
Technical Communications of ICLP 2015. Copyright with the Authors. 1

An abductive Framework for Datalog± Ontologies

MARCO GAVANELLI, EVELINA LAMMA, FABRIZIO RIGUZZI,

ELENA BELLODI, RICCARDO ZESE and GIUSEPPE COTA

University of Ferrara, Italy

submitted 29 May 2015; accepted 14 July 2015

Abstract

Ontologies are a fundamental component of the Semantic Web since they provide a formal
and machine manipulable model of a domain. Description Logics (DLs) are often the
languages of choice for modeling ontologies. Great effort has been spent in identifying
decidable or even tractable fragments of DLs. Conversely, for knowledge representation
and reasoning, integration with rules and rule-based reasoning is crucial in the so-called
Semantic Web stack vision. Datalog± is an extension of Datalog which can be used for
representing lightweight ontologies, and is able to express the DL-Lite family of ontology
languages, with tractable query answering under certain language restrictions.

In this work, we show that Abductive Logic Programming (ALP) is also a suitable
framework for representing Datalog± ontologies, supporting query answering through an
abductive proof procedure, and smoothly achieving the integration of ontologies and rule-
based reasoning. In particular, we consider an Abductive Logic Programming framework
named SCIFF and derived from the IFF abductive framework, able to deal with exis-
tentially (and universally) quantified variables in rule heads, and Constraint Logic Pro-
gramming constraints. Forward and backward reasoning is naturally supported in the
ALP framework. We show that the SCIFF language smoothly supports the integration
of rules, expressed in a Logic Programming language, with Datalog± ontologies, mapped
into SCIFF (forward) integrity constraints.

KEYWORDS: Abductive Logic Programming, Datalog±, Description Logics, Semantic
Web.

1 Introduction

The main idea of the Semantic Web is making information available in a form that

is understandable and automatically manageable by machines (Hitzler et al. 2009).

Ontologies are engineering artefacts consisting of a vocabulary describing some

domain, and an explicit specification of the intended meaning of the vocabulary (i.e.,

how concepts should be classified), possibly together with constraints capturing

additional knowledge about the domain. Ontologies provide a formal and machine

manipulable model of a domain, and this justifies their use in the Semantic Web.

In order to realize this vision, the W3C has supported the development of a

family of knowledge representation formalisms of increasing complexity for defining
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ontologies, called Web Ontology Language (OWL). In particular, OWL 1 defines

the sublanguages OWL-Lite, OWL-DL (based on Description Logics) and OWL-

Full. Therefore, ontologies are a fundamental component of the Semantic Web and

Description Logics (DLs) are often the languages of choice for modeling them.

Extensive work has focused on developing tractable DLs, identifying the DL-Lite

family (Calvanese et al. 2007), for which answering conjunctive queries is in AC0

in data complexity.

In a related research direction, Cal̀ı et al. (2009b) proposed Datalog±, an exten-

sion of Datalog with existential rules for defining ontologies. Datalog± can be used

for representing lightweight ontologies, and encompasses the DL-Lite family (Cal̀ı

et al. 2009a). By suitably restricting the language syntax and adopting appropriate

syntactic conditions, also Datalog± achieves tractability (Cal̀ı et al. 2008).

In this work, we consider the Datalog± language and show how ontologies ex-

pressed in this language can be also modeled in an Abductive Logic Programming

(ALP, for short) framework (Kakas et al. 1993), where query answering is sup-

ported by the underlying ALP proof procedure. ALP has been proved a powerful

tool for knowledge representation and reasoning, taking advantage from ALP opera-

tional support as a (static or dynamic) verification tool. ALP languages are usually

equipped with a declarative (model-theoretic) semantics, and an operational se-

mantics given in terms of a proof-procedure. Several abductive proof procedures

have been defined (both backward, forward, and a mix of the two such) (Kakas and

Mancarella 1990; Bry 1990; Kakas 2000; Denecker and Schreye 1998; Alferes et al.

