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Abstract

The problem of expressing and supporting classical greedy algorithms in Datalog has been

the focus of many signi�cant research e�orts that have produced very interesting solutions

for particular algorithms. But we still lack a general treatment that characterizes the

relationship of greedy algorithms to non-monotonic theories and leads to asymptotically

optimal implementations. In this paper, we propose a general solution to this problem.

Our approach begins by identifying a class of locally strati�ed programs that subsumes

XY-strati�ed programs and is formally characterized using the Datalog1S representation of

numbers. Then, we propose a simple specialization of the iterated �xpoint procedure that

computes e�ciently the perfect model for these programs, achieving optimal asymptotic

complexities for well-known greedy algorithms.This makes possible their e�cient support

in Datalog systems.
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1 Introduction

Due to the emergence of many important application areas, we are now experi-

encing a major resurgence of interest in Datalog for parallel and distributed pro-

gramming (Hellerstein 2010; Abiteboul et al. 2011) (Gottlob et al. 2011; Abite-

boul et al. 2011). This include exploring parallel execution of recursive queries in

the MapReduce framework (Afrati et al. 2011) and on multicore machines (Yang

et al. 2015), and in Data Stream Management Systems (Zaniolo 2011). The abun-

dance of new applications underscores the need to tackle and solve crucial Datalog

problems that have remained open for a long tim�starting with algorithms that

require aggregates in recursive rules that provided the subject of much previous

work (Zaniolo et al. 1997; Greco and Zaniolo 2001a; Mumick et al. 1990; Kolaitis

1991; Mumick and Shmueli 1995; Ross and Sagiv 1997). In this context, a major

step forward was accomplished recently with the introduction of monotonic aggre-

gates (Mazuran et al. 2013; Shkapsky et al. 2013). Monotonic aggregates, however,

cannot address the problem of formulating and supporting e�ciently greedy al-

gorithms, a di�cult challenge that provided the focus of much previous research,

including (Greco et al. 1992; Greco and Zaniolo 1998; Greco and Zaniolo 2001b).

Their work provided a stable-model characterization for speci�c greedy algorithms

but did not develop a general theory and e�cient solutions for such programs. In

this paper, we achieve a general solution by showing that greedy algorithms can be
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expressed quite naturally as locally strati�ed programs that are conducive to a very

e�cient implementation�i.e., one having the same asymptotic complexity as that

achievable using procedural languages and specialized data structures. This is a

very encouraging result, given that optimal performance is not easily achievable for

algorithms expressed in the concise and elegant formalism of declarative logic, i.e.,

without having to specify detailed operational steps and special data structures in

many pages of procedural code. Furthermore, many intractability results obtained

for locally strati�ed logic programs (Palopoli 1992) underscore the di�culty of us-

ing them to express and support low-complexity algorithms. But in this paper we

show that there is a natural correspondence between greedy algorithm and a special

subclass of locally strati�ed programs, which we will call strictly strati�ed temporal

programs, that overcome these di�culties.

In the next section we recall the basic notions of local strati�cation, and iter-

ated �xpoint, and then, in Section 3, we introduce a class of of programs that are

locally strati�ed by the temporal arguments of their predicates which subsumes

XY-strati�ed logic programs, and extend it by allowing more powerful logic predi-

cates expressing `>' and `+' primitives needed for greedy algorithms. In Section 4,

therefore we show that these extended programs can be expanded into equivalent

XY-strati�ed programs via simple rewritings de�ned by the arithmetic functions

they use. While this rewriting de�nes the formal semantics of our greedy programs,

the equivalent programs produced by the rewriting would be very ine�cient if im-

plemented with the standard approach used for XY-strati�ed programs in systems

such as LDL++ (Arni et al. 2003) and DeALS (Shkapsky et al. 2013; Yang et al.

2015). Therefore, we propose a modi�cation of the Iterated Fixpoint computation

that solves this problem and actually achieves asymptotic optimality in the imple-

mentation of many greedy algorithms, which are discussed in details in Section 5.

2 Local Strati�cation and Iterated Fixpoint

Let us now recall the de�nition of local strati�cation for Datalog programs where

rules have negated goals:

De�nition 1. A program P is locally strati�ed if it is possible to partition its

Herbrand base BP into a countable number of subsets, called strata, B0, B1, . . . ,

such that for every r ∈ ground(P ) the stratum of the head of r is strictly higher

that the strata of its negated goals, and higher or equal to the strata of its positive

goals.

