled_call/1 which specifies its implementation and the control flow
of the execution. This specification shows that when a new call is entailed by a previous
generator, its execution is suspended, unlike in usual tabling, where suspension hap-
pens only when variant calls are found.

We validate experimentally our design with three use cases. First we re-engineer a
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tabled_call(Call) :−
(
lookup_table(Call, Gen, Vars)
;
save_generator(Call, Gen, Vars)
),
project_domain(Vars, Dom),
(
member(Lgen,~l_generators(Gen)),
entail(Vars, Dom,~dom(Lgen),~projStore(Lgen))−>
suspend_consumer(Call)
;
current_store(Store),
project_gen_store(Vars, Dom, ProjStore),
save_Lgen(Gen, Lgen, Store, Dom, ProjStore),
push(Lgen),
execute_generator(Call)
),
consume_answer(Ans,~answers(Lgen)),
member(Lans,~l_answers(Ans)),
reinstall_store(~store(Lgen)),
apply_answer(Vars,~dom(Lans),~projStore(Lans)).

Fig. 1. Prolog version of Tabled_call/1.
Notation: p(∼dom(Lgen)) ≡ dom(Lgen, DomLgen), p(DomLgen).

previously existing tabled constrain domain (difference constraints (Chico de Guzmán
et al. 2012)) in Ciao (Hermenegildo et al. 2012). This solver is implemented in C, so the
arguments of the interface represent the memory address of C structures. Then we in-
tegrate Holzbauer’s CLP(Q) (Holzbaur 1995; Holzbaur 1992) implementation with Ciao
Prolog’s tabling engine. In this case existing CLP(Q) predicates already provide the nec-
essary functionality so we only need to write simple bridge predicates (see Fig. 2).

project_domain(_, _).
project_gen_store(V, _, (F, St)) :−

clpqr_dump_constraints(V, F, St).
project_answer_store(V, _, (F, St)) :−

clpqr_dump_constraints(V, F, St).
entail(V, _, _, (V, St)) :−

clpq_entailed(St).

current_store(_).
reinstall_store(_, _, _).
apply_answer(V, _, (V, St)) :−

clp_meta(St).

Fig. 2. Interface for CLP(Q).

With these two constraints solvers we evaluate on one hand the cost of adopting a
more modular framework versus the previous non-modular implementation of differ-
ence constraints, and on the other hand we highlight the benefits of being able to in-
terface easily more constraint solvers: using TCLP(Q) gives more expressiveness and
in some cases better performance that TCLP(Diff) (see results of the reverse Fibonacci
benchmarks in Table 1) since by using TCLP(Q) we can write programs in way which
exploits better the advantages of constraint programming.

Last, we implement a constraint solver over (finite) lattices that is parametrized by
the lattice domain. The lattice domain defines the elements and its operations, includ-
ing at least join and meet, which define the partial order (v) relation used to check en-
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Diff Constraints CLP(Q)
CLP TCLP Mod TCLP CLP Mod TCLP

fibonacci(P, 89) 494 11 13 67 12
fibonacci(P, 610) – 21 25 628 20
fibonacci(P, 4181) – 36 42 6001 30
fibonacci(P, 28657) – 56 69 153813 40
fibonacci(P, 196418) – 85 111 > 5 min. 53
fibonacci(P, 832040) – 113 158 > 5 min. 64

Table 1. Run time results (in ms.) for the �bonacci/2 program in two versions.

tailment. To evaluate this constraint solver in the context of tabled execution, we im-
plemented a simple abstract analyzer whose fix-point is reached by means of tabled
execution. Its domain operations are implemented using the lattice domain and the
constraint solver, which avoids recomputation of subsumed abstractions and attains
better accuracy and considerable speedups. We evaluate its performance by compar-
ing this implementation with an abstract interpreter without the constraint solver. Ta-
ble 2 shows the results in terms of execution time of the analysis of a program which is
parametrized by the number of arguments.

Tabling Mod TCLP
permute/10 2788 3
permute/8 563 2
permute/6 112 2
permute/4 21 1

Table 2. Run time results (in ms.) for ?- analyze(permute(A1, ... , An), P).
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