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ABSTRACT

In this paper, we present our retrieving system for QUery
by Example Search on Speech Task (QUESST), comprising
the posteriorgram-based modeling approach along with the
weighted fast sequential dynamic time warping algorithm
(WFS-DTW). For this year, our main effort was directed
toward developing language-dependent keyword matching
system, utilizing all available information about spoken lan-
guages, considering all queries and utterance files. Despite
the fact that the retrieving algorithm is the same as we used
in previous year, a big novelty resides in the way of utilizing
the information about all languages spoken in the retriev-
ing database. Two low-resource systems using language-
dependent acoustic unit modeling (AUM) approaches have
been submitted. The first one, called supervised, employs
four well-trained phonetic decoders using acoustic models
trained on time-aligned and annotated speech. The second
one, defined as unsupervised, uses blind phonetic segmenta-
tion for the specific language where the information about
spoken language is extracted from Mediaeval 2013 and Me-
diaeval 2014 databases. Considering the influence on the
overall retrieving performance, the acoustic model adapta-
tion to the specific language through retraining procedure
was investigated for both approaches as well.

1. MOTIVATION

Challenging acoustic conditions and different types of que-
ries led us to explore the area of language adaptation in
query-by-example (QbE) retrieving. Therefore, our inten-
tion was to built a QbE retrieving system using all the avail-
able acoustic models trained solely on languages presented
in the provided database.

2. SUPERVISED AUM APPROACH

The low-resource approach allowed us to use external re-
sources (not related to QUESST task) for AUM and build-
ing acoustic models (AM) for the target languages in the
provided database. We developed four language-dependent
(LD) speech recognition systems, each represented by spe-
cific LD phonetic decoder and by an external well-trained
LD phoneme-based GMM (Gaussian mixture model), trained
with the corresponding phone-level transcription.

Four monolingual annotated datasets were used for acous-

Copyright is held by the author/owner(s).
MediaFval 2015 Workshop, September 14-15, 2015, Wurzen, Ger-
many

Viterbi phonetic Time-aligned GMM training
decoding utterances [ | from scratch GMM

\—' GMM
LD-GMM »|  retraining 4’[ GMM ]

Figure 1: Supervised acoustic unit modeling frame-
work.
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tic model training: Slovak Speechdat (66 hours of read speech,
54 phonemes) [5], Czech Speechdat (89 hours of read speech,
42 phonemes) [5], Romanian anonymous speech corpus' (4.6
hours of read speech, 28 phonemes) and Portuguese (3 hours
of BN recordings from COST278 DB [6], 1 hour of Laps
Benchmark corpus from Fala Brasil project?, 34 phonemes).

The phonetic decoders and the LD AMs were intended to
perform phonetic transcription and time alignment of search
data utilizing the Viterbi algorithm. Each decoder employed
a phone-level vocabulary and a phone network. The time-
aligned utterances were used in the supervised training of the
final multilingual GMM. In the presented work, we exploited
two different ways of building multilingual GMMs.

The first one is oriented to training of a new GMM from
scratch using the utterances and the time alignment, needed
to initialize the GMM. The initialized GMMs were then si-
multaneously updated and expanded to higher mixtures (up
to 1024 mixtures) using the Baum-Welch estimation proce-
dure [9]. In this case, the external AM operates as an initial
AM needed to bootstrap the recognition system, which is
further supposed to proceed without an external input.

The second, improved training scheme is related to AM
retraining®. The main idea is to re-estimate the acoustic
likelihoods of the well-trained AM iteratively, using the ut-
terances and the time alignments described above. We per-
formed always three re-estimation cycles in the retraining to
achieve the convergence of estimation. We found that the
retraining brings higher precision over the standard train-
ing from scratch. The newly prepared language-dependent
GMMs were used to generate posteriorgrams, which were
finally fed to DTW-based search. The low-resource acous-
tic unit modeling is conceptually illustrated in Fig. 1. In
the whole experimental setup, we used the standard 39-dim.
MFCCs (Mel-Frequency Cepstral Coefficients).
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Figure 2:
framework.

Unsupervised acoustic unit modeling

3. UNSUPERVISED AUM APPROACH

The multilinguality problem and missing knowledge about
acoustic units led us to employ two different unsupervised
acoustic modeling approaches. For both types, we extracted
an additional acoustic information about six spoken lan-
guages from Mediaeval 2013 and Mediaeval 2014 databases
according to the available language tags.