Each locally strati�ed program has a unique stable model, called its perfect

model, whereby its abstract semantics has many desirable properties (Przymusinski

1988). Moreover, once the aforementioned strati�cation B0, B1, . . . is known for a

program P , then the Iterated Fixpoint procedure can be used to compute the perfect

model of P . The iterated �xpoint can be de�ned using the immediate-consequence

operator for the rules in ground(P ) whose head is in stratum BK : let TK denote

the immediate consequence operator for instantiated rules belonging to the K-th
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stratum. and let TK denote he in�ationary version to this operator de�ned as

TK(I) =TK(I) ∪ I.

Then the iterated computation on our locally strati�ed program P is performed

by starting from M0 = T↑ω
0 (∅) and then continuing with MK+1 = T↑ω

K (MK).

While the iterated �xpoint procedure seems to provide an e�cient operational

semantics for computing of the perfect model for locally strati�ed program, in

reality this is not the case, because of a number of problems, including the fact that

the existence of local strati�cation for a given program represents an undecidable

question (Palopoli 1992).

To address these problems we will introduce the notion of programs that are lo-

cally strati�ed by the positive numbers that appear in a distinguished argument of

their predicates, that we call temporal argument. Thus, we propose simple syntactic

conditions that assures that (i) a local strati�cation exists and (ii) the actual strata

are identi�ed quite easily. We then turn to the issue of improving the e�ciency

of the iterated �xpoint procedure, by basically skipping over the computation of

strata that do not produce any useful result. We will thus identify simple syntac-

tic conditions that make this optimization possible, and we will show that greedy

algorithms are naturally expressed under this restricted syntax, producing declar-

ative Datalog programs that preserve the desirable complexity properties of their

procedural counterparts.

3 Temporally Strati�ed Datalog1S Programs

Let us consider Datalog programs where the �rst argument is a non-negative integer

represented by the successor notation: 0, s(0), s(1), . . . , sn(0) described in (Chomicki

and Imielinski 1988). These are known as Datalog1S programs, and have been stud-

ied extensively in (Chomicki 1990), where the authors called the 1S argument the

temporal argument, a naming convention that we will also follow in this paper. For

example consider the following program:

Example 1 (A Datalog1S program de�ning all even positive integers.)

int(even, 0).

int(even, s(J))← ¬int(even, J).

Thus the temporal argument in our int predicate is the last one, where a positive

integer n is represented by n applications of the function symbol s to zero. We will

use the short-hand sn(X) to denote the application of s to X repeated n times

s(s(. . . s(X) . . .)).

Thus the Herbrand universe for the above program is {sn(0), sn(even)} where n

denotes an arbitrary non-negative integer (under the convention that s0(X) = X,

and thus s0(even) = even).

Now, let P be a Datalog1S program, then the temporal layering of P is the one

obtained by assigning each atom in its Herbrand Base BP to the layer n whenever

the last argument of the atom is sn(c), with c an arbitrary constant. For instance

the temporal layering of the above program in Example 1 is as follows:
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Layer

0: int(sn(0), 0), int(sn(even), 0), int(sn(0), even), int(sn(even), even)

1: int(sn(0), s(0)), int(sn(even), s(0)), int(sn(0), s(even)), int(sn(even), s(even))
. . .

k: int(sn(0), sk(0)), int(sn(even), sk(0)), int(sn(0), sk(even)), int(sn(even), sk(even))

We will focus on programs that are locally strati�ed according to their temporal

layering:

De�nition 2 A Datalog1S program P will be said to be temporally strati�ed if P

is locally strati�ed according to its temporal layering.

Thus the program in Example 1 is temporally strati�ed. However, the program

in Example 2, below, it is not locally strati�ed, although it has the same Herbrand

base, and can be assigned the same temporal layering as Example 1:

Example 2 (A Temporally Layered Program that is not locally strati�ed)

int(even, 0).

int(even, J)← ¬int(even, s(J)).

The simple programs so far considered only use one predicate, but to express pow-

erful algorithms we need to consider programs featuring several predicates within

each given layer. For these programs, deciding whether they are locally strati�ed,

and determining the perfect model for those that are strati�ed, can be quite chal-

lenging in general. A solution is however at hand for the large class of such problems

that satis�es the notion of XY-strati�cation discussed next.

