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Abstract

We introduce the language LPMLN that extends logic programs under the stable model semantics to al-
low weighted rules similar to the way Markov Logic considers weighted formulas. LPMLN is a proper
extension of the stable model semantics to enable probabilistic reasoning, providing a way to handle in-
consistency in answer set programming. We also show that the recently established logical relationship
between Pearl’s Causal Models and answer set programs can be extended to the probabilistic setting
via LPMLN.
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abilistic Logic Programming

1 Introduction

Logic programs under the stable model semantics is the language for Answer Set Program-
ming (ASP). Many useful knowledge representation constructs are introduced into ASP, and
several efficient ASP solvers are available. However, like many “crisp” logic approaches,
adding a single rule may easily introduce inconsistency. Also, ASP is not well suited for
handling probabilistic reasoning.

Markov Logic is a successful approach to combining first-order logic and probabilistic
graphical models in a single representation. Syntactically, a Markov Logic Network (MLN)
is a set of weighted first-order logic formulas. Semantically, the probability of each possible
world is derived from the sum of the weights of the formulas that are true under the possi-
ble world. Markov Logic has shown to formally subsume many other SRL languages and
has been successfully applied to several challenging applications, such as natural language
processing and entity resolution. However, the logical component of Markov Logic is the
standard first-order logic semantics, which does not handle the concept of rules as in ASP.

We introduce a simple approach to combining the two successful formalisms, which allows
for logical reasoning originating from the stable model semantics as well as probabilistic
reasoning originating from Markov Logic. LPMLN is a proper extension of the standard stable
model semantics, and as such embraces the rich body of research in answer set programming.
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Interestingly, the relationship between LPMLN and Markov Logic is analogous to the well-
known relationship between ASP and SAT (Lin and Zhao 2004; Lee 2005). This allows many
useful results known in the deterministic case to be carried over to the probabilistic setting.
In particular, an implementation of Markov Logic can be used to compute “tight” LPMLN

programs, similar to the way “tight” ASP programs can be computed by SAT solvers.
LPMLN provides a viable solution to inconsistency handling with ASP knowledge bases.

For example, consider ASP knowledge base KB1 that states that Man and Woman are disjoint
subclasses of Human.

Human(x) ← Man(x),

Human(x) ← Woman(x),

← Man(x),Woman(x)

One data source KB2 says that Jo is a Man:
Man(Jo)

while another data source KB3 states that Jo is a Woman:
Woman(Jo).

The data about Jo is actually inconsistent, so under the (deterministic) stable model seman-
tics, the combined knowledge base KB = KB1 ∪ KB2 ∪ KB3 is inconsistent, and may derive
any conclusion. On the other hand, it is intuitive to view that one of the data sources may be
wrong, and we still want to conclude that Jo is a Human. The same conclusion is obtained
under the LPMLN semantics.

For another aspect of LPMLN, we consider how it is related to Pearl’s Probabilistic Causal
Models. Both answer set programs and Probabilistic Causal Models allow for represent-
ing causality, but a precise relationship between them is established only in a recent pa-
per (Bochman and Lifschitz 2015) limited to the deterministic case.1 Generalizing this result
to the probabilistic case is straightforward once we refer to LPMLN in place of answer set
programs, which illustrates that LPMLN is a natural probabilistic extension of answer set
programs.

2 Preliminaries

Throughout this paper, we assume a first-order signature σ that contains no function constants
of positive arity. There are finitely many Herbrand interpretations of σ.

2.1 Review: Stable Model Semantics

A rule over σ is of the form

A1; . . . ;Ak ← Ak+1, . . . , Am, not Am+1, . . . , not An, not not An+1, . . . , not not Ap
(1)

(0 ≤ k ≤ m ≤ n ≤ p) where all Ai are atoms of σ possibly containing object variables. We
write {A1}ch ← Body to denote the rule A1 ← Body, not not A1. This expression is called a
“choice rule” in ASP.

