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ABSTRACT
This paper describes two query-by-example systems devel-
oped by Speech Lab, Queens College (CUNY). Our systems
aimed to respond with quick search results from the selected
reference files. Three phonetic recognizers (Czech, Hungar-
ian and Russian) were utilized to get phoneme sequences of
both query and reference speech files. Each query sequence
were compared with all the reference sequences using both
global and local aligners. In the first system, we predicted
the most probable reference files based on the sequence align-
ment results; In the second system, we pruned out the sub-
sequences from the reference sequences that yielded best lo-
cal symbolic alignments, then 39-dimension MFCC features
were extracted for both query and the subsequences. Both
the two systems employed an optimized DTW, and obtained
Cnxe of 0.9989 and 1.0674 on the test data respectively.

1. INTRODUCTION
The primary goal of query-by-example search is to detect the
occurrence of query audio in a unlabeled reference speech
corpus. This year, this task emphasized the probabilistic
decisions of the query occurrence, ignoring the exact start
and end times of hit regions in the reference audio. More-
over, three different types of query searches were used in this
year’s evaluation in addition to exact matches of query au-
dio: 1) word level re-orderings, 2) small filler content and 3)
conversational queries in context. Detailed description can
be found in [1]. Therefore, we targeted comprehensive search
systems which are compatible with the queries of different
types, and capable to output both strict and approximate
matches. Our systems took advantage of phonetic symbolic
sequences as well as MFCC features, and employed a DTW
algorithm with novel optimizations. Note that all the queries
were manually recorded with the acoustic context, in order
to avoid any problems when cutting the queries from a longer
sentence. However, this context might interfere the retrieval
performance. Thus, we filtered out the exact spoken queries
as the ones searched in our systems, using the timing bound-
aries of the relevant words provided.

2. PHONETIC TOKENIZER
Unlike resource rich languages, for low-resource languages,
automatic speech recognition still remains challenging due
to the lack of adequate training data. Without sufficient
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data for language modeling, or reliable pronunciation mod-
eling, we seek to decode the audio to a phoneme sequence.
We utilized three phonetic tokenizers (Czech, Hungarian and
Russian) released by Brno University of Technology (BUT)
to generate the phoneme transcripts[2]. All BUT recogniz-
ers used the split temporal context network structure. All
queries and reference audios were decoded by the three to-
kenizers and non-phonetic symbols (pau, int, spk) were re-
moved from final sequences.

3. SEQUENCE ALIGNMENT
Considering various acoustic and voice conditions of audio
and the error rate of phonetic tokenizers, phonetic sequences
from the query and the actual hit region in the reference au-
dio may not always be exactly the same, but should be simi-
lar. Thus we employed three aligners to match phoneme se-
quences: 1) strict global aligner, 2) (fuzzy) global aligner and
3) local aligner, where 1) was designed for exact matches,
while 2) and 3) for inexact matches. Every aligner used Lev-
enshtein edit distance and backtracking to find the optimal
matching parts of each sequence pair, yielding a matching
score and a similarity percentage. We performed alignment
for all the sequences decoded by different tokenizers, thus
obtained 9 matching scores and 9 similarity percentages for
each sequence pair.

4. SYSTEM 1: SMO+ISAX
In our first system, we investigated how to use global and
local symbolic similarities to identify the best possible ref-
erence files for DTW to search.

Binary Classifier: We aggregated all the scores and per-
centages computed from Section 3 for each query-reference
(q-ref) pair, then assigned “CORR” (“correct”, if the query
occurred in the reference audio) or “FA” (“false alarm”) for
training queries. The data set showed strong between-class
imbalance, where “FA” samples was 1,365 times more than
“CORR” instances. Since most classification algorithms do
not perform optimally when class examples are extremely
imbalanced, we applied clustering centroid undersampling
[3], a technique proven effective to address such issue, to our
training data. We then trained a support vector machine
using sequential minimal optimization (SMO)[4] and evalu-
ated using four-fold cross validation on training data. An-
other SMO model was trained over all the training set and
tested on test queries to make predictions of “CORR”/“FA”.
Limited by time, for each query, we narrowed our search
scope of DTW to top 50 reference files that obtained high-