The first type is focused on unsupervised building of acous-
tic model from unlabelled speech data. We re-employed our
well-established procedures from the previous year and we
built an acoustic model with up to 1024 mixtures for each
language. This process included PCA-based voice activity
detection [7], feature extraction and selection [2], K-means
clustering (K = 50), Euclidean segmentation and GMM
training, respectively [8]. This concept is depicted in Fig. 2
with dashed line. Each LD AM was intended to generate
LD posteriorgrams, whereas the score results from all sub-
systems were finally fused together.

The second, advanced acoustic modeling technique used
language adaptation® in acoustic (phonetic) sense performed
through a retraining procedure similar to that used in low-
resource modeling. The main idea is to use the already pre-
pared LD AMs and feed them to phonetic decoding of search
data in order to obtain LD time alignments. Inevitably, it
was necessary to build an initial multilingual AM intended
to adaptation, utilizing the same, already mentioned unsu-
pervised segmentation and GMM training. The multilingual
AM is then iteratively retrained on the LD time-aligned ut-
terances using the search data (Fig. 2). Compared to the
low-resource retraining, we retrained here the multilingual
GMM instead of the language-specific GMM. The resulting
six language-adapted GMMs practically match the probabil-
ity distributions of the acoustic units of the specific language
as good as possible.

4. POST-PROCESSING: SCORE NORMAL-
IZATION AND FUSION

The average cumulative distance parameter (ACD), repre-
sented by mean value of cumulative distance matrix elements
within each warping region and multiplied by o = 0.1, was
used as score parameter. Scaling the ACD parameter within
the values 0-1 helped us to unify score ranges for the first
500 detection candidates per each query. Then the score
fusion for different subsystems was carried out, employing
a max-score merging strategy and z-normalization, similarly
as we did last year [8]. The final set was obtained by keeping
all fused detections per each query.
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Table 1: Results for the primary supervised (p-S) and
general unsupervised (g-U) systems (* late subm.)

eval dev
system Chze TWV Chze TWV
(act/min)  (act/maz) (act/min)  (act/maz)
p-S 0.971/0.953 0.002/0.022 | 0.970/0.947 0.022/0.036
g-U 0.973/0.953 —0.01/0.023| 0.974/0.953 0.0001,/0.031
p-S* 0.963/0.940 0.046,0.049 | 0.962/0.940 0.055/0.059
g-U* 0.974/0.954 0.028/0.032 | 0.970/0.951 0.032/0.035

Table 2: Processing resources measures
[ system [ ISF [ SSF [ PMU;(GB) [ PMUs (GB) | PL |
(DS (dev) | 2.312 [ 0.0061 | 0.250 | 1874 [ 0.068 |
U (dev) | 0.383 [ 0.0066 | 0515 | 2292 [ 0.033 |

S. RESULTS AND CONCLUSION

We submitted four runs obtained from supervised (pri-
mary) and unsupervised (general) systems, including late
submissions, for QUESST 2015 task [4]. We did not perform
evaluation with each individual type of query T1/T2/T3,
but concentrated on the overall detection performance. The
maximum number of Gaussian mixtures (GMs), we em-
ployed in both primary and general subsystems, was 256 for
supervised and 64 for unsupervised AUM. Higher number of
GMs did not bring any improvement.

The result obtained from all examined systems are far be-
yond our expectations (Tab. 1). It can be explained by the
quality of audio data that were recorded in degraded acous-
tic conditions and influenced by background noises. The
overall detection accuracy did not increase even though we
examined various ways of speech enhancement techniques
(DC offset removal, spectral subtraction, minimum mean
squared error and Wiener filtering). Even the bottle-neck
features developed at Brno University of Technology (BUT)
[1] did not work well for our system.

Supervised AUM approach shows slightly better values of
Chze and TWV in comparison with unsupervised AUM. The
reason for relatively high performance of general approach is
the AM adaptation employed in unsupervised AUM where
all spoken languages are covered. Not significant improve-
ment can be observed for late submission systems, that rep-
resent retraining procedure employed in AUM. However, the
process of retraining did not perform well in case of super-
vised AUM for eval query set.

The robust statistical model-based speech enhancement
methods embedded in the AUM and HMM-based speech
segmentation will be investigated in the future. The pro-
cessing load (PL) [3] for all systems, comprising development
query set, is shown in Tab. 2. Considering the same search-
ing set, the processing load is nearly identical for both dev
and eval queries. It is obvious that the unsupervised AUM
has the advantage of fast processing, mainly due to separate
segmentation and acoustic modeling for each language.
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