1 Strictly speaking, the relationship shown in that paper is between Pearl’s causal models and nonmonotonic causal
theories (McCain and Turner 1997). The close relationship between nonmonotonic causal theories and answer set
programs is shown in (Ferraris et al. 2012).
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We will often identify (1) with the implication:

A1 ∨ · · · ∨Ak ← Ak+1∧. . .∧Am∧¬Am+1∧. . .∧¬An∧¬¬An+1∧. . .∧¬¬Ap . (2)

A logic program is a finite set of rules. A logic program is called ground if it contains no
variables.

We say that an Herbrand interpretation I is a model of a ground program Π if I satisfies
all implications (2) in Π (as in classical logic). Such models can be divided into two groups:
“stable” and “non-stable” models, which are distinguished as follows. The reduct of Π rela-
tive to I , denoted ΠI , consists of “A1 ∨ · · · ∨ Ak ← Ak+1 ∧ · · · ∧ Am” for all rules (2) in
Π such that I |= ¬Am+1 ∧ · · · ∧ ¬An ∧ ¬¬An+1 ∧ · · · ∧ ¬¬Ap. The Herbrand interpreta-
tion I is called a (deterministic) stable model of Π if I is a minimal Herbrand model of ΠI .
(Minimality is in terms of set inclusion. We identify an Herbrand interpretation with the set
of atoms that are true in it.)

The definition is extended to any non-ground program Π by identifying it with grσ[Π], the
ground program obtained from Π by replacing every variable with every ground term of σ.

The semantics was extended in many ways, e.g., allowing some useful constructs, such
as aggregates and abstract constraints (e.g., (Niemelä and Simons 2000; Faber et al. 2004;
Ferraris 2005; Son et al. 2006; Pelov et al. 2007)). The probabilistic extension defined in this
paper is orthogonal to such extensions and can easily incorporate them as well.

3 Language LPMLN

3.1 Syntax of LPMLN

The syntax of LPMLN defines a set of weighted rules. More precisely, an LPMLN program P
is a finite set of weighted rules w : R, where R is a rule of the form (1) and w is either a real
number or the symbol α denoting the “infinite weight.” We call rule w : R soft rule if w is a
real number, and hard rule if w is α.

We say that an LPMLN program is ground if its rules contain no variables. We identify any
LPMLN program P of signature σ with a ground LPMLN program grσ[P], whose rules are
obtained from the rules of P by replacing every variable with every ground term of σ. The
weight of a ground rule in grσ[P] is the same as the weight of the rule in P from which the
ground rule is obtained.

By P we denote the logic program obtained from P by dropping the weights, i.e., P =

{R | w : R ∈ P}. By PI we denote the set of rules in P which are satisfied by I .

3.2 Semantics of LPMLN

A model of an MLN does not have to satisfy all formulas in the MLN. For each model, there
is a unique maximal subset of the formulas that are satisfied by the model, and the weights
of the formulas in that subset determine the probability of the model.

Likewise, a stable model of an LPMLN program does not have to be obtained from the
whole program. Instead, each stable model is obtained from some subset of the program, and
the weights of the rules in that subset determine the probability of the stable model. At first,
it may not seem obvious if there is a unique maximal subset that derives such a stable model.
Nevertheless, it follows from the following proposition that this is indeed the case, and that
the subset is exactly PI .
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Proposition 1
For any logic program Π and any subset Π′ of Π, if I is a (deterministic) stable model of Π′

and I satisfies Π, then I is a (deterministic) stable model of Π as well.

The proposition tells us that if I is a stable model of a program, adding additional rules
to this program does not affect that I is a stable model of the resulting program as long as I
satisfies the rules added. On the other hand, it is clear that I is no longer a stable model if I
does not satisfy at least one of the rules added.

Thus we define the weight of an interpretation I w.r.t. P, denoted WP(I), as

WP(I) = exp

( ∑
w:R ∈ P

I|=R

w

)
.

