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ABSTRACT
Affective Impact of Movies task aims to detect violent videos
and affective impact on viewers of that videos [9]. This is a
challenging task not only because of the diversity of video
content but also due to the subjectiveness of human emo-
tion. In this paper, we present a unified framework that
can be applied to both subtasks: (i) induce affect detection,
and (ii) violence detection. This framework is based on our
previous year’s Violent Scene Detection (VSD) framework.
We extended it to support affect detection by training differ-
ent valence/arousal classes independently and combine them
to make the final decision. Besides using internal features
from three different modalities: audio, image, and motion,
in this year, we also incorporate deep learning features into
our framework. Experimental results show that our unified
framework can detect violent videos and its affective impact
with a reasonable accuracy. Moreover, using deep features
can significantly improve the detection performance of both
subtasks.

1. INTRODUCTION
Detecting affective impact of movies requires combining

multimedia features. For example, a violent video of car-
chase can be detected by searching for evidences such as
fast moving of cars or possibly the sound of gun shooting.
To this end, we have developed a framework that supports
combining features from multiple modalities for violent scene
detection. We consider the induced affect detection as a
multi-class classification task. Therefore, our framework can
be applied to predict the valence and arousal class of a video
as well. In general, our framework consists of three main
components: feature extraction, feature encoding, feature
classification. An overview of our framework is shown in
Fig 1.

2. FEATURE EXTRACTION

2.1 Image Features
At first, we scale the original video into 320x240 pixels

and then sample frames from video at every second. We
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Figure 1: Our framework for extracting and encoding local
features.

use the standard SIFT feature with Hessian Laplace interest
point detector to extract features from each frame [6]. Each
frame is represented using the Fisher Vector encoding [7].
We use the average pooling strategy to aggregate frame-
based feature into the final video representation, which has
40,960 dimensions.

2.2 Motion Feature
We use the Improved Trajectories [10] to extract dense

trajectories. A combination of Histogram of Oriented Gra-
dients (HOG), Histogram of Optical Flow (HOF) and Mo-
tion Boundary Histogram (MBH) is used to describe each
trajectory. We encode HOGHOF and MBH features sepa-
rately using the Fisher Vector encoding. The codebook size
is 256, trained using a Gaussian Mixture Model (GMM).
The feature representation of each descriptor after applying
PCA has 65,536 dimensions.

2.3 Audio Feature
We use the popular Mel-frequency Cepstral Coefficients

(MFCC) for extracting audio features. We choose a length
of 25ms for audio segments and a step size of 10ms. The 13-
dimensional MFCC vectors along with each first and second
derivatives are used for representing each audio segment.
Raw MFCC features are also encoded using Fisher vector
encoding. We use a GMM to train the codebook with 256



Table 1: Submitted violence detection runs and official results.

Run Features Validation Results (mAP) Official Results (mAP)

1 HOGHOF+MBH+MFCC 0.2200 0.2039

2 HOGHOF+MBH+SIFT+MFCC 0.2094 0.2087

3 ext HOGHOF+MBH+MFCC+VDFULL 0.2457 0.2380

4 ext HOGHOF+MBH+MFCC+VDFULL+HBM 0.2499 0.2196

5 ext
HOGHOF+MBH+MFCC+VDFULL+VDFC6

+VDFC7+FOHGOH+HBM+TFIS+CCFM
0.1930 0.2684

Table 2: Submitted induced affect detection runs and official results.

Run Features Decision Strategy
Validation Results (mAP) Official Results (Accuracy)

Valence Arousal Valence Arousal

1 HOGHOF+MBH+SIFT+MFCC MAXREL 0.4148 0.3998 39.823 35.723

2 HOGHOF+MBH+SIFT+MFCC MAX 0.4148 0.3998 41.653 55.908

3 ext
HOGHOF+MBH+SIFT+MFCC

+VDFULL+VDFC6+VDFC7
MAXREL 0.4376 0.3958 42.956 55.677

4 ext
HOGHOF+MBH+SIFT+MFCC

+VDFULL+VDFC6+VDFC7
MAX 0.4376 0.3958 42.914 55.656

clusters. For audio features, we do not use PCA. The final
feature descriptor has 19,968 dimensions.

2.4 Deep Learning Feature
We use the popular DeepCaffe [3] framework to extract

image features. We used the pre-trained deep model pro-
vided by Simonyan and Zisserman [8]. This model was
trained on ImageNet 1,000 concepts [2]. As suggested in
[4], we selected the neuron activations from the last three
layers for the feature representation. The third and second-
to-last layer has 4,096 dimensions, while the last layer has
1,000 dimensions corresponding to the 1,000 concept cate-
gories in the ImageNet dataset. We denote these features as
VDFC6, VDFC7, and VDFULL in our experiments.

2.5 Features from Past VSD Tasks
For the violent detection task, we also consider using fea-

turs from past VSD tasks as external features. In partic-
ular, we use the features that were extracted in the VSD
2014 task for training the violent detector. These features
include SIFT, Dense Trajectories (HOGHOF and MBH de-
scriptors) and Audio MFCC which achieved the runner-up
performance in VSD 2014 [5]. We denote these features as
FOHGHOF, HBM, TFIS and CCFM in our experiments.

3. CLASSIFICATION
LibSVM [1] is used for training and testing our affective

impact detectors. For features that are encoded using the
Fisher vector, we use linear kernel for training and testing.
For deep learning feature, χ2 kernel is used.

We divide the training videos into two subset. The first
3,072 videos are used for training the model, while the re-
maining 3,072 videos are used for validation. To learn the
decision threshold of each detector, we sample this threshold
in the range from 0 to 1 with the step size of 0.01, and select
the value that maximizes the F1 score.

In order to generate the decision for valence or arousal

detection, we need to make the decision from the predictions
of all valence or arousal classes. To this end, we propose
using two strategies: (1) MAX: select the class that has the
highest prediction; (2) MAXREL: select the class that has
the highest relative improvement from the learned threshold.

4. SUBMITTED RUNS
At first, we use the late fusion with average weighting

scheme to combine features from different modalities. After
that we select the runs that have the top performance on
the validation set to submit. The list of submitted runs for
each subtask and its validation results can be seen on Table
1 and Table 2.

5. RESULTS AND DISCUSSIONS
The official results for each subtask are shown on the last

column of Table 1 and Table 2. For the violence detection
task, we observe that the results of combining multiple fea-
tures are more stable. For example, on the validation set,
the run that combines all available features has the lowest
performance. However, on the test set, this run achieves the
best performance. This can be due to the fact that we only
select one split for validation. For both subtasks, combining
with deep learning features can significantly improve the de-
tection performance. For the induced affect detection task,
we found that the strategy using the max detection score
tends to have more stable performance. The best valence
detection performance is obtained by combining all internal
features with all deep learning feature using the max relative
improvement strategy.
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