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ABSTRACT

In this paper, we present the systems developed by GTM-
UVigo team for the query by example search on speech task
(QUESST) at MediaEval 2015. The systems consist in a
fusion of 11 dynamic time warping based systems that use
phoneme posteriorgrams for speech representation; the pri-
mary system introduces a technique to select the most rele-
vant phonetic units on each phoneme decoder, leading to an
improvement of the search results.

1. INTRODUCTION
The query by example search on speech task (QUESST)

aims at searching for audio content within audio content
using an audio content query [13], having special focus on
low-resource languages. This paper describes the systems
developed by GTM-UVigo team to address this task1.

2. GTM-UVIGO SYSTEM DESCRIPTION
GTM-UVigo systems consist in the fusion of 11 individual

systems that represent the documents and queries by means
of phoneme posteriorgrams, and then subsequence dynamic
time warping (S-DTW) is used to perform the search. The
primary system features a phonetic unit selection strategy,
which is briefly described in this Section.

2.1 Phoneme posteriorgrams
Three architectures were used to obtain phoneme poste-

riorgrams:

• lstm: a context-independent phone recognizer based
on a long short-term memory (LSTM) neural network
was trained using the KALDI toolkit [5]. A 2-layer
LSTM was used; the input of the first layer consists
of 40 log filter-bank energies augmented with 3 pitch
related features [4] and the output layer dimension was
the number of context independent phone units.

• dnn: a deep neural network (DNN)-based context-
dependent phone recognizer was trained using the KALDI
toolkit following Karel Veselý’s DNN training imple-
mentation [15]. The network has 6 hidden layers, each
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with 2048 units, and it was trained on LDA-STC-
fMLLR features obtained from auxiliary Gaussian mix-
ture models (GMM) [15]. The dimension of the input
layer was 440 and the output layer dimension was the
number of context-dependent states.

• traps: the phone decoder based on long temporal con-
text developed at the Brno University of Technology
(BUT) was used [11].

11 models, summarized in Table 1, were trained using data
in 6 languages: Galician (GA), Spanish (ES), English (EN),
Czech (CZ), Hungarian (HU) and Russian (RU).

Table 1: Databases used to train the acoustic mod-

els. BUT models were used in the traps systems.

System Database Duration (h)

GAdnn, GAlstm Transcrigal [3] 35

ESdnn, ESlstm TC-STAR [2] 78

ENdnn, ESlstm LibriSpeech [8] 100

CZdnn, ENlstm Vystadial 2013 [6] 15

CZ/HU/RUtraps Speech-Dat n/a

2.2 Dynamic Time Warping Strategy
The search of the spoken queries within the audio docu-

ments is performed by means of S-DTW [7]. First, a cost ma-
trix M ∈ ℜ

n×m is defined, where the rows and the columns
correspond to the frames of the query Q and the document
D, respectively:

Mi,j =







c(qi, dj) if i = 0
c(qi, dj) + Mi−1,0 if i > 0, j = 0
c(qi, dj) + M∗(i, j) otherwise

(1)

where c(qi, dj) represents the cost between query vector
qi and document vector dj , both of dimension U , and

M
∗

(i, j) = min (Mi−1,j ,Mi−1,j−1,Mi,j−1) (2)

Pearson’s correlation coefficient r is used as distance met-
ric [14]:

r(qi, dj) =
U(qi · dj) − ‖qi‖‖dj‖

√

(U‖q2
i
‖ − ‖qi‖2)(U‖d2

j
‖ − ‖dj‖2)

(3)

In order to use r as a cost function, it is linearly mapped
to the range [0,1], where 0 corresponds to correlations equal
to 1 and 1 corresponds to correlations equal to -1.
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Table 2: Performance of systems submitted by GTM-UVigo team.
Dev Eval Dev-late Eval-late

System Metric All T1 T2 T3 All T1 T2 T3 All T1 T2 T3 All T1 T2 T3

Primary

actCnxe 0.917 0.881 0.943 0.918 0.919 0.864 0.959 0.913 0.875 0.841 0.890 0.882 0.871 0.815 0.916 0.866

minCnxe 0.905 0.861 0.928 0.904 0.905 0.844 0.946 0.882 0.847 0.788 0.865 0.860 0.838 0.758 0.895 0.824

lowerbound 0.627 0.562 0.672 0.631 0.629 0.532 0.702 0.627 0.593 0.526 0.633 0.606 0.592 0.490 0.657 0.601

Contrastive

actCnxe 0.998 0.998 0.997 1.000 0.999 0.999 0.997 1.000 0.907 0.897 0.916 0.904 0.898 0.852 0.933 0.896

minCnxe 0.918 0.874 0.942 0.898 0.923 0.865 0.953 0.907 0.864 0.811 0.877 0.880 0.852 0.785 0.900 0.843

lowerbound 0.635 0.588 0.681 0.627 0.633 0.555 0.693 0.624 0.618 0.559 0.655 0.633 0.613 0.521 0.669 0.622

In order to detect nc candidate matches of a query in a
spoken document, every time a candidate match is detected,
which ends at frame b∗, M(n, b∗) is set to ∞ in order to
ignore this match.