1999; Abdennadher and Christiansen 2000; Christiansen and Dahl 2005; Endriss

et al. 2004), with many different applications (diagnosis, monitoring, verification,

etc.). Among them, a notable one is the IFF abductive proof-procedure (Fung and

Kowalski 1997) which was proposed to deal with forward rules, and with non-ground

abducibles. This proof procedure has been later extended in (Alberti et al. 2008),

and the resulting proof procedure, named SCIFF, can deal with both existentially

and universally quantified variables in rule heads, and Constraint Logic Program-

ming (CLP) constraints (Jaffar and Maher 1994). The resulting system has been

used for modeling and implementing several knowledge representation frameworks,

such as deontic logic (Alberti et al. 2006), normative systems (Alberti et al. 2012),

interaction protocols for multi-agent systems (Alberti et al. 2004), Web services

choreographies (Alberti et al. 2006), etc. also providing an effective reasoning sys-

tem.

Here we concentrate on Datalog± ontologies, and show how an ALP language

enriched with quantified variables (existential to our purposes) can be a useful

knowledge representation and reasoning framework for them. We do not focus here

on complexity results of the overall system, which is, however, not tractable.

Forward and backward reasoning is naturally supported by the ALP proof pro-

cedure, and the considered SCIFF language smoothly supports the integration of

rules, expressed in a Logic Programming language, with ontologies expressed in

Datalog±. In fact, In fact, SCIFF allows us to map Datalog± ontologies into the

forward integrity constraints on which it is based. Other ALP languages could be

used (Kakas et al. 2001; Mancarella et al. 2009); we chose SCIFF because it is
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freely available on the web and it is supported on the last versions of commercial

and open source Prolog systems (SICStus (Carlsson and Mildner 2012) and SWI

(Wielemaker et al. 2012)).

In the following, Section 2 introduces Datalog±. Section 3 introduces Abductive

Logic Programming, and the SCIFF language. Section 4 shows how the considered

Datalog± language can be mapped into SCIFF. Section 5 concludes the paper, and

outlines future work.

2 Datalog±

Datalog± extends Datalog by allowing existential quantifiers, the equality predicate

and the truth constant false in rule heads. Datalog± can be used for representing

lightweight ontologies and is able to express the DL-Lite family of ontology lan-

guages (Cal̀ı et al. 2009a). By restricting the language syntax, Datalog± achieves

decidability (Cal̀ı et al. 2008).

In order to describe Datalog±, let us assume (i) an infinite set of data constants

∆, (ii) an infinite set of labeled nulls ∆N (used as “fresh” Skolem terms), and (iii)

an infinite set of variables ∆V . Different constants represent different values (unique

name assumption), while different nulls may represent the same value. We assume

a lexicographic order on ∆∪∆N , with every symbol in ∆N following all symbols in

∆. We denote by X vectors of variables X1, . . . ,Xk with k ≥ 0. A relational schema

R is a finite set of relation names (or predicates). A term t is a constant, null or

variable. An atomic formula (or atom) has the form p(t1, . . . , tn), where p is an n-

ary predicate, and t1, . . . , tn are terms. A database D for R is a possibly infinite set

of atoms with predicates from R and arguments from ∆∪∆N . A conjunctive query

(CQ) over R has the form q(X) = ∃YΦ(X,Y), where Φ(X,Y) is a conjunction

of atoms having as arguments variables X and Y and constants (but no nulls). A

Boolean CQ (BCQ) over R is a CQ having head predicate q of arity 0 (i.e., no

variables in X).

We often write a BCQ as the set of all its atoms, having constants and variables

as arguments, and omitting the quantifiers. Answers to CQs and BCQs are defined

via homomorphisms, which are mappings µ : ∆ ∪∆N ∪∆V → ∆ ∪∆N ∪∆V such

that (i) c ∈ ∆ implies µ(c) = c, (ii) c ∈ ∆N implies µ(c) ∈ ∆ ∪ ∆N , and (iii)

µ is naturally extended to term vectors, atoms, sets of atoms, and conjunctions

of atoms. The set of all answers to a CQ q(X) = ∃YΦ(X,Y) over a database D ,

denoted q(D), is the set of all tuples t over ∆ for which there exists a homomorphism

µ : X ∪Y → ∆ ∪ ∆N such that µ(Φ(X,Y)) ⊆ D and µ(X) = t. The answer to

a BCQ q = ∃YΦ(Y) over a database D , denoted q(D), is Yes, denoted D |= q ,

iff there exists a homomorphism µ : Y → ∆ ∪∆N such that µ(Φ(Y)) ⊆ D , i.e., if

q(D) 6= ∅.
Datalog± syntax includes three types of implication rules. Given a relational

schemaR, a tuple-generating dependency (or TGD) F is a first-order formula of the

form ∀X∀YΦ(X,Y)→ ∃ZΨ(X,Z), where Φ(X,Y) and Ψ(X,Z) are conjunctions

of atoms over R, called the body and the head of F , respectively. Such F is satisfied

in a database D for R iff, whenever there exists a homomorphism h such that
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h(Φ(X,Y)) ⊆ D , there exists an extension h ′ of h such that h ′(Ψ(X,Z)) ⊆ D . We

usually omit the universal quantifiers in TGDs.