Let SM[P] be the set {I | I is a stable model of PI}. Notice that SM[P] is never empty be-
cause it always contains the empty set. It is easy to check that the set ∅ always satisfies P ∅,
and it is the smallest set that satisfies the reduct (P ∅)

∅.
Using this notion of a weight, we define the probability of an interpretation I under P,

denoted PrP[I], as follows. For any interpretation I ,

PrP[I] =

 lim
α→∞

WP(I)∑
J∈SM[P]

WP(J) if I ∈ SM[P];

0 otherwise.

We omit the subscript P if the context is clear. We say that I is a (probabilistic) stable model
of P if PrP[I] 6= 0.

The intuition here is similar to that of Markov Logic. For each interpretation I , we try
to find a maximal subset (possibly empty) of P for which I is a stable model (under the
standard stable model semantics). In other words, the LPMLN semantics is similar to the MLN
semantics except that the possible worlds are the stable models of some maximal subset of P,
and the probability distribution is over these stable models.

For any proposition A, PrP[A] is defined as:

PrP[A] =
∑

I: I|=A

PrP[I].

(In place of “I |= A,” one might expect “I is a stable model of P that satisfiesA.” The change
does not affect the definition.)

Conditional probability under P is defined as usual. For propositions A and B,

PrP[A | B] =
PrP[A ∧B]

PrP[B]
.

The following example illustrates how inconsistency can be handled in LPMLN.

Example 1 (handling inconsistency)
Consider the example in Section 1. Recall that there are no deterministic stable models of
KB. However, when we identify each rule as a hard rule under the LPMLN semantics (i.e.,
having α as the weight), there are 3 probabilistic stable models (with non-zero probabilities)
assuming that Jo is the only element in the domain. Let Z = 3e4α + 3e3α + e2α.

• I0 = ∅ with probability limα→∞ e3α/Z = 0.
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• I1 = {Man(Jo)} with probability limα→∞ e3α/Z = 0.
• I2 = {Woman(Jo)} with probability limα→∞ e3α/Z = 0.
• I3 = {Human(Jo)} is not a stable model of KBI3 , so its probability is 0.
• I4 = {Man(Jo),Human(Jo)} with probability limα→∞ e4α/Z = 1

3 .
• I5 = {Woman(Jo),Human(Jo)} with probability limα→∞ e4α/Z = 1

3 .
• I6 = {Man(Jo),Woman(Jo)} with probability limα→∞ e2α/Z = 0.
• I7 = {Man(Jo),Woman(Jo),Human(Jo)} with probability limα→∞ e4α/Z = 1

3 .

Thus we can check that

• Pr[Human(Jo) = t] = Pr[I4] + Pr[I5] + Pr[I7] = 1: for I4, KB3 is disregarded; for
I5, KB2 is disregarded; for I7, the last rule of KB1 is disregarded.

• Pr[Human(Jo) = t | Man(Jo) = t] = Pr[I4]+Pr[I7]
Pr[I1]+Pr[I4]+Pr[I6]+Pr[I7] = 1.

• Pr[Man(Jo) = t | Human(Jo) = t] = Pr[I4]+Pr[I7]
Pr[I4]+Pr[I5]+Pr[I7] = 2

3 .

Often an LPMLN program P consists of the set Ps of soft rules and the set of Ph of hard
rules together, and there exists at least one stable model that is obtained from all hard rules
plus some subset of soft rules. In this case, we may simply consider the weights of soft rules
only in computing the probabilities of stable models. Let SM′[P] be the set

{I | I is a stable model of Ph ∪ (Ps)I},

and let

Pr′P[I] =


WPs (I)∑

J∈SM′[P]
WPs (J) if I ∈ SM′[P];

0 otherwise.