4 XY-Strati�ed Programs

Temporally strati�ed programs have been explored in the past. In particular, (Zan-

iolo et al. 1993) introduced XY-strati�ed programs that are e�ciently supported in

LDL++ and DeALS (Shkapsky et al. 2013), (Yang et al. 2015) and were also used in

a number of advanced applications (Guzzo and Saccà 2005), (Borkar et al. 2012). A

generalized version of XY-strati�cation, called explicitly strati�ed logic programs

(Lausen et al. 1998), was then used to model active rules and other interesting

applications. Take for instance the transitive closure prgram for a graph:

Example 3 (Transitive Closure expressed in Datalog )

cl(X, Z)← arc(X, Z).

cl(X, Z)← cl(X, Y), arc(Y, Z).

The di�erential �xpoint (a.k.a. seminaive �xpoint) of this program can be ex-

pressed by the following program, where dcl is the delta version of cl.

Example 4 (Di�erential rules used in computing the transitive closure of arc)

dcl(X, Z, 0)← arc(X, Z).

dcl(X, Z, J1)← dcl(X, Y, J), arc(Y, Z), J1 = J+1,¬previous(X, Z, J).

previous(X, Z, J1)← dcl(X, Z, J), J < J1.
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The above program is a Datalog1S program expressed by a slightly di�erent notation

(Chomicki 1990). In fact, instead of representing the successor of integer J by s(J),

we represent it here by J+1 where +1 is a post�x function symbol. Therefore,

we can easily conclude that the program above is temporally layered by the last

argument (i.e., J and J1) in our predicates. However we cannot conclude that the

resulting program is locally strati�ed, because the de�nition of ground(P ) does not

prevent us from instantiating J < J1 to values where J is actually larger than J1.

This problem can be solved by a simple rewriting of the rules to explicitly de�ne >

using the past values of dcl kept in lower strata, which we will write as hdcl (for

historical dcl).

Example 5 (Di�erential rules used in computing the transitive closure of arc)

dcl(X, Z, 0)← arc(X, Z).

dcl(X, Z, J1)← dcl(X, Y, J), arc(Y, Z), J1 = J+1,¬hdcl(X, Z, J).
hdcl(X, Z, J)← dcl(X, Z, J).

hdcl(X, Z, J1)← hdcl(X, Z, J), J1 = J+1

The resulting program is temporally strati�ed, i.e., locally strati�ed by the tem-

poral layering established by the last argument of its recursive predicates. Observe

that in the program above we only have two kinds of temporal arguments: J and

J+1 = J1, i.e., a variable and its immediate successors. For these programs there

is a simple test that allows us to determine if they are locally strati�ed. This is the

XY-strati�cation test that is performed by renaming the predicates in the recursive

rules that have a temporal argument, as follows: in each rule r rename with the

su�x `_old' the goals having as temporal argument J when the temporal argument

in the head of r is J1 = J+1. The program so obtained is called the bi-state version

of the original program. Then, a program P is said to be XY-strati�ed when its

bi-state version is strati�ed. XY-strati�ed programs are locally strati�ed and their

perfect model can be e�ciently computed using their bi-state version (Zaniolo et al.

1993). For instance, the bi-state version of the program in Example 5 is as follows:

Example 6 (The Bistate Version of Example 5)
dcl(X, Z, 0)← arc(X, Z).

dcl(X, Z, J1)← dcl(X, Y, J), arc(Y, Z), J1 = J+1,¬hdcl_old(X, Z, J).
hdcl(X, Z, J)← dcl(X, Z, J).

hdcl(X, Z, J1)← hdcl_old(X, Z, J), J1 = J+1.

We have obtained a program that is strati�ed (e.g., with the following strata:1:{arc},

2:{dcl_old, hdcl_old}, 3:{dcl}, 4:{hdcl}).

Therefore, XY-strati�cation provides a simple test to verify that temporally lay-

ered programs are locally strati�ed and thus temporally strati�ed. As proven in

(Zaniolo et al. 1993), the perfect model of these programs can be computed as

follows (for clarity we refer to predicates without the su�x `_old' as `new'):

Perfect Model Computation for XY-strati�ed Programs:

(i) use the bistate program to derive the values for the new predicates, and

(ii) re-initializing the values of the `_old' predicates with those of the

predicates just computed, and then the values of the `new' predicates.
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These steps repeated until (i) stops producing new tuples, construct the perfect

model for our XY-strati�ed (and therefore temporally strati�ed) program. This ba-

sic procedure delivers good performance on many simple problems including the

seminaive computation of the least �xpoint of Example 2, above, but a more so-

phisticated approach is needed to achieve optimal performance for logic programs

expressing greedy algorithms, since these are considerably more complex.