Query answering under TGDs is defined as follows. For a set of TGDs T on R,

and a database D for R, the set of models of D given T , denoted mods(D ,T ), is

the set of all (possibly infinite) databases B such that D ⊆ B and every F ∈ T is

satisfied in B . The set of answers to a CQ q on D given T , denoted ans(q ,D ,T ), is

the set of all tuples t such that t ∈ q(B) for all B ∈ mods(D ,T ). The answer to a

BCQ q over D given T is Yes, denoted D∪T |= q , iff B |= q for all B ∈ mods(D ,T ).

The second component of a Datalog± theory is represented by negative con-

straints (NC): first-order formulas of the form ∀XΦ(X) → false, where Φ(X) is a

conjunction of atoms. The universal quantifiers are usually left implicit.

Equality-generating dependencies (EGDs) are the third component of a Datalog±

theory. An EGD F is a first-order formula of the form ∀XΦ(X)→ Xi = Xj , where

Φ(X), called the body of F , is a conjunction of atoms, and Xi and Xj are variables

from X. We call Xi = Xj the head of F . Such F is satisfied in a database D for R
iff, whenever there exists a homomorphism h such that h(Φ(X)) ⊆ D , it holds that

h(Xi) = h(Xj ). We usually omit the universal quantifiers in EGDs.

2.1 The Chase

The chase is a bottom-up procedure for deriving atoms entailed by a database and

a Datalog± theory. The chase works on a database through the so-called TGD and

EGD chase rules.

The TGD chase rule is defined as follows. Given a relational database D for a

schema R, and a TGD F on R of the form ∀X∀YΦ(X,Y) → ∃ZΨ(X,Z), F is

applicable to D if there is a homomorphism h that maps the atoms of Φ(X,Y)

to atoms of D . Let F be applicable and h1 be a homomorphism that extends h as

follows: for each Xi ∈ X, h1(Xi) = h(Xi); for each Zj ∈ Z, h1(Zj ) = zj , where zj
is a “fresh” null, i.e., zj ∈ ∆N , zj 6∈ D , and zj lexicographically follows all other

labeled nulls already introduced. The result of the application of the TGD chase

rule for F is the addition to D of all the atomic formulas in h1(Ψ(X,Z)) that are

not already in D .

The EGD chase rule is defined as follows. An EGD F on R of the form Φ(X)→
Xi = Xj is applicable to a database D for R iff there exists a homomorphism

h : Φ(X) → D such that h(Xi) and h(Xj ) are different and not both constants. If

h(Xi) and h(Xj ) are different constants in ∆, then there is a hard violation of F .

Otherwise, the result of the application of F to D is the database h(D) obtained

from D by replacing every occurrence of a non-constant element e ∈ {h(Xi), h(Xj )}
in D by the other element e ′ (if e and e ′ are both nulls, then e precedes e ′ in the

lexicographic order).

The chase algorithm consists of an exhaustive application of the TGD and EGD

chase rules that may lead to an infinite result. The chase rules are applied iteratively:

in each iteration (1) a single TGD is applied once and then (2) the EGDs are applied

until a fix point is reached. EGDs are assumed to be separable (Cal̀ı et al. 2010).

Intuitively, separability holds whenever: (i) if there is a hard violation of an EGD
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in the chase, then there is also one on the database w.r.t. the set of EGDs alone

(i.e., without considering the TGDs); and (ii) if there is no hard violation, then

the answers to a BCQ w.r.t. the entire set of dependencies equals those w.r.t. the

TGDs alone (i.e., without the EGDs).

