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ABSTRACT
All our systems are based on Dynamic TimeWarping (DTW).
These systems use bottle-neck features (BN) as input. The
bottle-neck feature extractors were trained on GlobalPhone
Czech, Portuguese, Russian and Spanish languages, so our
approach is in low-resource category. We also aimed on
T1/T2/T3 types of query search for late submission sys-
tems. System calibration and fusion were based on binary
logistic regression.

1. MOTIVATION
We developed one (single) system for on-time submission

and two more systems for late submission. The system
schema is in Figure 1. Similarly to last year, we used fea-
ture extractors already available at BUT (so-called Atomic
Systems). We aimed only at bottle-neck features and DTW
search approach this year. Our goal was to build a simple
system and aim on word reordering in queries (T2/T3) (we
addressed this problem in late submission). On the other
hand, we have not addressed noise and reverberation in the
data (see [1] for details on the task).

2. ATOMIC SYSTEMS
All our subsystems use Artificial Neural Networks (ANN)

to estimate per-frame phone-state probabilities (so-called
posterior-grams) and bottle-neck features. Subsystems are
based on DTW using BNs to calculate distances between
query and test segment frames. We re-use ANNs, which were
trained for different projects as acoustic models for phone
or LVCSR recognizers: 1× SpeechDat (Hungarian; mono-
lingual LCRC systems [2]) for phone posterior-grams and
4× GlobalPhone (Czech, Portuguese, Russian, Spanish;
monolingual stacked-bottleneck systems [3]) for BN features.
We didn’t exploit phone-state posterior-grams for DTW as
in the last year’s evaluations due to significant loss of accu-
racy for noisy data sets. The Hungarian phone recognizer
was used only for Speech Activity Detection (SAD). Also,
we didn’t use Acoustic Keyword Spotting (AKWS) subsys-
tems or ANNs adaptation on target language as we did in
previous years.
We ended up with 4 atomic systems and 3 subsystems

based on DTW using GlobalPhone features.
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Figure 1: BUT QbE 2015 system. Q means queries
as an input, U stands for utterances as an input,
GP stands for GlobalPhone atomic systems where the
output is bottleneck features.

2.1 Fusion of features
We use concatenation of feature vectors for DTW pro-

posed by GTTS [4]. The feature vectors are simply stacked
on each other to create larger feature vector. We tried sev-
eral combinations of 7 languages and ended up with a con-
catenation of the Czech, Portuguese, Russian, and Spanish
GlobalPhone BNs (denoted as fea stack).

3. DYNAMIC TIME WARPING
In our implementation, we follow the standard query-by-

example recipe – sub-sequence DTW [5]. Single DTW is
run for each combination of query and test segment, where
the query is allowed to start at any frame of the test seg-
ment. When selecting the locally optimal path in the stan-
dard DTW algorithm, transition from the smallest accumu-
lated distance is chosen.

In our implementation, we compare the accumulated dis-
tances (including the current local distance) normalized by
online normalization. The online normalization performs
the division by current path length on-the-fly for every step
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p-fea stack DTW QU 0.8452 0.8263 (0.7571/0.8647/0.8337) 0.8580 0.8426 (0.7588/0.8595/0.8706)
l-fea stack DTW+slope - 0.8490 0.8184 (0.7408/0.8524/0.8306) 0.8772 0.8389 (0.7503/0.8470/0.8800)
l-fea stack DTW 2w+slope - - - 0.8884 0.8569 (0.8253/0.8519/0.8744)
l-fea stack DTW 3w+slope - - - 0.9188 0.8801 (0.8593/0.8716/0.8949)
l-fea stack DTW+slope+2w3w fusion - 0.8447 0.8124 (0.7423/0.8453/0.8212) 0.8731 0.8321 (0.7526/0.8381/0.8698)

Table 1: Results for the systems in actual Cnxe for ALL types and minimum Cnxe with per query type ALL (T1/T2/T3).