2.3 Phoneme Unit Selection
A technique to select the most relevant phonemes among

the phonetic units of the different decoders was used in the
primary system. Given the best alignment path P(Q,D) of
length K between a query and a matching document, the
correlation and the cost at each step of the path can be
decomposed so there is a different term for each phonetic
unit u:

r(qi, dj , u) =
Uqi,udj,u − 1

U
‖qi‖‖dj‖

√

(U‖q2
i
‖ − ‖qi‖2)(U‖d2

j
‖ − ‖dj‖2)

(4)

In this way, the cost accumulated by each phonetic unit
through the best alignment path can be computed:

R(P (Q,D), u) =
1

K

K
∑

k=1

c(qik , djk
, u) (5)

This value R(P (Q,D), u) can be considered as the rele-
vance of the phonetic unit u (the lower the contribution to
the cost, the more relevant the phonetic unit). Hence, the
phonetic units can be sorted from more relevant to less rele-
vant in order to keep the most relevant ones and to discard
those who increased the cost of the best alignment path.
Using only one alignment path may not provide a good

estimate of the relevance of the phonetic units; hence, the
relevance of the different pairs query-matching document in
the development set were accumulated in order to robustly
estimate the relevance. The number of relevant phonetic
units was empirically selected for each system.

2.4 Normalization and fusion
Score normalization and fusion were performed following

[12]. First, the scores were normalized by the length of the
warping path. A binary logistic regression was used for fu-
sion, as described in [1].

3. RESULTS AND DISCUSSION
Table 2 shows the results obtained on QUESST 2015 data

using the submitted systems. The Table shows that the pri-
mary system, that features phoneme unit selection, clearly
outperforms the contrastive system, suggesting that the pro-
posed technique obtains the expected improvement. An-
other fact that can be observed is that Dev and Eval results
are very similar, showing the generalization capability of the

systems. Late systems feature z-norm normalization of the
query scores, obtaining an improvement with respect to the
original submissions, where only path-length normalization
was applied. In Table 3, actCnxe obtained with and with-
out applying the phoneme unit selection approach in some
individual systems are compared.

Table 3: actCnxe of some individual systems with

and without applying phoneme unit selection.

With Without

System Global T1 T2 T3 Global T1 T2 T3

CZdnn 0.889 0.829 0.902 0.906 0.915 0.867 0.927 0.922

CZlstm 0.902 0.864 0.922 0.901 0.907 0.864 0.932 0.904

CZtraps 0.902 0.840 0.924 0.910 0.931 0.883 0.945 0.938

HUtraps 0.903 0.856 0.926 0.899 0.934 0.894 0.950 0.936

RUtraps 0.895 0.844 0.918 0.894 0.925 0.886 0.944 0.922

Table 4 shows the indexing speed factor (ISF), searching
speed factor (SSF), peak memory usage for indexing (PMUI)
and searching (PMUS) and processing load (PL)2, computed
as described in [9]. ISF and PMUI are rather high because,
in the dnn systems, first an automatic speech recognition
system (ASR) is applied in order to obtain the input fea-
tures to the DNN; hence, the peak memory usage is so large
due to the memory requirements of the language model, and
the large computation time is caused by the two recognition
steps that are performed to estimate the transformation ma-
trix used to obtain the fMLLR features that are the input
to the DNN. In future work, the ASR step of dnn systems
will be replaced with a phonetic network in order to avoid
these time and memory consuming steps.

Table 4: Required amount of processing resources.

ISF SSF PMUI PMUS PL

12.1 0.09 6 0.014 7.3
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[13] I. Szöke, L. Rodriguez-Fuentes, A. Buzo, X. Anguera,
F. Metze, J. Proenca, M. Lojka, and X. Xiong. Query
by example search on speech at Mediaeval 2015. In
Proceedings of the MediaEval 2015 Workshop, 2015.
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