The two problems of CQ and BCQ evaluation under TGDs and EGDs are

logspace-equivalent (Cal̀ı et al. 2009b). Moreover, query answering under TGDs

is equivalent to query answering under TGDs with only single atoms in their

heads (Cal̀ı et al. 2008). Henceforth, we focus only on the BCQ evaluation prob-

lem and we assume that every TGD has a single atom in its head (without loss

of generality since by introducing new predicate symbols, we can always transform

TGD-rules with multiple atoms in the head in sets of rules with only one). A BCQ

q on a database D , a set TT of TGDs and a set TE of EGDs can be answered by

performing the chase and checking whether the query is entailed by the extended

database that is obtained. In this case we write D ∪ TT ∪ TE |= q .

Example 1 (Adapted from (Gottlob et al. 2011))

Consider the following ontology for a real estate information extraction system:

F1 = ann(X , label), ann(X , price), visible(X )→ priceElem(X )

If X is annotated as a label, as a price and is visible, then it is a price element.

F2 = ann(X , label), ann(X , priceRange), visible(X )→ priceElem(X )

If X is annotated as a label, as a price range, and is visible, then it is a price

element.

F3 = priceElem(E ), group(E ,X )→ forSale(X )

If E is a price element and is grouped with X , then X is for sale.

F4 = forSale(X )→ ∃P price(X ,P)

If X is for sale, then there exists a price for X .

F5 = hasCode(X ,C ), codeLoc(C ,L)→ loc(X ,L)

If X has postal code C , and C ’s location is L, then X ’s location is L.

F6 = hasCode(X ,C )→ ∃L codeLoc(C ,L), loc(X ,L)

If X has postal code C , then there exists L s.t. C has location L and so does X .

F7 = loc(X ,L1), loc(X ,L2)→ L1 = L2

If X has the locations L1 and L2, then L1 and L2 are the same.

F8 = loc(X ,L)→ advertised(X )

If X has a location L then X is advertised.

Suppose we are given the database

codeLoc(ox1, central), codeLoc(ox1, south), codeLoc(ox2, summertown)

hasCode(prop1, ox2), ann(e1, price), ann(e1, label), visible(e1), group(e1, prop1)

The atomic BCQs priceElem(e1), forSale(prop1) and advertised(prop1) evaluate to

true, while the CQ loc(prop1,L) has answers q(L) = {summertown}. In fact, even

if loc(prop1, z1) with z1 ∈ ∆N is entailed by formula F6, formula F7 imposes that

summertown = z1. If F7 were absent then q(L) = {summertown, z1}.

Answering BCQs q over databases and ontologies containing NCs can be performed

by first checking whether the BCQ Φ(X) evaluates to false for each NC of the form

∀XΦ(X)→ false. If one of these checks fails, then the answer to the original BCQ q
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is positive, otherwise the negative constraints can be simply ignored when answering

the original BCQ q .

3 ALP and the SCIFF language

Abductive Logic Programming (ALP, for short) is a family of programming lan-

guages that integrate abductive reasoning into logic programming. An ALP pro-

gram consists of a set of clauses, that can contain in the body some distinguished

predicates, belonging to a set A and called abducibles. The aim is finding a set of

abducibles EXP, built from symbols in A that, together with the knowledge base,

is an explanation for a given known effect (called goal G) and satisfies a set of logic

formulae, called Integrity Constraints (IC ):

KB ∪EXP |= G
KB ∪EXP |= IC

SCIFF (Alberti et al. 2008) is a language in the ALP class, originally designed

to model and verify interactions in open societies of agents and it is an extension

of the IFF proof-procedure (Fung and Kowalski 1997). As the IFF, it relies on the

three-valued completion semantics (Kunen 1987), it considers integrity constraints

of the form body → head where the body is a conjunction of literals and the head

is a disjunction of conjunctions of literals. While in the IFF the literals can be

built only on defined or abducible predicates, in SCIFF they can also be CLP

constraints (Jaffar and Maher 1994), occurring events (only in the body), or positive

and negative expectations, as will be explained soon.

Definition 1

A SCIFF Program is a pair 〈KB , IC〉 where KB is a set of clauses (an extended

logic program) and IC is a set of forward rules called Integrity Constraints (ICs,

for short in the following).

SCIFF considers a (possibly dynamically growing) set of facts (called history)

HAP, that contains ground atoms H(Event [,Time]). This set can grow dynami-

cally, during the computation, thus implementing a dynamic acquisition of events.