To simplify the expression, and also the compilation, of greedy algorithm, we will

introduce the notation not(. . .). Thus, Example 4 can be re-expressed as follows:

Example 7 (Example 4 re-expressed using not( ) )

dcl(X, Z, 0)← arc(X, Z).

dtrcl(X, Z, J1)← dcl(X, Y, J), arc(Y, Z), J1 = J+1,

not(dcl(X, Z, K), K < J).

In general, a program with a goal `not(condition)' should be viewed as the short-

hand of the program derived by (i) replacing `not(condition)' with ¬newp(SVlist),
(where SVlist denotes the variables shared between condition and the rest of the

rule), and (ii) adding the rule: newp(SVlist)← condition.

5 Greedy Algorithms

Suppose now that warc(X, Z, W) describes a directed graph where W is the positive

weight of the arc from X to Z. For now, let us assume that all such weights are

integers. Then, a greedy algorithm to �nd the shortest path between node pairs is

as follows:

Example 8 (A greedy algorithm to �nd shortest paths between node pairs)

wtc(X, Z, W)← warc(X, Z, W).

wtc(X, Z, Cz)← wtc(X, Y, Cy), not(wtc(X,_, C), C < Cy),

warc(Y, Z, W), Cz = Cy+ W.

Thus in the recursive rule, we use the not construct to �nd the shortest distance

Cy from a node X to a node Y and, for each arc in warc(Y, Z, W), we add a path from

X to Z of length Cz = Cy + W. Our objective is to re-express this as an equivalent

XY-strati�ed program. In order to do that, we will re-write the program into the

following one, where we re-express `+' using the successor logic of Datalog1S .

Example 9 (A temporally strati�ed program to �nd shortest paths between node pairs)

wtc(X, Z, W)← warc(X, Z, W).

succadd(X, Y, W, C1)← wtc(X, Y, Cy), not(wtc(X,_, C), C < Cy),

warc(Y, Z, W1), W = W1+ 1, C1 = Cy+ 1.

succadd(X, Y, W, C1)← succadd(X, Y, W+ 1, C), C1 = C+ 1.

wtc(X, Z, Cz)← succadd(X, Y, 0, Cz).

Thus recursive succadd rule expresses `+' by raising by 1 the value of Cy while

replacing W+ 1 with W until this becomes zero: at this point the addition has been

completed, whereby Cz is the distance of Z from X. We can now expand the not(...)

goal, and �nally verify that the resulting program is XY-strati�ed, by the �rst goals
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in the second and third rule as wtc_old and succadd_old, respectively. For the

rules resulting from the expansion of not(...) we proceed as in Example 4. Then

we obtain a bistate program which is strati�ed: therefore the original program in

Example 9 is XY-strati�ed and thus temporally strati�ed.

A program such as that in Example 9, where the rewriting of its <,+, and not

goals produce a temporally strati�ed programs will be called an Implicit Temporally

Strati�ed (ITS) program. Now, many programs expressing greedy algorithms can be

transformed into XY-strati�ed programs that provide a formal semantics for such

programs, since these are known to be locally strati�ed. The perfect model for these

programs can also be computed using the standard bistate based computation of

XY-strati�ed programs, but as discussed next, this computation would fail to deliver

optimal performance for the program in Example 9 and other greedy programs.

The obvious problem with the standard bistate-based computation of the pro-

gram in Example 9 is that in order to derive Cz = Cy + W, we go through the

computation of the W− 1 temporal strata that take us from Cy to Cz, even though

no new wtc value might be produced in step (i) and in step (ii) of the Perfect

Model Computation for XY-strati�ed programs discussed on page 5. In order to

bypass this sequence, we might consider jumping directly to stratum with tempo-

ral argument Cz, but that might not be correct, since the same rule that has now

produced Cz might have previously produced a value C′z, Cy < C′z < Cz, which

must be considered before Cz. The solution to this problem is obvious: (1) we store

the value Cz produced by the second rule into a priority queue (PQ) and then (2)

we fetch (and remove) the least value from PQ, and use it as the next value of

the temporal argument. Needless to say, our PQ is exactly the data structure used

in Dijkstra's shortest path algorithm and other greedy algorithms. Thus we can

achieve an optimal computation of our greedy algorithms by simply replacing the

+1 successor operation with a PQ store+fetch operation.