Note the absence of lim
α→∞

in the definition of Pr′P[I]. Also unlike PrP[I], SM′[P] may be

empty, in which case Pr′P[I] is not defined.

Proposition 2
Let P = Ps ∪ Ph be an LPMLN program where Ps consists of soft rules and Ph consists of
hard rules. If SM′[P] is not empty, for every interpretation I , PrP[I] coincides with Pr′P[I].

Thus the presence of at least one interpretation in SM′[P] implies that every other stable
model of P (with non-zero probability) should also satisfy all hard rules in P. Note that
Example 1 does not satisfy the nonemptiness condition of SM′[P], whereas the following
example does.

Example 2 (LPMLN vs. MLN)
Consider a variant of the main example from (Bauters et al. 2010). We are certain that we
booked a concert and that we have a long drive ahead of us unless the concert is cancelled.
However, there is a 20% chance that the concert is indeed cancelled. This example can be
formalized in LPMLN program P as

α : ConcertBooked ←
α : LongDrive ← ConcertBooked, not Cancelled

ln 0.2 : Cancelled ←
ln 0.8 : ← Cancelled.

Since SM′[P] is not empty, in view of Proposition 2, the probability of the two stable
models are as follows:
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• I1 = {ConcertBooked,Cancelled}, with PrP[I1] = eln0.2

eln0.2+eln0.8 = 0.2.

• I2 = {ConcertBooked,LongDrive}, with PrP[I2] = eln0.8

eln0.2+eln0.8 = 0.8.

If this program is understood under the MLN semantics, say in the syntax

α : ConcertBooked
α : ConcertBooked ∧ ¬Cancelled → LongDrive

ln 0.2 : Cancelled
ln 0.8 : ¬Cancelled,

there are three MLN models with non-zero probabilities:

• I1 = {ConcertBooked,Cancelled} with Pr[I1] = 0.2/1.4 ' 0.1429.
• I2 = {ConcertBooked,LongDrive} with Pr[I2] = 0.8/1.4 ' 0.5714.
• I3 = {ConcertBooked,Cancelled,LongDrive} with Pr[I3] = 0.2/1.4 ' 0.1429.

The presence of I3 is not intuitive (why have a long drive when the concert is cancelled?)

Remark. In some sense, the distinction between soft rules and hard rules in LPMLN is simi-
lar to the distinction between consistency-restoring rules (CR-rules) and standard ASP rules
under CR-Prolog (Balduccini and Gelfond 2003): CR-rules are added to the standard ASP
program part until the resulting program has a stable model. CR-Prolog also allows a pref-
erence on selecting which CR-rules to be added in order to obtain consistency. In LPMLN a
similar effect can be obtained by adding soft rules with different weights. On the other hand,
CR-Prolog has little to say when there is no stable model no matter what CR-rules are added
(c.f. Example 1).

Remark. This example also illustrates a correspondence between LPMLN and probabilistic
logic programming languages based on the distribution semantics (Sato 1995). The use of
soft rules in the example simulates the probabilistic choices under the distribution semantics.
However, this correspondence is only valid when there is only one stable model per the
probabilistic choice induced by the selection of such soft rules.

Example 3
It is well known that Markov Logic does not properly handle inductive definitions,2 while
LPMLN gives an intuitive representation. For instance, consider that x may influence y if x is
a friend to y, and the influence relation is a minimal relation that is closed under transitivity.

α : Friend(A,B)

α : Friend(B,C)

1 : Influences(x, y)← Friend(x, y)

α : Influences(x, y)← Influences(x, z), Influences(z, y).

Note that the third rule is soft: a person does not always influence his/her friend. The fourth
rule says if x influences z, and z influences y, we can say x influences y. On the other hand,
we do not want this relation to be vacuously true.

Assuming that there are only three people A, B, C in the domain (thus there are 1 +

1 + 9 + 27 ground rules), there are four stable models with non-zero probabilities. Let Z =

e9 + 2e8 + e7.