Some distinguished abducibles are called expectations. A positive expectation, writ-

ten E(Event [,Time]) means that a corresponding event H(Event [,Time]) is ex-

pected to happen, while EN(Event [,Time]) is a negative expectation, and requires

events H(Event [,Time]) not to happen. To simplify the notation, we will omit the

Time argument from events and expectations.

Variables occurring only in positive expectations are existentially quantified (ex-

pressing the idea that a single event is enough to support them), while those in

negative expectations are universally quantified, so that any event matching with a

negative expectation leads to inconsistency with the current hypothesis. CLP (Jaf-

far and Maher 1994) constraints can be imposed on variables. The computed answer

includes in general three elements: a substitution for the variables in the goal (as

usual in Prolog), the constraint store (as in CLP), and the set EXP of abduced

literals.
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The declarative semantics of SCIFF includes the classic conditions of ALP:

KB ∪HAP ∪EXP |= G (1)

KB ∪HAP ∪EXP |= IC (2)

plus specific conditions to support the confirmation of expectations.

Positive/negative expectations are confirmed (not violated) if

KB ∪HAP ∪EXP |= E(X )→ H(X ) (3)

KB ∪HAP ∪EXP |= EN(X ) ∧H(X )→ false (4)

The declarative semantics of SCIFF also requires that the same event cannot be

expected both to happen and not to happen

KB ∪HAP ∪EXP |= E(X ) ∧EN(X )→ false (5)

Definition 2 (SCIFF answer)

Given a SCIFF program 〈KB , IC〉 and a history HAP, a goal G is a SCIFF answer

if there is a set EXP such that equations (1)-(5) are satisfied. In this case, we write

〈KB , IC〉 |=HAP G

The SCIFF proof-procedure is a rewriting system that defines a proof tree, whose

nodes represent states of the computation. A set of transitions rewrite a node into

one or more children nodes.

The main transitions, inherited from the IFF are:

Unfolding replaces a (non abducible) atom with its definitions;

Propagation if an abduced atom a(X ) occurs in the condition of an IC (e.g.,

a(Y )→ p), the atom is removed from the condition (generating X = Y → p);

Case Analysis given an implication containing an equality in the condition (e.g.,

X = Y → p), generates two children in logical or (in the example, either X = Y

and p, or X 6= Y );

Equality rewriting rewrites equalities as in the Clark’s equality theory;

Logical simplifications other simplifications like (true→ A)⇔ A, etc.

SCIFF includes also the transitions of CLP (Jaffar and Maher 1994) for constraint

solving.

A complete description is in (Alberti et al. 2008), with proofs of soundness,

completeness, and termination. SCIFF was implemented in CHR (Frühwirth 1998),

an efficient implementation is described in (Alberti et al. 2013).

In this paper we consider the generative version of SCIFF, called g-SCIFF (Al-

berti et al. 2006), in which also the H events are considered as abducibles, and can

be assumed like the other abducible predicates, beside being provided as input in

the history HAP; they are then collected in a set HAP′ ⊇ HAP.
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Definition 3 (g-SCIFF answer)

Given a SCIFF program 〈KB , IC〉 and a history HAP, we say that a goal G is

a g-SCIFF answer if there exist a set EXP and a set HAP′ ⊇ HAP such that

equations (1)-(5) are satisfied1. In this case, we write

〈KB , IC〉 |=g
HAP G

4 Mapping Datalog± into ALP programs

In this section, we show that a Datalog± program can be represented as a set of

SCIFF integrity constraints and a history. SCIFF abductive declarative semantics

provides the model-theoretic counterpart to Datalog± semantics. Operationally,

query answering is achieved bottom-up via the chase in Datalog±, while in the

ALP framework it is supported by the SCIFF proof procedure. SCIFF is able to

integrate a knowledge base KB , expressed in terms of Logic Programming clauses,

possibly with abducibles in their body, and to deal with integrity constraints.

To our purposes, we consider only SCIFF programs with an empty KB , IC s with

only conjunctions of positive expectations and CLP constraints in their heads. We

show that this subset of the language suffices to represent Datalog± ontologies2.

We map the finite set of relation names of a Datalog± relational schema R into

the set of predicates of the corresponding SCIFF program.