This PQ optimization however it is is not applicable to all temporally strati�ed

programs and in particular to Example 1, due to the fact that the only goal in

its rules is a negated goal. To avoid this potential problem we now introduce the

notion of Strict Implicit Temporally Strati�ed (SITS) that assures the applicability

of the PQ optimization.

De�nition 3 An ITS program will be said to be strict when every rule containing

negated goals also contains some positive goal which has a temporal argument that

is ≥ than the temporal argument of every negated goal.

Thus this condition excludes the program in Example 1, and also disallows the

following rule that satis�es the standard notion of implicit temporal strati�cation:

wtc(X, Z, Cz)← wtc(X, Y, Cy), arc(Y, Z, W), Cz = Cy+ W,

not(wtc(X,_, C), C < Cz).

The problem with this rule is that it o�ers no assurance that Cy ≥ C. A rule

like the one above is no problem for the iterated �xpoint procedure that visits

every successive value of the temporal argument, but it cannot be supported in a
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computation that jumps from the current temporal argument to the next temporal

value extracted from PQ. However teh strictness condition solves this problem and

maket it possible to use the following computation:

Algorithm 1 Computation of Perfect Model for SITS Programs

1: Initialize the priority queue (PQ) to empty.

2: Let M := T↑ω
0 (∅)

3: Add the values of temporal arguments generated in step 2 to PQ.

4: Repeat the following three steps until PQ becomes empty:

5: Remove the least temporal argument K from (PQ) and

6: Let M := T↑ω
K (M).

7: Add the values of the newly generated temporal arguments to PQ.

Thefore, SITS programs can be computed e�ciently by a simple optimization of

the iterated �xpoint algorithm that consists of skipping over unproductive values

of temporal arguments:

5.1 Beyond Integers

In our discussion so far, we have assumed that temporal arguments are positive

integers, but our treatment of greedy algorithms generalizes to the case in which

we have arbitrary positive numbers, not just integers, whereby arbitrary positive

weights can, e.g., be used as arc weights in our graphs. This conclusion follows

from the argument presented in (Mazuran et al. 2013) where it was observed that

non-integers could be represented as rational numbers sharing a common very large

denominatorD whereby all computations can be emulated by integer arithmetics on

their numerators. Now the standard mantissa+exponent internal representation of

real and �oating-point numbers, that is used in modern hardware/�rmware, does

exactly that�modulo some round-o�. For instance, for a decimal �oating point.

the smallest value of exponent supported might be −95 (or smaller), whereby every
number can be viewed as the numerator over the denominator D = 1095. (For sim-

plicity, we have used a decimal base, but the same conclusions hold for other bases.)

Naturally, precision is limited by the fact that the mantissa is of �nite length, and

thus, e.g., the operation of addition becomes a rounded-o� addition. Rounded-o�

addition can also be easily expressed in Datalog1S whereby the expanded resulting

program is still XY-strati�ed, and the overall formal semantics remains valid. Of

course, round-o� is also a concern at the operational semantics level, where it can

be addressed by the use of double precision and other techniques used when algo-

rithms are expressed in procedural languages. Once he/she selects single or double

precision, our user is assured an e�cient excution for greedy algorithms owing to

the fact that the implementation will not step through each successive �oating point

number, but jumps directly the next number in the PQ.

Using �oating-point numbers and real arithmetic, we can now express a cornu-
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copia of greedy algorithms, starting with the single-source Dijkstra algorithm shown

below.

Example 10 (Single source Dijistra's Algorithm)

wtc(X, W)← warc(a, W).

wtc(Z, Cz)← wtc(Y, Cy), not(wtc(Y, C), C < Cy),

warc(Y, Z, W), Cz = Cy+ W.

Since, e�cient Datalog implementations, such as DeALS (Shkapsky et al. 2013),

use Hashing and other indexing techniques to achieve a constant-time computation

of the recursive rule above for each value of Y, an optimal performance can be

expected for the Dijistra's algorithm above, and similar observations can be made

for the other greedy algorithms which which require not special data structure other

than PQ. In particular this is true for the Traveling Salesman's Program (TSP)

discussed next, which closely emulates its procedural counterpart, thus achieving

optimal asymptotic complexity.