2 “Markov Logic has the drawback that it cannot express (non-ground) inductive definitions.” (Fierens et al. 2013)
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• I1 = {Friend(A,B),Friend(B,C), Influence(A,B), Influence(B,C), Influence(A,C)}
with probability e9/Z.

• I2 = {Friend(A,B),Friend(B,C), Influence(A,B)} with probability e8/Z.
• I3 = {Friend(A,B),Friend(B,C), Influence(B,C)} with probability e8/Z.
• I4 = {Friend(A,B),Friend(B,C)} with probability e7/Z.

Thus we get

• PrP[Influence(A,B) = t] = PrP[Influence(B,C) = t] = (e9 + e8)/Z = 0.7311.
• PrP[Influence(A,C) = t] = e9/Z = 0.5344.

Increasing the weight of the soft rule yields higher probabilities for Influence(A,B) = t,
Influence(B,C) = t, Influence(A,C) = t. Still, the first two have the same probability, and
the third has less probability than the first two.

Note that the minimality of the influence relation is not expressible under the MLN se-
mantics.

3.3 Relating LPMLN to ASP

Any logic program under the stable model semantics can be turned into an LPMLN pro-
gram by assigning the infinite weight to every rule. That is, for any logic program Π =

{R1, . . . , Rn}, the corresponding LPMLN program PΠ is {α : R1, . . . , α : Rn}.

Theorem 1
For any logic program Π, the (deterministic) stable models of Π are exactly the (probabilistic)
stable models of PΠ whose weight is ekα, where k is the number of all (ground) rules in Π.
If Π has at least one stable model, then all stable models of PΠ have the same probability,
and are thus the stable models of Π as well.

The idea of softening rules in LPMLN is similar to the idea of “weak constraints” in ASP,
which is used for certain optimization problems. A weak constraint has the form “ :∼ Body [Weight :

Level].” The answer sets of a program Π plus a set of weak constraints are the answer sets
of Π which minimize the penalty calculated from Weight and Level of violated weak con-
straints. However, weak constraints are more restrictive than weighted rules in LPMLN, and
do not have a probabilistic semantics.

3.4 Completion: Turning LPMLN to MLN

It is known that the stable models of a tight logic program coincide with the models of
the program’s completion. This yielded a way to compute stable models using SAT solvers.
The method can be extended to LPMLN so that their stable models along with the probabil-
ity distribution can be computed using existing implementations of MLNs, such as Alchemy
(http://alchemy.cs.washington.edu) and Tuffy (http://i.stanford.edu/
hazy/hazy/tuffy).

We define the completion of P, denoted Comp(P), to be the MLN which is the union of P
and the hard rules

α : A→
∨

w:A1,...,Ak←Body ∈ P
A∈{A1,...,Ak}

(
Body ∧

∧
A′∈{A1,...,Ak}\{A}

¬A′
)



8 J. Lee and Y. Meng and Y. Wang

for each ground atom A.
This is a straightforward extension of the completion from (Lee and Lifschitz 2003) simply

assigning the infinite weight α to the completion formulas. Likewise, we say that LPMLN

program P is tight if P is tight according to (Lee and Lifschitz 2003).

Theorem 2
For any tight LPMLN program P such that SM′[P] is not empty, P (under the LPMLN seman-
tics) and Comp(P) (under the MLN semantics) have the same probability distribution over
all interpretations.

4 Embedding Pearl’s Probabilistic Causal Models in LPMLN

4.1 Review: Pearl’s Causal Models

Notation: Following (Pearl 2000), we use capital letters (e.g., X , Y , Z, U , V ) for (lists of)
atoms and lower case letters (x, y, z, u, v) for generic symbols for specific (lists of) truth
values taken by the corresponding (lists of) atoms. When X is a list, we use subscripts, such
as Xi, to denote an element in X .

As usual, a propositional formula is constructed from atoms, t, f, and propositional con-
nectives, ¬, ∧, ∨,→.