Table 1: An algorithm converting phoneme sequence
T to time series S(A stands for phoneme alphabet)

Always set s1 = 0;
For T = t1, t2, ..., tN , where ti ∈ A = {l1, l2, ..., lM} :

si+1 = si + (M
2
− j + 1) if ti = lj and j ≤ M

2
;

si+1 = si − (j − M
2

) if ti = lj and j > M
2
.

est prediction confidences.

Sequence Mapping: DTW is an excellent search algo-
rithm, especially on small data sets [5]. Therefore, after us-
ing the edit distance to get the rough decisions (i.e. shrink
the scope of candidates), we applied DTW to make more ac-
curate decisions as to whether a spoken query occurs in the
candidate audio segment. We utilized indexable iSAX[6],
a method that uses the symbolic words to internally orga-
nize and index the data, and supports DTW by building
bounding envelopes around the query time series. Following
[6], we mapped the phoneme sequence using the approach
shown in Table 1. The phoneme vocabulary was constructed
by all the phonemes from query and reference sequences. To
simplify the mapping algorithm, shown in Table 1, a ”null”
symbol was inserted at the end of the alphabet to ensure the
total number is even. In this way, we converted phoneme se-
quences to integer time series, in order to apply the DTW
described in Section 6.

5. SYSTEM 2: SUBSEQ+MFCC
In our second system, phoneme sequence alignments were
used to determine the subsequences of reference files that
best matched the query sequence. We then applied DTW
over the subsequence and query pair (q-subref) by comparing
their MFCC features, a type of acoustic features that has
been widely used for the task.

Subsequence Detection: We made an approximate es-
timation of start and end time points of the subsequence
that was likely to be an occurrence of query, only for the
reference files that achieved a high average similarity from
local aligners. More specifically, we selected the top 100 q-
subref pairs for each query and extracted the hypothesized
matched regions from reference audio segments. For exam-
ple, suppose we have a query sequence ”u i k”, then only the
region that were transcribed as ”u i k” would be searched.
Therefore, using the symbol matching looking, we only need
make DTW comparisons between the query sequence and a
smaller local region of the reference segment.

MFCC Feature Extraction: We extracted 39-dimension
MFCC features for both query and subsequence speech files
using OpenSMILE [7]. The features were produced from
25 ms audio frames (sampled at a rate of 10 ms), by com-
puting 13 MFCC (0-12) from 26 Mel-frequency bands and
applying a cepstral liftering filter with a weight parameter
of 22, with 13 delta and 13 acceleration coecients appended
to the MFCC. Finally, we made mean normalization of all
the features with respect to the full input sequence.

6. OPTIMIZED DTW
Four optimization techniques proposed in [5] can greatly ac-
celerate the DTW algorithm: 1) early abandoning z-normal-

Table 2: System Performances on all the queries
(System 1 is primary system)
System actCnxe minCnxe ATWV MTWV

SMO+iSAX-dev 0.9988 0.9872 0.0011 0.0067
SMO+iSAX-eval 0.9989 0.9870 0.0006 0.0010
Subseq+MFCC-dev 1.0658 0.9823 -3.9820 0.0123
Subseq+MFCC-eval 1.0674 0.9853 -4.0205 0.0006

ization, 2) reordering early abandoning, 3) reversing the
query/data role in LBKeogh and 4) cascading lower bounds.
UCRsuite [8] implements the optimized DTW algorithm. In
the first system, optimized DTW was applied to the iSAX-
converted time series; in the second system, it was employed
to compare each dimension of MFCC features, then the 39
scores were aggregated to compute their average. Per-query
normalization was performed, using the formula z = x−µ

σ
where µ is the mean of raw matching scores for the query,
and σ is their standard deviation.