Traveling Salesman's Greedy Heuristics

Given an undirected graph, g(X, Y, Cxy), the exit rule selects an arbitrary node X,

from which to start the search. Then, the second rule selects candidate new nodes,

using the conditions Y<>a, and not(tspath(_, Y, C1), C1 < C) ensures that we do

not cycle back to the initial node ad previously derived nodes.

Finally the third rule selects from the candidate new nodes cand(Y, C) the one

that has the shortest distance from a.

Example 11 (Travelling Salesman's starting at node a)

tspath(a, 0)← node(a).

cand(Y, C)← tspath(X, Cx), g(X, Y, Cxy), Y<>a,

not(tspath(Y, C1), C1 < C), C = Cx+ Cxy.

tspath(Y, C)← cand(Y, C), not(cand(_, C1), C1 ≤ C).

Thus, this algorithm will work correctly under the assumption that there are no ties,

i.e., no two arcs departing from the same node have the same weight. In the situation

where there are ties, we can employ a construct such as choice (Greco et al. 1992),

which models don't care non-deterministic semantics via a special class of stable

models called choice models. Alternatively, we can fall back on the solutions used

by procedural programmers. For instance, since nodes are represented by natural

numbers, or by elements of an ordered domain, we can expand the third rule in

Example 11 as follows:

Example 12 (Extrema as tie-breaker: alternative for 3rd rule in Example 11 )

tspath(min〈Y〉, C)← cand(Y, C), not(cand(_, C1), C1 ≤ C).

This program is SITS once we assume that the min aggregate is de�ned as follows:

mtspath(Y, C)← cand(Y, C), not(cand(_, C1), C1 < C).

tspath(Y, C)← mtspath(Y, C), not(mtspath(Y, C1), C1 < C).
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Here the intra-layer strati�cation uses cand al the �rst level, and mtspath at the

second level, and tspath at the top level. Thus, while the body of the second rule

eliminates the nodes having a smaller C, the aggregate in the head only retains the

�rst (i.e., the smallest) Y out of those candidate nodes that share the same C.

While the use of min or max aggregates could be all a user wants in most practical

applications, from a conceptual viewpoint we might regret the fact that we have

given up non-determinism, and we can only generate one TSP path rather than a

di�erent one at each run. However, non-determinism can be recovered by a builtin

predicate, such a hash function h(_), that reorders its input nondeterministically.

Then our program becomes:

Example 13 (Using randomized hashing for non-determinstic TSP)

tspath(a, 0)← node(a).

cand(Y, C)← tspath(X, Cx), g(X, Y, Cxy),

Y<>a, not(tspath(Y, C1), C1 < C), C = Cx+ Cxy.

slct(SL, C)← cand(Y, C), not(cand(_, C1), C1 ≤ C),

tspath(L, C)← slct(L, C), not(slct(L1, C), h(L) > h(L1)).

Here the the intra-layer strati�cation has cand below slct which is below tspath.

Similar techniques for breaking ties can be used in Prim's and other algorithms.

Prim's algorithm

We build a tree with nodes st(X, Cx) where C is a node and Cx is the cost of the tree

when X was produced. We start from a node a with cost 0. Then for the current level

C, we �nd all the new nodes reachable from this or previous nodes. This provides

a set of candidates for which, in the third rule, we take the one that delivers the

least cost.

Example 14 (Prim's minimum cost spanning tree.)

st(a, 0).

cand(C1, Y)← st(C,_), st(Cx, X), Cx ≤ C,

arc(X, Y, Cxy), Y <> a,

not(st(Cy, Y), Cy < C), C1 = C+ Cxy.

st(C1, Y)← cand(C1, Y), not(cand(C,_), C < C1).

Our example assumes that no two arcs have the same weight. When this is not

the case, we will use the same tie-breaking solutions used for TSP.

Hu�man Encoding

Hu�man coding is a lossless data compression algorithm. The idea is to assign

variable-length codes to input characters, with lengths of the assigned codes based

on the frequencies of corresponding characters. Frequent characters are assigned

shorter codes. The variable-length pre�x codes are bit sequences assigned to input

characters in such a way that no code of a character is the pre�x of the code of

another character.

The input is the list of unique characters along with their frequency of occurrences
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and output is the Hu�man tree. The basic algorithm is as follows. We start from a

set of facts, token(Char, Freq) which corresponds to the leaf nodes of the Hu�man

tree. Then the algorithm can be expressed as follows:

Example 15 (Hu�man Encoding Algorithm)

huf(F, X, 0, 0)← token(X, F).

huf(H, nil, H1, H2)←
huf(H1,_,_,_), not(huf(H11,_,_,_), H11 < H1),

huf(H2,_,_,_), H1 < H2, not(huf(H22,_,_,_), H22 < H2),

H22<>H1, H = H1+ H2.