Definition 1 (structural theory)
Assume that a finite set of propositional atoms is partitioned into a set of exogenous atoms U
and a set of endogenous atoms V = {V1, . . . , Vn}. A Boolean structural theory is 〈U, V, F 〉,
where F is a finite set of equations Vi = Fi, one for each endogenous atom Vi, and Fi is a
propositional formula.

Definition 2 (causal diagram)
The causal diagram of a Boolean structural theory 〈U, V, F 〉 is the directed graph whose
vertices are the atoms in U ∪ V and an edge goes from Vj to Vi if there is an equation
Vi = Fi in the structural theory such that Vj occurs in Fi. We say that the structural theory
is acyclic if its causal diagram is acyclic.

For any interpretation I and J of U ∪V , we say that J 6=V I if J and I agree on all atoms
in U and do not agree on some atoms in V .

Definition 3 (solution)
Given a Boolean causal theory 〈U, V, F 〉, a solution (or a causal world) I is any interpretation
of U ∪ V such that

• I satisfies the equivalences Vi ↔ Fi for all equations Vi = Fi in F , and
• no other interpretation J such that J 6=V I satisfies all such equivalences Vi ↔ Fi.

Definition 4 (causal model)
A (Boolean) causal model 〈U, V, F 〉 is an acyclic Boolean structural theory that has a unique
solution for each realization (i.e., truth assignment) of U ; in other words, each truth assign-
ment of U has a unique expansion to U ∪ V that is a solution.
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Definition 5 (probabilistic causal model)
A probabilistic (Boolean) structural theory is a pair

〈〈U, V, F 〉, P (U)〉 (3)

where 〈U, V, F 〉 is a Boolean structural theory, and P (U) is a probability distribution over U .
We assume that exogenous atoms are independent of each other. A Probabilisitic (Boolean)
Causal Model (PCM) is a probabilistic structural theory (3) such that 〈U, V, F 〉 is a causal
model. The solutions of PCM (3) are the solutions of 〈U, V, F 〉. The probability of a solution
I under the PCM M, denoted PM(I), is defined as P (U = I(U)).

Given a PCM M = 〈〈U, V, F 〉, P (U)〉, for any subset Y of V , we write YM(u) to denote
the truth assignment of Y in the solution of M induced by u. The probability of Y = y is
defined as

PM(Y = y) =
∑

{u |YM(u)=y} P (u).

For any subset Y , Z of V , PM(Y = y | Z = z) is defined as

PM(Y = y | Z = z) =
∑
{u | YM(u) = y and ZM(u) = z} P (u)∑

{u |ZM(u)=z} P (u) .

Consider, for example, the probabilistic causal model MFS for the Firing Squad exam-
ple (Pearl 2000, Sec 7.1.2):

MFS = 〈〈{U,W}, {C,A,B,D}, F 〉, P (U,W )〉

F : C = U
A = C ∨W
B = C
D = A ∨B

P (U= t) = p
P (W = t) = q

U denotes “The court orders the execution,” C denotes “The captain gives a signal,” A
denotes “Rifleman A shoots,”B denotes “Rifleman B shoots,”D denotes “The prisoner dies,”
and W denotes “Rifleman A is nervous.” There is a probability p that the court has ordered
the execution; rifleman A has a probability q of pulling the trigger out of nervousness. The
PCM has four solutions for each realization of U and W .

Solutions Probability

{U = f ,W = f , C = f , A = f , B = f , D = f} (1−p)(1−q)
{U = f ,W = t, C = f , A = t, B = f , D = t} (1−p)q
{U = t,W = f , C = t, A = t, B = t, D = t} p(1−q)
{U = t,W = t, C = t, A = t, B = t, D = t} pq

4.2 Embedding PCM in LPMLN

Since causal models assume propositional formulas, it is convenient to discuss the result by
first extending the syntax of LPMLN to weighted propositional formulas, that is of the form
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w : F where F is a propositional formula and w is either a real number or the symbol α.
We refer the reader to (Ferraris 2005) for the definition of a stable model for propositional
formulas. Extending LPMLN to this general syntax is straightforward, which we skip due to
lack of space.