calculation to decide which step (vertical, horizontal or diag-
onal) is the best to choose. The division is not saved during
the calculation, it is performed only to decide the next step.
The length normalization is done afterwards as in standard
approach. This leads to prefer longer paths over shorter
ones.
As the distance metric, we used the Pearson product mo-

ment correlation distance [6]. We applied SAD to drop out
non-speech frames in queries (see our previous work [7]).
Queries having less than 10 frames after SAD application
were discarded. The primary submitted system (denoted as
p-fea stack DTW) using described algorithm was the win-
ning one in last year’s evaluations. We have made a few
changes to the primary system for the late submission.
We used different step size conditions during the calcula-

tion of accumulated distances to control the slope of paths
(systems denoted as +slope). Each path has a local slope
within the bounds 1

2
and 2. This limitation allows us to

eliminate errors where one query frame maps to the whole
utterance perfectly or vice versa. We also experimented with
different local weights for vertical, horizontal and diagonal
direction but we got no improvement out of it.

3.1 Dealing with T2/T3
We built additional subsystems to deal with T2/T3 type

of queries. A query is split into equal parts and for each part,
DTW is performed separately (denoted as bands). The small-
est accumulated distance is chosen from each band of the
given query and results are averaged together as a match-
ing score. This approach allows us to search for multiple
word queries. For single word queries, the results remain
the same. Note that it is not mandatory that two words in
T2 query are separated exactly in the middle of the query.
We experimented with 1 (baseline system), 2 (denoted as
2w) and 3 (denoted as 3w) bands. These subsystems were
used only for fusion and, therefore, were not submitted as
separated late systems.

4. SCORE POST-PROCESSING
The global minimum of frame-by-frame detection scores is

selected as candidate detection. There might be significant
differences between the score distributions corresponding to
the different queries and it is important to normalize the
scores for each query.
We applied m-norm (developed in SWS2013 [7]) to nor-

malize the scores for each query to allow for a single common
threshold maximizing the Cnxe metric.
As the task expects only one score per query–utterance

pair without timing, we find and return the best particular
score from a set of detections of a query in an utterance.

5. CALIBRATION
The post-processed scores were calibrated with respect to

the Cnxe scoring metric using binary logistic regression.
We attached a sideinfo to each score (query–utterance

pair). The sideinfo consists of: number of phonemes, log
of number of phonemes, number of speech frames, log of
number of speech frames and average log-posterior of speech
frames taken from SAD. The sideinfo was generated for
queries and utterances so the final “feature vector” for cali-
bration consists of: 1 detection score (query–utterance pair),
5 query sideinfo, 5 utterance sideinfo. Parameters (11 linear
weights and 1 additive constant) were trained on develop-
ment set. We denoted this 10 sideinfo parameters as QU.
However, we found sideinfo harms the performance for late
submission so we omit it.

6. FUSION
We applied fusion on the level of calibrated systems using

the binary logistic regression again.
For improved late system, we fused the primary system

with slope limitation (l-fea stack DTW+slope) and the 2w
and 3w systems. The fused system is denoted as“l-fea stack
DTW+slope+2w3w fusion” and was submitted as second
late system.

7. CONCLUSION
First, we processed data by the primary system with-

out respect to T2 and T3 type of query. The first general
late system using slope constraint improved output score by
0.79% in Cmin

nxe for eval data. The conclusion is that for such
noisy data, there could be one or few single query frames fit-
ting perfectly to single or few frames from utterance. This
generates path too steep or too shallow, obviously not a
matching hit.

To improve accuracy of T2 queries, we used algorithm
where queries are split into parts and search is performed
“per-partes”. The output scores of these subsystems were
not significantly better, however, helped in fusion with the
best single system. We got improvement of 0.6% in Cmin

nxe .
More detailed, the deterioration of T1 query is 0.15% but
there is slight improvement for T2 query (0.71%) and T3
query (0.94%).

The real-time factor for the primary system is 0.009, for
late system without fusion is 0.009 and for late system with
fusion reaches 0.023. The highest memory consumption
(high level water mark) is 450MB. The experiments were
run on a hybrid cluster with average CPU Intel(R) Xeon(R)
CPU X5670 @ 3GHz.
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