7. EXPERIMENT RESULTS
Results obtained by our systems on both dev queries and
eval queries are shown in Table 2. System 1 performed
better than System 2, in both Cnxe and ATWV metrics.
Smaller Cnxe indicates System 1 is a more informative sys-
tem of the two, which might be caused by the fact that
System 1 chose the candidate files based on both (strict)
global and local similarities, while System 2 selected the sub-
sequences that either matched the entire query(e.g. ”white
horse”) most, or matched part of the query(e.g. ”horse”)
most, which might fail to capture some inexact matches as
Type 2 and Type 3 queries and misrecognized files that just
partially matched the query. Therefore, System 2 performed
worse, even though it introduced acoustic information from
MFCC and generated a response faster. Besides, basing
decisions on the phoneme sequences made the accuracy of
phoneme recognizers impact the performance of both sys-
tems. To run the experiments, we used a computer with
60CPUs (2.8 GHz, 120 cores), 64GB RAM and 1TB hard
drive. Most of the computation cost of our systems was
caused by the alignment and DTW phases. Approximately,
the Indexing Speed Factor was 0.607, Searching Speed Fac-
tor was 0.307 per sec and per language, and Peak Memory
was 1.903 GB for the primary system.

8. CONCLUSIONS
We briefly summarize our two systems as part of the Medi-
aEval QUESST 2015 Shared Tasks along with their evalua-
tion results. Our first system involved (strict) global/local
similarities of symbolic phoneme sequences, therefore was
compatible to both the exact query search and approxi-
mate search tasks. Additionally, a classifier-based selection
method of candidate reference files were explored. Our sec-
ond system used local similarity as measurement to filter
out the most similar subsequences to query sequence, thus
reduced the computational burden of DTW comparison. In
our systems, optimized DTW algorithms were employed to
compare either iSAX-ed phoneme sequences or 39-dimension
MFCC features to determine if a query appears within a
reference sample. In the future, more acoustic features and
selection approaches should be further investigated.
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[1] I. Szöke, L.-J. Rodriguez-Fuentes, A. Buzo, X. Anguera,

F. Metze, J. Proenca, M. Lojka, and X. Xiong, “Query
by example search on speech at MediaEval 2015,” in
Working Notes Proceedings of the MediaEval 2015
Workshop, Sept. 14-15, 2015, Wurzen, Germany, 2015.

[2] P. Schwarz, “Phoneme Recognizer Based on Long
Temporal Context,” in http:
// www.fit.vutbr.cz/ ˜schwarzp/ publi/ thesis.pdf ,PhD
Thesis, Brno University of Technology, 2008.

[3] M. M. Rahman and D. Davis, “Cluster Based
Under-Sampling for Unbalanced Cardiovascular Data,”
in Proceedings of the World Congress on Engineering,
vol. 3, 2013.

[4] S. Keerthi, S. Shevade, C. Bhattacharyya, and
K. Murthy, “Improvements to Platt’s SMO Algorithm
for SVM Classifier Design,” in Neural Computation,
vol. 13, no. 3, 2001, pp. 637–649.

[5] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista,
B. Westover, Q. Zhu, J. Zakaria, and E. Keogh,
“Searching and Mining Trillions of Time Series
Subsequences under Dynamic Time Warping,” in
Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining.
ACM, 2012, pp. 262–270.

[6] J. Shieh and E. Keogh, “iSAX: Indexing and Mining
Terabyte Sized Time Series,” in Proceedings of the 14th
ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2008, pp. 623–631.

[7] F. Eyben, F. Weninger, F. Groß, and B. Schuller,
“Recent Developments in openSMILE, the Munich
Open-Source Multimedia Feature Extractor,” in
Proceedings of the 21st ACM international conference
on Multimedia. ACM, 2013, pp. 835–838.

[8] “The UCR Suite,” in
www.cs.ucr.edu/ ˜eamonn/ UCRsuite.html .