Definition 6 (LPMLN representation)
For any PCM M = 〈〈U, V, F 〉, P (U)〉, PM is the LPMLN program consisting of

• α : Vi ← Fi for each equation Vi = Fi in M, and,
• for each exogenous atom Ui of M such that P (Ui = t) = p: (i) ln(p) : Ui and
ln(1− p) :← Ui if 0 < p < 1; (ii) α : Ui if p = 1; (iii) α :← Ui if p = 0.

For the Firing Squad example, assuming 0 < p, q < 1, PMFS
is as follows:

ln(p) : U

ln(1− p) : ← U

ln(q) : W

ln(1− q) : ←W

α : C ← U

α : A← C ∨W
α : B ← C

α : D ← A ∨B.

Theorem 3
The solutions of a probabilistic causal model M are identical to the stable models of PM and
their probability distributions coincide.

Note that the acyclicity condition in PCM implies the tightness condition of its LPMLN

program representation. Thus, using the completion method in Section 3.4, we can automate
query answering for this domain using Alchemy.

4.3 Review: Counterfactuals in PCM

Definition 7 (submodel)
Given a Boolean causal model M = 〈U, V, F 〉, and a subset X of V , the submodel MX=x

of M is the Boolean causal model obtained from M by replacing every equation Xi = Fi
in the theory, where Xi ∈ X , with Xi = xi. Given a PCM M = 〈M,P (U)〉, MX=x =

〈MX=x, P (U)〉.

For any PCM M = 〈〈U, V, F 〉, P (U)〉, let X , Y , Z be subsets of V . The probability of a
counterfactual statement, represented as YX=x = y, is defined as

PM(YX=x = y) =
∑

{u |YMX=x
(u)=y}

P (u).

The probability of a conditional counterfactual statement “Given Z is z, Y would have
been y had X been x”, represented as YX=x = y | Z = z, is defined as

PM(YX=x = y | Z = z) =

∑
{u | YMX=x

(u) = y and ZM(u) = z} P (u)∑
{u|ZM(u)=z} P (u)

.

For example, given that the prisoner is dead, what is the probability that the prisoner were
not dead if rifleman A had not shot? This is asking: PM(DA=f = f | D = t) = (1−p)q

1−(1−p)(1−q) .
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4.4 PCM Counterfactuals in LPMLN

Counterfactual reasoning in PCM can be turned into LPMLN reasoning. The program LPMLN

Ptwin
M consists of

• all rules in PM;
• rule

α : V ∗i ← F ∗i ∧ ¬Do(Vi= t) ∧ ¬Do(Vi= f)
for each equation Vi = Fi in M, where V ∗i is a new symbol corresponding to Vi, and
F ∗i is a formula obtained from F by replacing every occurrence of endogenous atoms
W with W ∗.
• rule

α : V ∗i ← Do(Vi= t) (4)

for every Vi ∈ V .

(Note that Do(Vi= t) is an atom, containing “=” as a part of the string.)

Theorem 4
For any PCM M = 〈〈U, V, F 〉, P (U)〉 and any subsets X,Y , Z of V , which are not neces-
sarily disjoint from each other,

PM(YX=x = y | Z = z) = PrPtwin
M ∪Do(X=x)[Y

∗ = y | Z = z],

where Do(X = x) is {α : Do(Xi = xi) | i = 1, . . . , |X|}.

Readers who are familiar with the twin network method for counterfactual reasoning (Balke
and Pearl 1994) would notice that Ptwin

M ∪Do(X = x) represents the twin network obtained
from M, where starred atoms represent the counterfactual world.