Definition 4

The τ mapping is recursively defined as follows, where A is an atom, M can be

either H or E, and F1, F2, . . . are Datalog± formulae:

τ(Body → Head) = τH(Body)→ τE(Head)

τH(A) = H(A)

τE(A) = E(A)

τM(F1 ∧ F2) = τM(F1) ∧ τM(F2)

τM(false) = false

τM(Yi = Yj ) = Yi = Yj

τE(∃X A) = E(A)

A Datalog± database D for R corresponds to the (possibly infinite) SCIFF his-

tory HAP, since there is a one-to-one correspondence between each tuple in D and

each (ground) fact in HAP. This mapping is denoted as HAP = τH(D).

A Datalog TGD F of the kind body → head is mapped into the SCIFF integrity

constraint IC = τ(F ), where the body is mapped into conjunctions of SCIFF atoms,

and head into conjunctions of SCIFF abducible atoms. Existential quantifications

of variables occurring in the head of the TGD are maintained in the head of the

SCIFF IC , but they are left implicit in the SCIFF syntax, while the rest of the

variables are universally quantified with scope the entire IC .

1 In the equations (1)-(5) the set HAP should be substituted with HAP′.
2 As should be clear soon, the only CLP constraint used in the mapping is the equality constraint
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Given a set of TGDs T , let us denote the mapping of T into the corresponding

set IC of SCIFF integrity constraints, as IC = τ(T ).

Recall that for a set of TGDs T on R, and a database D for R, the set of models

of D given T , denoted mods(D ,T ), is the set of all (possibly infinite) databases B

such that D ⊆ B and every F ∈ T is satisfied in B . For any such database B , we can

prove that there exists an abductive explanation EXP = τE(B), HAP′ = τH(B)

such that:

HAP′ ∪EXP |= IC
where HAP′ ⊇ HAP = τH(D), and IC = τ(T ).

Finally, Datalog± negative constraints NC are mapped into SCIFF ICs with head

false, and equality-generating dependencies EGDs into SCIFF ICs, each one with

an equality CLP constraint in its head.

Therefore, informally speaking, the set of models of D given T , mods(D ,T ),

corresponds to the set of all the abductive explanations EXP satisfying the set of

SCIFF integrity constraints IC = τ(T ).

A Datalog± CQ q(X) = ∃YΦ(X,Y) over R is mapped into a SCIFF goal G =

τE(Φ(X,Y)), where τE(Φ(X,Y)) is a conjunction of SCIFF atoms. Notice that in

the SCIFF framework we have therefore a goal with existential variables only, and

among them, we are interested in computed answer substitutions for the original

(tuple of) variables X (and therefore Y variables can be made anonymous).

A Datalog± BCQ q = Φ(Y) is mapped similarly: G = τE(Φ(Y)).

Recall that in Datalog± the set of answers to a CQ q on D given T , denoted

ans(q ,D ,T ), is the set of all tuples t such that t ∈ q(B) for all B ∈ mods(D ,T ).

With abuse of notation, we will write q(t) to mean answer t for q on D given T .

We can hence state the following theorems for (model-theoretic) completeness of

query answering.

Theorem 1 (Completeness of query answering)

For each answer q(t) of a CQ q(X) = ∃YΦ(X,Y) on D given T , in the corre-

sponding SCIFF program 〈∅,A, τ(T )〉 there exists an answer substitution θ and an

abductive explanation EXP ∪HAP′ for goal G = τE(Φ(X, )) such that:

〈∅, IC〉 |=g
HAP Gθ

where HAP = τH(D), IC = τ(T ), and Gθ = τE(Φ(t, )).

Corollary 1 (Completeness of boolean query answering)

If the answer to a BCQ q = ∃YΦ(Y) over D given T is Yes, denoted D ∪ T |= q ,

then in the corresponding SCIFF program there exists an abductive explanation

EXP ∪HAP′ such that:

〈∅, IC〉 |=g
HAP Gθ

where HAP = τH(D), IC = τ(T ), and G = τE(Φ( )).

The SCIFF proof procedure was proved sound and complete w.r.t. SCIFF declar-

ative semantics in (Alberti et al. 2008), thus for each abductive explanation EXP

for a given goal G in a SCIFF program, there exists a SCIFF-based computation
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producing a set of abducibles (positive expectations to our purposes) δ ⊆ EXP,

and a computed answer substitution for goal G possibly more general than θ.