For instance, say that we have three facts: token(a, 4). token(b, 5). token

(c,10). Then the �rst step consists in executing the rules whose body layer is

0: these are the exit rules, since their bodies consists of facts, which are always

viewed as belonging to zero layer. This produces the following leaf nodes in our tree

(identi�ed by the fact that their left and right subtrees are both 0).

huf(4, a, 0, 0). huf(5, b, 0, 0). huf(10, c, 0, 0)

Also as a result of this step, we have that the values 4, 5, and 10 are entered into

the priority PQ. Now, the system takes the least of these values and evaluates the

rules for that layer. The rules produce nothing at layer 4, so we move to next layer,

5 where the second rule produces:

huf(9, nil, 4, 5)

Thus the system has extracted two nodes with the minimum frequency from the

min heap and generated a new node whose weight is the sum of those two.

At this point we have only 9 in the PQ, and where no node at level below 9 is

still free the evaluation of the second rule produces nothing, but removes 9 from

the PQ. The next value in the PQ is thus 10, and the evaluation of our rule at level

10 produces:

huf(19, nil, 9, 10)

At this point, the evaluation at layer 19 produces no new value, whereby the PQ

becomes empty, and the computation terminates.

Kruskal's Algorithm

Kruskal's algorithm also constructs a minimum spanning tree for a connected

weighted unordered graph. Thus an edge of a graph is represented by a fact edge(A, B, W)

where A < B. At each step, the algorithm selects a least-cost edge among those that

do not connect previously connected nodes. Thus, in the example below, the �rst

two rules state that each node is connected to itself, starting at level 0. Then, say

that at level C we add the new edge tree(X, Y, C), connecting two nodes which,

until level C were still disconnected.

Then, the last rule is executed that determines all the nodes X1 and Y1 respec-

tively connected with X and Y. Thus, we de�ne

mM(X, Y, X, Y)← X < Y.

mM(X, Y, Y, X)← X > Y.



12 Carlo Zaniolo

then we see that mM(X1, Y1, S, L) it returns S and L as respectively the smaller and

larger of these two. Then we connect to S all the nodes previously connected to L,

i.e., the Ln nodes in the last rule.

Example 16 (Kruskal's Algorithm)

connt(X, X, 0)← edge(X, Y).

connt(Y, Y, 0)← edge(X, Y).

tree(X, Y, C)← tree(_,_, C), edge(X, Y, Cxy), not(connt(X, Y, C1), C1 < C),

C = Clast+ Cxy.

connt(S, Ln, C)← tree(X, Y, C), connt(X1, X, C), connt(Y, Y1, C),

mM(X1, Y1, S, L), connt(L, Ln, C).

Unlike our previous algorithms, the performance of Kruskal's under our formu-

lation cannot be guaranteed to be optimal, since connectivity is not supported by

the special union-�nd data structure.

6 Conclusion

The non-monotonic constructs proposed in this paper introduce a simple declarative

extension for deductive databases that greatly enhances their e�ectiveness in a range

of applications and thus achieves the same optimal time complexity of procedural

code algorithms�assuming that these do not make use of special data structures

such as Union-Find used by Kruskal's minimum spanning tree algorithm. In fact, we

have shown that the greedy optimizations of procedural algorithms follow directly

from the need to achieve an e�cient implementation for the iterated �xpoint pro-

cedure of locally strati�ed programs. From a theoretical viewpoint, this reveals the

computational upside of non-monotonic semantics classes that in the past were pri-

marily analyzed for their intractability downside. From a practical viewpoint, these

results allow us to express and implement e�ciently in Datalog systems signi�-

cant algorithms expressed in declarative logic, while achieving the same asymptotic

complexity as their procedural counterparts. Indeed, support for strict local strati�-

cation can be easily achieved through extensions of XY-strati�cation, which is now

part of DeALS (Shkapsky et al. 2013),(Yang et al. 2015). The integrated support of

monotonic aggregates in recursion, greedy algorithms, and XY-strati�cation sup-

ported by our system entails a declarative expression and e�cient implementation

of complex algorithms, and provides further evidence that this is indeed an age of

renaissance for Datalog and deductive databases.
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