For the Firing Squad example, Ptwin
MFS

is the union of PMFS
and the set of rules

α : C∗ ← U, not Do(C = t), not Do(C = f)
α : A∗ ← C∗, not Do(A = t), not Do(A = f)
α : A∗ ←W, not Do(A = t), not Do(A = f)
α : B∗ ← C∗ ∧ ¬Do(B = t) ∧ ¬Do(B = f)
α : D∗ ← (A∗ ∨B∗) ∧ ¬Do(D = t) ∧ ¬Do(D = f)

and rules (4) for Vi ∈ {C,A,B,D}. In accordance with Theorem 4,

PrPtwin
MFS
∪{α:Do(A=f)}[D

∗= f | D= t] =
(1− p)q

1− (1− p)(1− q)
.

The LPMLN representation is similar to the one in (Baral and Hunsaker 2007), which turns
PCM into P-log. However, the LPMLN representation is simpler; we require neither auxiliary
predicates, such as intervene and obs, nor strong negation.

4.5 Other Related Work

In (Lee and Wang 2015) it is shown that a version of ProbLog from (Fierens et al. 2013)
can be embedded in LPMLN. This result can be extended to embed Logic Programs with
Annotated Disjunctions (LPAD) in LPMLN based on the fact that any LPAD program can be
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further turned into a ProbLog program by eliminating disjunctions in the heads (Gutmann
2011, Section 3.3).

It is known that LPAD is related to several other languages. In (Vennekens et al. 2004), it
is shown that Poole’s ICL (Poole 1997) can be viewed as LPAD, and that acyclic LPAD pro-
grams can be turned into ICL. This indirectly tells us how ICL can be embedded in LPMLN.

CP-logic (Vennekens et al. 2009) is a probabilistic extension of FO(ID) (Denecker and
Ternovska 2007). It is shown in (Vennekens et al. 2006), that CP-logic “almost completely
coincides” with LPAD.

P-log (Baral et al. 2009) is another language whose logical foundation is answer set pro-
grams. Like LPMLN, it considers the possible worlds to be answer sets, which represent an
agent’s rational beliefs, rather than any interpretations. The difference is that P-log’s proba-
bilistic foundation is Causal Bayesian Networks, whereas Markov Logic serves as the prob-
abilistic foundation of LPMLN. P-log is distinct from other earlier work in that it allows for
expressing probabilistic nonmonotonicity, the ability of the reasoner to change its probabilis-
tic model as a result of new information. However, inference in the implementation of P-log
is not scalable as it has to enumerate all stable models.

PrASP (Nickles and Mileo 2014) is a recent language similar to LPMLN in that the proba-
bility distribution is obtained from the weights of the formulas. In addition, (Ng and Subrah-
manian 1994) and (Saad and Pontelli 2005) introduce other probabilistic extensions of stable
model semantics.

While the study of more precise relationships between LPMLN and the above languages is
future work, one notable distinction is that LPMLN uses Markov Logic as a monotonic basis,
similar to the way ASP uses SAT as a monotonic basis. Most of the languages are meaning-
ful only when the knowledge base is consistent, and thus do not address the inconsistency
handling as in LPMLN.

5 Conclusion

LPMLN is a simple, intuitive approach to combine both ASP and MLNs. LPMLN provides a
simple solution to inconsistency handling in ASP, especially when ASP knowledge bases are
combined from different sources.

While MLN is an undirected approach, LPMLN is a directed approach, where the direc-
tionality comes from the stable model semantics. This makes LPMLN closer to Pearl’s causal
models and ProbLog.

The work presented here calls for more future work. Obviously, there are many existing
languages that we did not formally compare with LPMLN. While a fragment of LPMLN can be
computed by existing implementations of and MLNs, one may design a native computation
method for the general case. The close relationship between LPMLN and MLNs may tell us
how to apply machine learning methods developed for MLNs to work with LPMLN programs.
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