Example 2 (Real estate information extraction system in ALP)

The TGDs F1-F8 from the Datalog± ontology of Example 1 are one-to-one mapped

into the following SCIFF ICs:3

IC1 : H(ann(X , label)),H(ann(X , price)),H(visible(X ))→ E(priceElem(X ))

IC2 : H(ann(X , label)),H(ann(X , priceRange)),H(visible(X ))→ E(priceElem(X ))

IC3 : H(priceElem(E )),H(group(E ,X ))→ E(forSale(X ))

IC4 : H(forSale(X ))→ (∃P) E(price(X ,P))

IC5 : H(hasCode(X ,C )),H(codeLoc(C ,L))→ E(loc(X ,L))

IC6 : H(hasCode(X ,C ))→ (∃L) E(codeLoc(C ,L)),E(loc(X ,L))

IC7 : H(loc(X ,L1)),H(loc(X ,L2))→ L1 = L2

IC8 : H(loc(X ,L))→ E(advertised(X ))

The database is then simply mapped into the following history HAP:

{H(codeLoc(ox1, central)),H(codeLoc(ox1, south)),

H(codeLoc(ox2, summertown)),H(hasCode(prop1, ox2)),H(ann(e1, price)),

H(ann(e1, label)),H(visible(e1)),H(group(e1, prop1))}

The SCIFF proof procedure applies ICs in a forward manner, and it infers the

following set of abducibles from the program above:

EXP = {E(priceElem(e1)),E(forSale(prop1)),∃P E(price(prop1,P)),

E(loc(prop1, summertown)),E(advertised(prop1))}

plus the corresponding H atoms, that are not reported for the sake of brevity.

Each of the (ground) atomic queries of Example 1 is entailed in the SCIFF

program above, since there exist sets EXP and HAP′ such that:

HAP′ ∪EXP |= E(priceElem(e1)),E(forSale(prop1)),E(advertised(prop1))

The query ∃L E(loc(prop1,L)) is entailed as well (with unification L = summertown)

since:

HAP′ ∪EXP |= E(loc(prop1, summertown))

Also in this case, if we remove IC7 we obtain the previous answer, and a further

one, similar to the one obtained by Datalog±, where the set HAP′ contains two

loc events:

H(loc(prop1, summertown)), ∃L H(loc(prop1,L))

and the answer includes a further CLP constraint L 6= summertown (being, instead,

L and summertown unified in the previous answer).

3 We show for clarity the quantification of existentially quantified variables, although in the
SCIFF syntax the quantification is implicit.
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5 Conclusions and Future Work

In this paper, we addressed representation and reasoning for Datalog± ontologies in

an Abductive Logic Programming framework, with existential (and universal) vari-

ables, and Constraint Logic Programming constraints in rule heads. The underlying

proof procedure, named SCIFF and inspired by the IFF proof procedure, was im-

plemented in Constraint Handling Rules (Frühwirth 1998). The SCIFF system has

already been used for modeling and implementing several knowledge representation

frameworks, also providing an effective reasoning system.

Here we have shown how the SCIFF language can be a useful knowledge repre-

sentation and reasoning framework for Datalog± ontologies. In fact, the underlying

abductive proof procedure can be directly exploited as an ontological reasoner for

query answering and consistency check, also supporting inline incrementality of the

extensional part of the knowledge base (namely, the ABox), represented in SCIFF

as a (possibly incremental) set of events. To the best of our knowledge, this is the

first application of ALP to model and reason upon ontologies.

Many issues have not been addressed in this paper, and they will be subject of

future work. First of all, we have not focused here on complexity results. Future work

will be devoted to identify syntactic conditions guaranteeing tractable ontologies in

SCIFF, in the style of what has been done for Datalog±.

A second issue for future work concerns experimentation and comparison with

other approaches, even not Logic Programming based, on real-size ontologies.

Finally, SCIFF language is richer than the subset here used to represent Datalog±

ontologies. In fact, the SCIFF integrity constraints can have the disjunction in the

head, and negative expectations in rule heads, with universally quantified variables

too, which basically represent the fact that something ought not to happen, and

the proof procedure can identify violations to them. Moreover, the SCIFF language

smoothly supports the integration of rules, expressed in a Logic Programming lan-

guage, with ontologies expressed in Datalog±, since a Logic Programming program

can be added to the set of ICs, giving the opportunity to consider deductive rules

besides the forward ICs themselves. SCIFF also allows for CLP constraints be-

side the equality one, which can be used also in the ICs as well. Finally, this rich

language could be used to add further expressivity to query languages.
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